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OPTIMAL CONTROL PROBLEM FOR A SIXTH-ORDER
CAHN-HILLIARD EQUATION WITH NONLINEAR DIFFUSION

CHANGCHUN LIU, ZHAO WANG

Abstract. In this article, we study the initial-boundary-value problem for a
sixth-order Cahn-Hilliard type equation

ut = D2µ,

µ = γD4u− a(u)D2u−
a′(u)

2
|Du|2 + f(u) + kut,

which describes the separation properties of oil-water mixtures, when a sub-
stance enforcing the mixing of the phases is added. The optimal control of the
sixth order Cahn-Hilliard type equation under boundary condition is given
and the existence of optimal solution to the sixth order Cahn-Hilliard type
equation is proved.

1. Introduction

We consider the equation

ut = D2
[
γD4u− a(u)D2u− a′(u)

2
|Du|2 + f(u) + kut

]
, (1.1)

in Ω × (0, T ), where Ω is a bounded subset in R and γ > 0 with the initial and
boundary conditions

u(x, 0) = u0, in Ω, (1.2)

u(x, t) = D2u(x, t) = D4u(x, t) = 0, on ∂Ω. (1.3)

The function f(u) stands for the derivative of a potential F (u) with F (u), a(u)
approximated, respectively, by a sixth and a second order polynomial

F (u) =
∫ u

0

f(s)ds = γ1(u+ 1)2(u2 + h0)(u− 1)2, (1.4)

a(u) = a2u
2 + a0, (1.5)

where γ1 > 0, a2 > 0.
The model (1.1) describes the separation properties of oil-water mixtures, when a

substance enforcing the mixing of the phases (a surfactant) is added. G. Schimperna
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et al. [9] studied the equation (1.1) with logarithmic potential

F (r) = (1− r) log(1− r) + (1 + r) log(1 + r)− λ

2
r2, λ > 0.

They investigated the behavior of the solutions to the sixth order system as the pa-
rameter γ tended to 0, the uniqueness and regularization properties of the solutions
have been discussed.

When k = 0, equation (1.1) is the sixth order equation which describes dynamics
of phase transitions in ternary oil-water-surfactant systems [2, 3, 4]. The surfac-
tant which has a character that one part of it is hydrophilic and the other lipophilic
is called amphiphile. In the system, almost pure oil, almost pure water and mi-
croemulsion which consists of a homogeneous, isotropic mixture of oil and water
can coexist in equilibrium. Paw low and Zaja̧czkowski [8] proved that the problem
(1.1)-(1.5) with k = 0 under consideration is well posed in the sense that it admits
a unique global smooth solution which depends continuously on the initial datum.
Liu [7] studied the equation

∂u

∂t
− div[m(u)(k∇∆2u+∇(−a(u)∆u− a′(u)

2
|∇u|2 + h(u))] = 0,

and proved the existence of classical solutions for two dimensions.
In past decades, the optimal control of distributed parameter system had been

received much more attention in academic field. A wide spectrum of problems in ap-
plications can be solved by methods of optimal control, such as chemical engineering
and vehicle dynamics. Modern optimal control theories and applied models are not
only represented by ODE, but also by PDE. Kunisch and Volkwein [6] solved open-
loop and closed-loop optimal control problems for the Burgers equation. Armaou
and Christofides[1] studied the feedback control of Kuramto-Sivashing equation.

Recently, many authors studied the optimal control problem for the viscous PDE,
such as Tian et al. [10]-[13], Zhao and Liu [15].

In this article, we consider the optimal control problem for the equation

(u− kD2u)t +
γ

k
D4(u− kD2u) +D2(a(u)D2u+

a′(u)
2

|Du|2)

=
γ

k
D4u+D2f(u) +B∗ω,

with (1.2)-(1.5).
When y = u−D2u, we take the distributed optimal control problem

minJ (y, ω) =
1
2
‖Cy − z‖2S +

δ

2
‖ω‖2L2(0,T ;Q0)

,

s. t. yt +
γ

k
D4y − γ

k
D4u+D2(a(u)D2u+

a′(u)
2

|Du|2)−D2f(u) = B∗ω,

y(x, 0) = y0 = u0 −D2u(x, 0),

u(x, t) = D2u(x, t) = D4u(x, t) = 0.

(1.6)

For a fixed T > 0, we set Ω = (0, 1) and Q = Ω × (0, T ). Let Q0 ⊂ Q be an open
set with positive measure.

Let V = H2
0 (0, 1),H = L2(0, 1), V ∗ = H−2(0, 1) and H∗ = L2(0, 1) are dual

spaces respectively, we have V ↪→ H = H∗ ↪→ V ∗. The extension operator B∗ ∈
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L(L2(0, T ;Q0), L2(0, T ;V ∗)) is given by

B∗q =

{
q, q ∈ Q0,

0, q ∈ Q/Q0.
(1.7)

The space W (0, T ;V ) is defined by

W (0, T ;V ) = {y, y ∈ L2(0, T ;V ), yt ∈ L2(0, T ;V ∗)}

which is a Hilbert space endowed with common inner product.
The plan of the paper is as follows. In section 2, we prove the existence of the

weak solution in a special space. The optimal control is discussed in section 3, and
the existence of an optimal solution is proved.

2. Existence of weak solutions

Consider the the sixth-order Cahn-Hilliard equation

(u− kD2u)t +
γ

k
D4(u− kD2u) +D2(a(u)D2u+

a′(u)
2

|Du|2)

=
γ

k
D4u+D2f(u) +B∗ω,

(2.1)

under the initial condition
u(x, 0) = u0,

and boundary condition

u(x, t) = D2u(x, t) = D4u(x, t) = 0,

where B∗ω ∈ L2(0, T ;V ∗) and the control item ω ∈ L2(0, T ;Q0).
Let y = u− kD2u. Then the above problem is rewritten as

yt +
γ

k
D4y − γ

k
D4u+D2(a(u)D2u+

a′(u)
2

|Du|2)−D2f(u) = B∗ω,

y(x, 0) = y0 = u0 −D2u0,

u(x, t) = D2u(x, t) = D4u(x, t) = 0,

(2.2)

with (1.4)-(1.5).
Now, we give the definition of the weak solution for problem (2.2) in the space

W (0, T ;V ).

Definition 2.1. A function y(x, t) ∈W (0, T ;V ) is called a weak solution to prob-
lem (2.2), if

d

dt
(y, φ) +

γ

k
(D2y,D2φ)− (

γ

k
D2u,D2φ)

+ (a(u)D2u+
a′(u)

2
|Du|2, D2φ)− (f(u), D2φ) = (B∗ω, φ)V ∗,V ,

for all φ ∈ V , a.e. t ∈ [0, T ] and y0 ∈ H are valid.

Theorem 2.2. Problem (2.2) admits a weak solution y(x, t) ∈ W (0, T ;V ) in the
interval [0, T ], if B∗ω ∈ L2(0, T ;V ∗), y0 ∈ H and u0 ∈ H2(Ω) ∩H1

0 (Ω).
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Proof. Employ the standard Galerkin method. The fourth-order differential oper-
ator A = ∂4

x is a linear unbounded self-adjoint operator in H with D(A) = {u|u ∈
H4(Ω), u|∂Ω = D2u|∂Ω = 0} dense in H, where H is a Hilbert space with a scalar
product (·, ·) and norm ‖ · ‖.

There exists orthogonal basis {ψi} of H. Let {ψi}∞i=1 be the eigenfunctions of
the operator A = ∂4

x with

Aψj = λjψj , 0 < λ1 ≤ λ2 ≤ . . . , as j →∞.

For n ∈ N, we define the discrete ansatz space by

Vn = span{ψ1, ψ2, . . . , ψn} ⊂ V.

Set yn(t) = yn(x, t) =
∑n

i=1 y
n
i (t)ψi(x) require yn(0, ·) 7→ y0 in H holds true.

To prove the existence of a unique weak solution to the problem (2.2), we are
going to analyze the limiting behavior of sequences of smooth functions {yn} and
{un}.

Performing the Galerkin process for the problem (2.2), we have

yn,t +
γ

k
D4yn −

γ

k
D4un +D2(a(un)D2un +

a′(un)
2

|Dun|2)−D2f(un) = B∗ω,

yn(x, 0) = yn,0 = un,0 −D2un(x, 0),

un(x, t) = D2un(x, t) = D4un(x, t) = 0.
(2.3)

According to ODE theory, there is a unique solution to (2.3) in the interval [0, tn].
We should show that the solution is uniformly bounded when tn → T .

First step, multiplying the first equation of (2.3) by

µn = γD4un − a(un)D2un −
a′(un)

2
|Dun|2 + f(un) + kun,t,

and integrating with respect to x, we obtain
d

dt
E(un) + ‖Dµn‖2 + k‖un,t‖2 = (B∗ω, µn)V ∗,V , (2.4)

where

E(un) =
∫ 1

0

(γ
2
|D2un|2 +

a(un)
2

|Dun|2 + F (un)
)
dx, (2.5)

F (un) = γ1(u6
n + (h0 − 2)u4

n + (1− 2h0)u2
n + h0). (2.6)

Applying a simple calculation, we have

F (un) ≥ C1u
6
n − C0, (2.7)

where C1 > 0 and C0 ≥ 0.
Since B∗ω ∈ L2(0, T ;V ∗) is a control item, we assume

‖B∗ω‖V ∗ ≤M. (2.8)

Taking account (2.4), (2.7), (2.8) and (1.4) and integrating (2.4) with respect to
time from 0 to t, we know∫ 1

0

(γ
2
|D2un|2 +

a2

2
u2

n|Dun|2 + C1u
6
n

)
dx+

∫ t

0

‖Dµn‖2dt+ k

∫ t

0

‖un,t‖2dt

≤
∫ 1

0

|a0|
2
|Dun|2dx+ E(un,0) + C0 +

∫ t

0

|(B∗ω, µn)V ∗,V |dt
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≤ ε1

∫ 1

0

|a0|
2
|D2un|2dx+ C(ε1)

∫ 1

0

u2
ndx

+ E(un,0) + C0 +
∫ t

0

‖B∗ω‖V ∗‖µn‖V dt

≤ ε1

∫ 1

0

|a0|
2
|D2un|2dx+ C(ε1)ε2

∫ 1

0

u6
ndx+ C(ε2)

+ E(un,0) + C0 + C(ε)
∫ t

0

‖B∗ω‖2V ∗dt+ ε

∫ t

0

‖D2µn‖2dt

= ε1

∫ 1

0

|a0|
2
|D2un|2dx+ C(ε1)ε2

∫ 1

0

u6
ndx+ C(ε2)

+ E(un,0) + C0 + C(ε)
∫ t

0

‖B∗ω‖2V ∗dt+ ε

∫ t

0

‖un,t‖2dt,

where

E(un,0) =
∫ 1

0

(γ
2
|D2un,0|2 +

a(un,0)
2

|Dun,0|2 + F (un,0)
)
dx.

Choosing ε1, ε2 and ε sufficiently small, from the above inequality and the Poincaré
inequality, we have ∫ 1

0

|D2un|2dx ≤ C, (2.9)∫ 1

0

|Dun|2dx ≤ C, (2.10)∫ 1

0

u6
ndx ≤ C, (2.11)∫∫

QT

|un,t|2 dx dt ≤ C. (2.12)

From (2.11), we know that ∫ 1

0

u2
ndx ≤ C. (2.13)

By (2.9), (2.10) and (2.13), we obtain

‖un‖H2 ≤ C. (2.14)

By Sobolev’s imbedding theorem it follows from (2.14) that

‖un‖L∞ ≤ C, ‖Dun‖L∞ ≤ C. (2.15)

Second step, multiplying (1.1) by D2un and integrating with respect to x, we
obtain

1
2
d

dt

( ∫ 1

0

|Dun|2dx+ k

∫ 1

0

|D2un|2dx
)

+ γ

∫ 1

0

|D4un|2dx

= −
∫ 1

0

D2f(un)D2undx+
∫ 1

0

a(un)D2unD
4undx

+
∫ 1

0

a′(un)
2

|Dun|2D4undx− (B∗ω,D2un)V ∗,V .

(2.16)
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From a simple calculation, we have

a′(un) = 2a2un, (2.17)

D2f(un) = f ′(un)D2un + f ′′(un)(Dun)2, (2.18)

where

f ′(un) = γ1(30u4
n + 12(h0 − 2)u2

n + 2(1− 2h0)) ≥ −C2, C2 > 0, (2.19)

f ′′(u) = γ1120u3
n + 24(h0 − 2)un. (2.20)

Thus it follows from (2.14), (2.18) and(2.19) that

1
2
d

dt

( ∫ 1

0

|Dun|2dx+ k

∫ 1

0

|D2un|2dx
)

+ γ

∫ 1

0

|D4un|2dx

≤ −
∫ 1

0

(f ′(un)D2un + f ′′(un)|Dun|2)D2undx+
∫ 1

0

(a2u
2
n + a0)D2unD

4undx

+
∫ 1

0

a′(un)
2

|Dun|2D4undx+ ‖B∗ω‖V ∗‖D2un‖V

≤ C2

∫ 1

0

|D2un|2dx+ C(‖un‖3L∞ + ‖un‖L∞)‖Dun‖L∞

∫ 1

0

|Dun||D2un|dx

+ |a2|‖un‖2L∞
∫ 1

0

|D2un||D4un|dx+ |a0|
∫ 1

0

|D2un||D4un|dx

+ |a2|
∫ 1

0

|un||Dun|2|D4un|dx+ C(ε)‖B∗ω‖2V ∗ + ε

∫ 1

0

|D4un|2dx

≤ C2

∫ 1

0

|D2un|2dx+ C(‖un‖3L∞ + ‖un‖L∞)‖Dun‖L∞

(
ε

∫ 1

0

|Dun|2
)

+ C(‖un‖3L∞ + ‖un‖L∞)‖Dun‖L∞

(
C(ε)

∫ 1

0

|D2un|2dx
)

+ |a2|‖un‖2L∞
(
C(ε)

∫ 1

0

|D2un|2dx+ ε

∫ 1

0

|D4un|2dx
)

+ |a0|
(
C(ε)

∫ 1

0

|D2un|2dx+ ε

∫ 1

0

|D4un|2dx
)

+ |a2|‖Dun‖2L∞
(
ε

∫ 1

0

|D4un|2dx+ C(ε)
∫ 1

0

u2
ndx

)
+ C(ε)‖B∗ω‖2V ∗ + ε

∫ 1

0

|D4un|2dx

≤ γ

2

∫ 1

0

|D4un|2dx+ C,

(2.21)
where ε is sufficiently small.

By the Gronwall’s inequality, (2.21) implies∫∫
QT

|D4un|2 dx dt ≤ C. (2.22)
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As we know ∫ T

0

∫ 1

0

|D3un|2 dx dt

≤ 1
2

∫ T

0

∫ 1

0

|D2un|2 dx dt+
1
2

∫ T

0

∫ 1

0

|D4un|2 dx dt ≤ C.

(2.23)

From a simple calculation, we have

‖yn‖V = ‖un −D2un‖2V ≤ C(‖un‖+ ‖Dun‖+ ‖D2un‖+ ‖D3un‖+ ‖D4un‖).

From (2.14), (2.15), (2.22) and (2.23), we obtain

‖yn‖L2(0,T ;V ) ≤ C. (2.24)

Third step, from (2.2), (2.14), (2.15) and Sobolev embedding theorem, we have

‖yn,t‖V ∗ ≤ ‖B∗ω‖V ∗ + ‖D4un‖+ ‖a(un)D2un +
a′(un)

2
|Dun|2‖+ ‖f(un)‖

≤ ‖B∗ω‖V ∗ + ‖D4un‖+ C‖un‖2L∞‖D2un‖+ C‖un‖L∞‖Dun‖2

+ C‖un‖6L∞ + C

≤ ‖D4un‖+ C.

Then ‖yn,t‖L2(0,T ;V ∗) ≤ C. Thus, we have:

(i) For every t ∈ [0, T ], the sequence {yn}n∈N is bounded in L2(0, T ;H) as well
as in L2(0, T ;V ), which is independent of the dimension of amsatz space n.

(ii) For every t ∈ [0, T ], the sequence {yn,t}n∈N is bounded in L2(0, T ;V ∗),
which is independent of the dimension of amsatz space n.

By theorem we get {yn,t}n∈N ⊂W (0, T ;V ) and W (0, T ;V ) is continuously embed-
ded into C(0, T ;H). {yn,t}n∈N weak in W (0, T ;V ), weak star in L∞(0, T ;H) and
strong in L2(0, T ;H) to a function y(x, t) ∈W (0, T ;V ). Obviously, the uniqueness
of solution is easy to obtained [5]. We omit it here. �

To ensure that the norm of weak solution in the space W (0, T ;V ) can be con-
trolled by initial value and control item, we need the following theorem.

Theorem 2.3. If B∗ω ∈ L2(0, T ;V ∗), u0 ∈ H2(Ω) ∩ H1
0 (Ω) and y0 ∈ H, then

there exists a constant C3 > 0 and C4 > 0, such that

‖y‖2W (0,T ;V ) ≤ C3

(
‖y0‖2H + ‖ω‖2L2(0,T ;Q0)

)
+ C4.

Proof. As in the proof of Theorem 2.2, we obtain

‖u‖ ≤ C, ‖Du‖ ≤ C, ‖u‖V ≤ C, ‖D3u‖ ≤ C. (2.25)

Multiplying this equation by y and integrating the equation with respect to x, we
obtain

1
2
d

dt
‖y‖2H +

γ

k
‖D2y‖2H

=
∫ 1

0

γ

k
D2yD2udx−

∫ 1

0

(a(u)D2u+
a′(u)

2
|Du|2)D2ydx

−
∫ 1

0

DyDf(u)dx+ (B∗ω, y)V ∗,V .

(2.26)



8 C. LIU, Z. WANG EJDE-2012/127

From Hölder and Young inequalities, we have∫ 1

0

γ

k
D2yD2udx ≤ C(ε)‖D2u‖2 + ε‖D2y‖2. (2.27)

From (2.25), we have∫ 1

0

(a(u)D2u+
a′(u)

2
|Du|2)D2y dx

≤ ‖u‖3L∞‖D2y‖‖D2u‖+ |a2|‖u‖L∞‖Du‖2L∞‖D2y‖
≤ C(ε)C‖D2u‖2 + ε‖D2y‖2 + CC(ε) + ε‖D2y‖2

≤ ε‖D2y‖2 + C,

(2.28)

and

−
∫ 1

0

DyDf(u)dx ≤ C2

∫ 1

0

|Dy|dx ≤ C‖Dy‖+ C ≤ C. (2.29)

Note that
(B∗ω, y)V ∗,V ≤ ‖B∗ω‖V ∗‖y‖V . (2.30)

From (2.26)-(2.30), we have

1
2
d

dt
‖y‖2H +

γ

k
‖D2y‖2H ≤ ε‖D2y‖2H + C‖B∗ω‖2V ∗ + C. (2.31)

Integrating the above inequality with respect to t yields

‖y‖2H ≤ ‖y0‖2H + C‖B∗ω‖2L2(0,T ;V ∗) + C. (2.32)

By (2.32), (2.2) and (2.25), we deduce that

‖yt‖2V ∗ ≤ ‖B∗ω‖2V ∗ +
γ

k
‖y‖2V +

γ

k
‖D2u‖+ ‖(a(u)D2u+

a′(u)
2

|Du|2)‖+ ‖f(u)‖

≤ ‖B∗ω‖2V ∗ + C‖y‖2V + C

≤ ‖y0‖2H + C‖B∗ω‖2L2(0,T ;V ∗) + C.

(2.33)

From (2.32) and (2.33), we have

‖y‖W (0,T ;V ) = ‖y‖L2(0,T ;V ) + ‖yt‖L2(0,T ;V ∗)

≤ C3

(
‖y0‖2H + ‖ω‖2L2(0,T ;Q0)

)
+ C4.

The proof is completed. �

3. Optimal problem

In this section, we will study the distributed optimal control of the viscous
generalized Cahn-Hilliard equation and the existence of optimal solution is obtained
based on Lions’ theory.

We study the following Problem when ω ∈ L2(0, T ;Q0)

minJ (y, ω) =
1
2
‖Cy − z‖2S +

δ

2
‖ω‖2L2(0,T ;Q0)

s. t. yt +
γ

k
D4y − γ

k
D4u+D2(a(u)D2u+

a′(u)
2

|Du|2)−D2f(u) = B∗ω,

y(x, 0) = y0 = u0 −D2u(x, 0),
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u(x, t) = D2u(x, t) = D4u(x, t) = 0,

where y = u−D2u.
As we know that there exists a weak solution y to the equation (2.2), due to

u = (1−∂2
x)−1y, we know that there exists a weak solution u to the equation (2.1).

Given an observation operator C ∈ L(W (0, T ;V ), S), in which S is a real Hilbert
space and C is continuous.

We choose the performance index of tracking type

J (y, ω) =
1
2
‖Cy − z‖2S +

δ

2
‖ω‖2L2(0,T ;Q0)

, (3.1)

where z ∈ S is a desired state and δ > 0 is fixed.
The optimal control problem about the sixth-order Cahn-hilliard equation is

minJ (y, ω), (3.2)

where (y, ω) satisfies (2.2).
Let X = W (0, T ;V ) × L2(0, T ;Q0) and Y = L2(0, T ;V ) × H We define an

operator e = e(e1, e2) : X → Y by

e(y, ω) = e(e1(y, ω), e2(y, ω)),

where

e1(y, ω) = (∆2)−1
(
yt +

γ

k
D4y − γ

k
D4u+D2(a(u)D2u+

a′(u)
2

|Du|2)

−D2f(u)−B∗ω
)
,

e2 = y(x, 0)− y0,

and ∆2 is an operator from H2(0, 1) to H−2(0, 1).
Then equation (3.2) is rewritten as

minJ (y, ω) subject to e = e(y, ω) = 0.

Now, we have the following theorem.

Theorem 3.1. There exists an optimal control solution to the above problem.

Proof. Let (y, ω) ∈ X satisfies the equation e = e(y, ω) = 0. In view of (3.1), we
have

J (y, ω) ≥ δ

2
‖ω‖2L2(0,T ;Q0)

.

From Theorem 2.3, we have

‖y‖W (0,T ;V ) →∞ yields ‖ω‖L2(0,T ;Q0) →∞.

Hence
J (y, ω) → +∞ when ‖y, ω‖X →∞. (3.3)

As the norm is weakly lowered semi-continuous [14], we achieve that J is weakly
lowered semi-continuous.

Since J (y, ω) ≥ 0 for all (y, ω) ∈ X holds, there exist

η = inf{J (y, ω)|(y, ω) ∈ X such that e(y, ω) = 0},

which means that there exists a minimizing sequence {(yn, ωn)}n∈N in X such that

η = lim
n→∞

J (yn, ωn) and e = e(yn, ωn) = 0, ∀n ∈ N.
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From (3.3), there exists an element (y∗, ω∗) ∈ X such that

yn ⇀ y∗, y ∈W (0, T ;V ), (3.4)

ωn ⇀ ω∗, ω ∈ L2(0, T ;Q0), (3.5)

when n→∞. From (3.4), we have

lim
n→∞

∫ T

0

(yn(t)− y∗(t), φ(t))V ∗,V dt = 0, ∀φ ∈ L2(0, T ;V ).

Since W (0, T ;V ) is compactly embedded into L2(0, T ;L∞), we have yn → y∗

strongly in L2(0, T ;L∞). Then we also derive that D2un → D2u∗ strongly in
L2(0, T ;L∞). On the other hand, by (2.25) and (2.33), we know that un ∈
L∞(0, T ;V ) and ynt ∈ L2(0, T ;V ∗). Hence by [12, Lemma 4] we have un → u∗

strongly in C(0, T ;L∞), Dun → Du∗ strongly in C(0, T ;H), as n→∞.
As the sequence {yn}n∈N converges weakly, then ‖yn‖W (0,T ;V ) is bounded. And

‖yn‖L2(0,T ;L∞) is also bounded based on the embedding theorem.
Since yn → y∗ strongly in L2(0, T ;L∞), then we derive that ‖y∗‖L2(0,T ;L∞),

‖u∗‖L2(0,T ;L∞) and ‖D2u∗‖L2(0,T ;L∞) are bounded.
Notice that∣∣ ∫ T

0

∫ 1

0

(D2f(un)−D2f(u∗))ψ dx dt
∣∣

=
∣∣ ∫ T

0

∫ 1

0

(f(un)− f(u∗))D2ψ dx dt
∣∣

≤
∫ T

0

∫ 1

0

|(un − u∗)
(

6γ1((un)4 + (un)2(u∗)2 + (un)3u∗ + un(u∗)3 + (u∗)4)

+ 4(h0 − 2)((u2)2 + (u∗)2 + unu∗) + 2(1− 2h0)
)
|D2ψ| dx dt

≤
(
‖un‖4L8(0,T ;L∞) + ‖u∗‖4L8(0,T ;L∞)

)
‖un − u∗‖C(0,T ;H)‖D2ψ‖L2(0,T ;H)

→ 0, ∀ψ ∈ L2(0, T ;V ).

As we know ∣∣∣ ∫ T

0

∫ 1

0

(
D2(a(un)D2un +

a′(un)
2

|Dun|2)

−D2(a(u∗)D2u∗ +
a′(u∗)

2
|Du∗|2)

)
ψ dx dt

∣∣∣
=

∣∣∣ ∫ T

0

∫ 1

0

D2(a(un)D2un − a(u∗)D2u∗)ψ dx dt

+
∫ T

0

∫ 1

0

D2(
a′(un)

2
|Dun|2 − a′(u∗)

2
|Du∗|2)ψ dx dt

∣∣∣
= |I1 + I2|.

Note that

|I1| =
∣∣∣ ∫ T

0

∫ 1

0

D2(a(un)D2un − a(u∗)D2u∗)ψ dx dt
∣∣∣

=
∣∣∣ ∫ T

0

∫ 1

0

(a(un)D2un − a(u∗)D2u∗)D2ψ dx dt
∣∣∣
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=
∣∣∣ ∫ T

0

∫ 1

0

((a2(un)2 + a0)D2un − (a2(u∗)2 + a0)D2u∗)D2ψ dx dt
∣∣∣

=
∣∣∣ ∫ T

0

∫ 1

0

(a2(un)2D2un − a2(u∗)2D2u∗)D2ψdxdt

+
∫ T

0

∫ 1

0

(a0D
2un − a0D

2u∗)D2ψ dx dt
∣∣∣

= |I1
1 + I2

1 |.

Now, we deal with I1
1 and I2

1 ,

I1
1 =

∫ T

0

∫ 1

0

(a2(un)2D2un − a2(u∗)2D2u∗)D2ψ dx dt

=
∫ T

0

∫ 1

0

(
a2(un)2D2un − a2(un)2D2u∗

+ a2(un)2D2u∗ − a2(u∗)2D2u∗
)
D2ψ dx dt

=
∫ T

0

∫ 1

0

(a2(un)2D2un − a2(un)2D2u∗)D2ψ dx dt

+
∫ T

0

∫ 1

0

(a2(un)2D2u∗ − a2(u∗)2D2u∗)D2ψ dx dt

≤
∫ T

0

∫ 1

0

a2(un)2(D2un −D2u∗)D2ψ dx dt

+
∫ T

0

∫ 1

0

(a2(un)2 − a2(u∗)2)D2u∗D2ψ dx dt

≤
∫ T

0

a2‖un‖2L4‖D2un −D2u∗‖L∞‖D2ψ‖Hdt

+
∫ T

0

a2‖(un)2 − (u∗)2‖H‖D2u∗‖L∞‖D2ψ‖Hdt

≤ a2‖un‖2C(0,T ;L4)‖D
2un −D2u∗‖L2(0,T ;L∞)‖D2ψ‖L2(0,T ;H)

+ a2‖un − u∗‖C(0,T ;H)(‖un‖C(0,T ;L∞) + ‖u∗‖C(0,T ;L∞))

· ‖D2u∗‖L2(0,T ;L∞)‖D2ψ‖L2(0,T ;H) → 0, ∀ψ ∈ L2(0, T ;V ),

and

I2
1 =

∫ T

0

∫ 1

0

(a0D
2un − a0D

2u∗)D2ψ dx dt

≤
∫ T

0

|a0|‖D2un −D2u∗‖H‖D2ψ‖Hdt

≤ |a0|‖D2un −D2u∗‖L2(0,T ;H)‖D2ψ‖L2(0,T ;H)

→ 0, ∀ψ ∈ L2(0, T ;V ).

Further,

I2 =
∫ T

0

∫ 1

0

D2(a2u
n|Dun|2 − a2u

∗|Du∗|2)ψ dx dt
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=
∫ T

0

∫ 1

0

(a2u
n|Dun|2 − a2u

∗|Du∗|2)D2ψ dx dt

=
∫ T

0

∫ 1

0

(a2u
n|Dun|2 − a2u

n|Du∗|2)D2ψ dx dt

+
∫ T

0

∫ 1

0

(a2u
n|Du∗|2 − a2u

∗|Du∗|2)D2ψ dx dt

≤
∫ T

0

a2‖un‖L∞‖Dun −Du∗‖H(‖Dun‖L∞ + ‖Du∗‖L∞)‖D2ψ‖H

+
∫ T

0

a2‖un − u∗‖L∞‖|Du∗|2‖H‖D2ψ‖Hdt

≤ a2‖un‖C(0,T ;L∞)‖Dun‖L2(0,T ;L∞)‖Dun −Du∗‖C(0,T ;H)‖D2ψ‖L2(0,T ;H)

+ a2‖un‖C(0,T ;L∞)‖Du∗‖L2(0,T ;L∞)‖Dun −Du∗‖C(0,T ;H)‖D2ψ‖L2(0,T ;H)

+ a2‖un − u∗‖L2(0,T ;L∞)‖|Du∗|2‖C(0,T ;H)‖D2ψ‖L2(0,T ;H)

→ 0, ∀ψ ∈ L2(0, T ;V ).

From (3.5), we have∣∣∣ ∫ T

0

∫ 1

0

(B∗ωn −B∗ω∗)ψ
∣∣∣ → 0, ∀ψ ∈ L2(0, T ;V ).

In view of the above discussion, we can conclude that

e1(y∗, ω∗) = 0, ∀n ∈ N.

Since y∗ ∈ W (0, T ;V ), we have y∗(0) ∈ H. From yn ⇀ y∗ in W (0, T ;V ), we can
infer that yn(0) ⇀ y∗(0). Thus we obtain

(yn(0)− y∗(0), ψ) → 0, ∀ψ ∈ H,

which means that e2(y∗, ω∗) = 0, for all n ∈ N. Hence, we can derive that
e(y∗, ω∗) = 0, for all n ∈ N.

In conclusion, there exists an optimal solution (y∗, ω∗) to the problem. And we
can infer that there exists an optimal solution (y∗, ω∗) to the viscous generalized
Cahn-Hilliard equation due to u = (1− ∂2

x)−1y. �
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