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ENERGY DECAY IN THERMOELASTICITY TYPE III WITH
VISCOELASTIC DAMPING AND DELAY TERM

TIJANI A. APALARA, SALIM A. MESSAOUDI, MUHAMMAD I. MUSTAFA

Abstract. In this article, we consider a thermoelastic system of type III with
a viscoelastic damping and internal delay. We use the multiplier method to
prove, under suitable assumptions, general energy decay results from which
the exponential and polynomial types of decay are only special cases.

1. Introduction

In this article, we consider the problem
utt(x, t)− µ∆u(x, t)− (µ + λ)∇(div u(x, t)) + β∇θ(x, t)

+
∫ t

0

g(s)∆u(x, t− s)ds + µ1ut(x, t) + µ2ut(x, t− τ) = 0, x ∈ Ω, t > 0

θtt(x, t)− κ∆θ(x, t)− δ∆θt(x, t) + β div utt(x, t),= 0, x ∈ Ω, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

θ(x, 0) = θ0(x), θt(x, 0) = θ1(x), x ∈ Ω,

ut(x,−t) = f0(x, t), x ∈ Ω, t ∈ (0, τ)

u(x, t) = θ(x, t) = 0, x ∈ ∂Ω, t ≥ 0

(1.1)

where Ω is a bounded domain of Rn(n ≥ 2) with a boundary ∂Ω of class C2,
u = u(x, t) ∈ Rn is the displacement vector, θ(x, t) is the difference temperature,
the relaxation function g is positive and decreasing, the coefficients µ, λ, β, µ1, κ, δ
are positive constants, µ2 is a real number, and τ > 0 represents the time delay.
This is a (type III) thermoelastic system with the presence of a viscoelastic damping
and constant internal delay supplemented by initial data u0, u1, θ0, θ1 and a history
function f0.

Time delays so often arise in many physical, chemical, biological, thermal and
economical phenomena. In recent years, the control of PDEs with time delay effects
has become an active area of research, see for example [1, 24] and the references
therein. The presence of delay may be a source of instability. See, for example
[3, 16, 25], where it was proved that an arbitrarily small delay may destabilize
a system which is uniformly asymptotically stable in the absence of delay unless
additional conditions or control terms have been used.
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Consider the system

utt(x, t)−∆u(x, t) = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ Γ0, t > 0
∂u

∂ν
(x, t) = −µ1ut(x, t)− µ2ut(x, t− τ), x ∈ Γ1, t > 0.

(1.2)

It is well known that in the absence of delay (µ2 = 0, µ1 > 0), system (1.2) is
exponentially stable, see [6]–[8], [27]. Whereas, in the presence of delay (µ2 > 0),
Nicaise and Pignotti [16] proved, under the assumption µ2 < µ1, that the energy
is exponentially stable. However, for the opposite case (µ2 ≥ µ1), they were able
to construct a sequence of delays for which the corresponding solution is unstable.
The same results were obtained for the case when both the damping and the delay
act internally in the domain, see also [2] for the treatment of this problem in more
general abstract form. Nicaise and Pignotti [17] treated the situation when the
constant delay in system (1.2) is replaced with a distributed delay of the form∫ τ2

τ1

µ2(s)ut(x, t− s)ds

and established an exponential stability result similar to the one in [16] under the
condition that ∫ τ2

τ1

µ2(s)ds < µ1.

Kirane and Said-Houari [5] considered a viscoelastic wave equation of the form

utt(x, t)−∆u(x, t) +
∫ t

0

g(t− s)∆u(x, s)ds + µ1ut(x, t) + µ2ut(x, t− τ) = 0,

for x ∈ Ω, t > 0, together with initial and Dirichlet boundary conditions. They
established general energy decay results under the condition that µ2 ≤ µ1. In fact,
the presence of a viscoelastic damping together with a frictional damping allowed
µ2 = µ1.

Recently, Pignotti [21] considered the equation

utt(x, t)−∆u(x, t) + aχωut(x, t) + kut(x, t− τ) = 0, in Ω× (0,∞)

for a, τ > 0 and k a real number. She established, under some geometry condition
on the domain, a well posedness of the problem and an exponential decay result for
|k| < a.

In [15], Mustafa studied a thermoelastic system with boundary time-varying
delay in one dimensional space and showed that the damping effect through heat
conduction is still strong enough to uniformly stabilize the system even in the
presence of boundary time-varying delay. For more results concerning time delay
in one dimensional as well as multi-dimensional space, we refer the reader to [4],
[18]–[20].

We also recall some results regarding thermoelastic systems of type III. In one
space dimension, Quintanilla and Racke [23] considered the equation

utt − αuxx + βθx = 0, in [0,∞)× (0, L)

θtt − δθxx + γuttx − κθtxx = 0, in [0,∞)× (0, L)
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and used the spectral analysis method and the energy method to obtain the expo-
nential stability for various boundary conditions; (Dirichlet-Dirichlet or Dirichlet-
Neuman). Furthermore, they proved an energy decay result for the radially sym-
metric situations in the multi-dimensional case (n = 2, 3). Zhang and Zuazua [26]
analyzed the long time behavior of the solution of the n-dimensional system (1.1),
when g = µ1 = µ2 = 0, and showed that (i) for most domains the energy of the
system does not decay uniformly, (ii) under suitable conditions on the domain that
may be described in terms of Geometric Optics, the energy of the system decays
exponentially, and (iii) for most domains in two space dimensions, the energy of
smooth solutions decays polynomially. Messaoudi and Soufyane [12] considered the
system

utt − µ∆u− (µ + λ)∇(div u) + β∇θ = 0, in Ω× R+

θtt − κ∆θ − δ∆θt + β div utt = 0, in Ω× R+

subject to a boundary feedback of viscoelastic type that acts on a part of the
boundary and established exponential and polynomial stability results. This result
was later generalized by Messaoudi and Al-Shehri [10] by taking a wider class of
relaxation functions. They proved a more general decay result, from which the
exponential and polynomial decay estimates are only special cases.

Recently, Qin and Ma [22] considered the system

utt −∆u +
∫ t

0

g(t− s)∆u(s)ds +∇θ = 0, x ∈ Ω, t > 0

θtt −∆θt −∆θ + div utt = 0, x ∈ Ω, t > 0
θ = 0, x ∈ ∂Ω, t > 0
u = 0, x ∈ Γ0, t > 0

∂u

∂ν
−

∫ t

0

g(t− s)∆u(s)ds + H(ut) = 0, x ∈ Γ1, t > 0

and established a general decay result depending on both g and H. This result
extends the decay result obtained by Messaoudi and Mustafa [11] obtained earlier
for wave equations. For more results on Thermoelasticity type III, we refer the
reader to [9, 13, 14, 23] and references therein.

In this article, we investigate system (1.1) under suitable assumptions on the
weight of the delay term and prove general decay result from which the exponential
and polynomial types of decay are only special cases. This work extends the result
obtained by Kirane and Said-Houari [5] for a viscoelastic wave equation to the
thermoviscoelastic system with a delay. We should mention here that, to the best
of our knowledge, there is no result concerning systems of thermoelasticty of type
III with the presence of delays. The rest of our paper is organized as follows. In
section 2, we introduce some transformations and assumptions needed in our work.
Some technical lemmas and the statement with proof of our main results will be
given in section 3 and section 4 respectively. Finally, we give some examples to
illustrate our results.

2. Assumptions and Transformations

In this section, we present some materials needed in the proof of our results. We
use the standard Lebesgue space L2(Ω) and the Sobolev space H1

0 (Ω) with their



4 T. A. APALARA, S. A. MESSAOUDI , M. I. MUSTAFA EJDE-2012/128

usual scalar products and norms. Throughout this paper, c is used to denote a
generic positive constant.

For the relaxation function g, we assume the following:
(A1) g : R+ → R+ is a C1 function satisfying

g(0) > 0, µ−
∫ ∞

0

g(s)ds = l > 0.

(A2) There exists a positive non-increasing differentiable function η : R+ → R+

satisfying
g′(t) ≤ −η(t)g(t), t ≥ 0.

Remark 2.1. There are many functions that satisfy (A1) and (A2). Below are
three examples of such functions with the assumptions that a, b > 0 and a < µb.

(1) If g(t) = ae−bt, then g′(t) = −η(t)g(t), where η(t) = b.
(2) If g(t) = a

(1+t)b+1 , then g′(t) = −η(t)g(t), where η(t) = b+1
1+t .

(3) If g(t) = a
(e+t)[ln(e+t)]b+1 , then g′(t) = −η(t)g(t), where

η(t) =
1

e + t
+

b + 1
(e + t) ln(e + t)

.

Now, as in [26], we introduce the new variable

v(x, t) =
∫ t

0

θ(x, s)ds + χ(x), (2.1)

where χ(x) is the solution of
−κ∆χ = δ∆θ0 − θ1 − β div u1, in Ω,

χ = 0, on ∂Ω,
(2.2)

Then, integrating the second equation in (1.1) with respect to t and using (2.1) and
(2.2), we have

vtt − κ∆v − δ∆vt + β div ut = 0.

By introducing as in [16], another new dependent variable

z(x, ρ, t) = ut(x, t− τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

problem (1.1) takes the form

utt(x, t)− µ∆u(x, t)− (µ + λ)∇(div u(x, t)) + β∇vt(x, t)

+
∫ t

0

g(t− s)∆u(x, s)ds + µ1ut(x, t) + µ2z(x, 1, t) = 0, x ∈ Ω, t > 0

vtt(x, t)− κ∆v(x, t)− δ∆vt(x, t) + β div ut(x, t) = 0, x ∈ Ω, t > 0

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1), t > 0

z(x, 0, t) = ut(x, t), x ∈ Ω, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω,

z(x, ρ, 0) = f0(x, τρ), x ∈ Ω, ρ ∈ (0, 1)

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0

(2.3)

Thus, we will consider problem (2.3) instead of (1.1). In what follows, we consider
(u, v, z) to be a solution of system (2.3) with the regularity needed to justify the
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calculations in this paper. By repeating the arguments of [5], one can easily prove
the existence and uniqueness of strong and weak solutions.

Next, we assume that |µ2| ≤ µ1 and that ξ is a positive constant satisfying
τ |µ2| < ξ < τ(2µ1 − |µ2|), if |µ2| < µ1,

ξ = τµ1, if µ1 = |µ2|,
(2.4)

The energy associated with problem (2.3) is

E(t) =
1
2

∫
Ω

|ut|2dx +
1
2

∫
Ω

v2
t dx +

1
2

(
µ−

∫ t

0

g(s)ds
) ∫

Ω

|∇u|2dx +
κ

2

∫
Ω

|∇v|2dx

+
(µ + λ)

2

∫
Ω

|div u|2dx +
1
2
(g ◦ ∇u)(t) +

ξ

2

∫
Ω

∫ 1

0

z2(x, ρ, t) ds dx,

(2.5)
where

(g ◦ ∇u)(t) =
∫

Ω

∫ t

0

g(t− s)
∣∣ ∇u(x, t)−∇u(x, s)

∣∣2 ds dx.

3. Technical Lemmas

In this section we establish several lemmas needed for the proof of our main
result.

Lemma 3.1. Let (u, v, z) be the solution of (2.3). Then the energy functional,
defined by (2.5), satisfies

E′(t) ≤ −m0

( ∫
Ω

|ut|2dx +
∫

Ω

z2(x, 1, t)dx
)

+
1
2
(g′ ◦ ∇u)(t)

− 1
2
g(t)

∫
Ω

|∇u|2dx− δ

∫
Ω

|∇vt|2dx ≤ 0, ∀t ≥ 0,

(3.1)

for some constant m0, where m0 > 0 if |µ2| < µ1 and m0 = 0 if µ1 = |µ2|.

Proof. A multiplication of the first and the second equation in (2.3) by ut and vt

respectively, and integration over Ω, using integration by parts and the boundary
conditions, yield

1
2

d

dt

{∫
Ω

|ut|2dx +
∫

Ω

v2
t dx +

(
µ−

∫ t

0

g(s)ds
) ∫

Ω

|∇u|2dx

+ κ

∫
Ω

|∇v|2dx + (µ + λ)
∫

Ω

|div u|2dx + (g ◦ ∇u)(t)
}

=
1
2
(g′ ◦ ∇u)(t)− δ

∫
Ω

|∇vt|2dx− 1
2
g(t)

∫
Ω

|∇u|2dx

− µ1

∫
Ω

|ut|2dx− µ2

∫
Ω

ut · z(x, 1, t)dx.

(3.2)

Now, multiplying the third equation in (2.3) by ξz and integrating over Ω× (0, 1),
we obtain

ξ

2
d

dt

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx = − ξ

2τ

∫
Ω

z2(x, 1, t)dx +
ξ

2τ

∫
Ω

|ut|2dx. (3.3)

A combination of (3.2) and (3.3), leads to

E′(t) =
1
2
(g′ ◦ ∇u)(t)− 1

2
g(t)

∫
Ω

|∇u|2dx− δ

∫
Ω

|∇vt|2dx−
(
µ1 −

ξ

2τ

) ∫
Ω

|ut|2dx
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− µ2

∫
Ω

ut · z(x, 1, t)dx− ξ

2τ

∫
Ω

z2(x, 1, t)dx.

Then by Young’s inequality, we have

E′(t) ≤ 1
2
(g′ ◦ ∇u)(t)− 1

2
g(t)

∫
Ω

|∇u|2dx− δ

∫
Ω

|∇vt|2dx

−
(
µ1 −

ξ

2τ
− |µ2|

2
) ∫

Ω

|ut|2dx−
( ξ

2τ
− |µ2|

2
) ∫

Ω

z2(x, 1, t)dx.

Consequently, using (2.4), estimate (3.1) follows. �

Lemma 3.2. Suppose that (A1) and (A2) hold, and let (u, v, z) be the solution of
(2.3). Then the functional

F1(t) :=
∫

Ω

ut · udx

satisfies the following estimate, for some positive constant m1,

F ′
1(t) ≤ c

( ∫
Ω

|ut|2dx +
∫

Ω

v2
t dx +

∫
Ω

z2(x, 1, t)dx + (g ◦ ∇u)(t)
)

−m1

( ∫
Ω

|∇u|2dx

∫
Ω

|div u|2dx
)
.

(3.4)

Proof. Direct computations using the first equation in (2.3), yield

F ′
1(t) =

∫
Ω

|ut|2dx− µ

∫
Ω

|∇u|2dx− (µ + λ)
∫

Ω

|div u|2dx + β

∫
Ω

vt · div udx

+
∫

Ω

∇u ·
∫ t

0

g(t− s)∇u(s) ds dx− µ1

∫
Ω

u · utdx− µ2

∫
Ω

z(x, 1, t) · u dx.

Using Young’s and Poincaré’s inequalities,for δ1 > 0, we have

F ′
1(t) ≤ −

(µ

2
− δ1(µ1 + |µ2|)

) ∫
Ω

|∇u|2dx +
1
2µ

∫
Ω

( ∫ t

0

g(t− s)∇u(s)ds
)2

dx

+
(
1 +

cµ1

4δ1

) ∫
Ω

|ut|2dx− (µ + λ− δ1)
∫

Ω

|div u|2dx +
1

4δ1

∫
Ω

v2
t dx

+
c|µ2|
4δ1

∫
Ω

z2(x, 1, t)dx.

(3.5)
The second term in the right-hand side of (3.5) is estimated as follows:∫

Ω

( ∫ t

0

g(t− s)|∇u(s)|ds
)2

dx

≤
∫

Ω

( ∫ t

0

g(t− s)(|∇u(s)−∇u(t)|+ |∇u(t)|)ds
)2

dx

=
∫

Ω

( ∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)2

dx +
∫

Ω

( ∫ t

0

g(t− s)|∇u(t)|ds
)2

dx

+ 2
∫

Ω

( ∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)( ∫ t

0

g(t− s)|∇u(t)|ds
)
dx.
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A simple calculation, using Cauchy-Schwarz and Young’s inequalities, for η > 0,
gives ∫

Ω

( ∫ t

0

g(t− s)|∇u(s)|ds
)2

dx

≤ (µ− l)2(1 + η)
∫

Ω

|∇u|2dx + (µ− l)
(
1 +

1
η

)
(g ◦ ∇u)(t).

(3.6)

By inserting (3.6) into (3.5) and choosing η = l
µ−l , we arrive at

F ′
1(t) ≤

(
1 +

cµ1

4δ1

) ∫
Ω

|ut|2dx−
( l

2
− δ1(µ1 + |µ2|)

) ∫
Ω

|∇u|2dx

− (µ + λ− δ1)
∫

Ω

|div u|2dx +
1

4δ1

∫
Ω

v2
t dx +

(µ− l)
2l

(g ◦ ∇u)(t)

+
c|µ2|
4δ1

∫
Ω

z2(x, 1, t)dx.

By taking δ1 small enough, (3.4) follows. �

Lemma 3.3. let (u, v, z) be the solution of (2.3). Then the functional

F2(t) :=
∫

Ω

vtvdx + β

∫
Ω

v div udx +
δ

2

∫
Ω

|∇u|2dx

satisfies the following estimate, for any positive constant δ2,

F ′
2(t) ≤

(
1 +

β

4δ2

) ∫
Ω

v2
t dx + βδ2

∫
Ω

|div u|2dx− κ

∫
Ω

|∇v|2dx. (3.7)

Proof. Taking the derivative of F2(t) and using the second equation in (2.3), it
follows that

F ′
2(t) =

∫
Ω

v2
t dx + κ

∫
Ω

v∆vdx + δ

∫
Ω

v∆vtdx + β

∫
Ω

vt div udx + δ

∫
Ω

∇v · ∇vtdx.

Use of Green’s formula and the boundary conditions lead to

F ′
2(t) =

∫
Ω

v2
t dx− κ

∫
Ω

|∇v|2dx + β

∫
Ω

vt div udx.

By exploiting Young’s inequality for δ2 > 0, estimate (3.7) is established. �

Lemma 3.4. let (u, v, z) be the solution of (2.3). Then the functional

F3(t) := τ

∫
Ω

∫ 1

0

e−τρz2(x, ρ, t)dρdx,

satisfies the following estimate, for some positive constant m2,

F ′
3 ≤ −m2

( ∫
Ω

z2(x, 1, t)dx + τ

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx
)

+
∫

Ω

|ut|2dx. (3.8)

Proof. By differentiating F3(t) and using the third equation in (2.3), we obtain

F ′
3(t) = −2

∫
Ω

∫ 1

0

e−τρz(x, ρ, t)zρ(x, ρ, t)dρdx

= − d

dρ

∫
Ω

∫ 1

0

e−τρz2(x, ρ, t)dρdx− τ

∫
Ω

∫ 1

0

e−τρz2(x, ρ, t)dρdx

= −
∫

Ω

[e−τz2(x, 1, t)− z2(x, 0, t)]dx− τ

∫
Ω

∫ 1

0

e−τρz2(x, ρ, t)dρdx
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≤ −m2

( ∫
Ω

z2(x, 1, t)dx + τ

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx
)

+
∫

Ω

|ut|2dx.

which gives (3.8). �

Lemma 3.5. Suppose that (A1) and (A2) hold and let (u, v, z) be the solution of
(2.3). Then for µ1 = |µ2| and for any t0 > 0, the functional

F4(t) := −
∫

Ω

ut ·
∫ t

0

g(t− s)(u(t)− u(s)) ds dx,

satisfies the following estimate, for some positive constant m3, and for any positive
δ3, δ4, δ5,

F ′
4(t) ≤ −m3

∫
Ω

|ut|2dx +
β

2

∫
Ω

|∇vt|2dx + δ3c

∫
Ω

|∇u|2dx

+ δ4(µ + λ)
∫

Ω

|div u|2dx + Cδ(g ◦ ∇u)(t) + δ5µ1

∫
Ω

z2(x, 1, t)dx

− c(g′ ◦ ∇u)(t), ∀t ≥ t0 > 0.

(3.9)

Proof. Differentiation of F4(t), using (2.3) and integrating by parts together with
the boundary conditions, yield

F ′
4(t) = µ

∫
Ω

∇u ·
( ∫ t

0

g(t− s)(∇u(s)−∇u(t))ds
)
dx

+ (µ + λ)
∫

Ω

(div u) ·
( ∫ t

0

g(t− s)(div u(s)− div u(t))ds
)
dx

− β

∫
Ω

∇vt ·
( ∫ t

0

g(t− s)(u(s)− u(t))ds
)
dx

−
∫

Ω

( ∫ t

0

g(t− s)∇u(s)ds
)
·
( ∫ t

0

g(t− s)(∇u(s)−∇u(t))ds
)
dx

+ µ1

∫
Ω

ut ·
∫ t

0

g(t− s)(u(s)− u(t))dsdx

+ µ2

∫
Ω

z(x, 1, t) ·
∫ t

0

g(t− s)(u(s)− u(t))dsdx−
( ∫ t

0

g(s)ds
) ∫

Ω

|ut|2dx

−
∫

Ω

ut ·
∫ t

0

g′(t− s)(u(s)− u(t)) ds dx.

(3.10)
Now, we estimate the terms in the right hand side of (3.10) using Young’s, Cauchy-
Schwarz, and Poincaré’s inequalities. So, for δ3, δ4, δ5, δ6 > 0, we obtain

I1 =
∫

Ω

∇u ·
( ∫ t

0

g(t− s)(∇u(s)−∇u(t))ds
)
dx

≤ δ3

∫
Ω

|∇u|2dx +
1

4δ3

∫
Ω

( ∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)2

dx

≤ δ3

∫
Ω

|∇u|2dx +
1

4δ3

∫
Ω

( ∫ t

0

g(s)ds
)( ∫ t

0

g(t− s)|∇u(s)−∇u(t)|2ds
)
dx

≤ δ3

∫
Ω

|∇u|2dx +
µ− l

4δ3
(g ◦ ∇u)(t).

(3.11)



EJDE-2012/128 ENERGY DECAY IN THERMOELASTICITY 9

I2 =
∫

Ω

(div u) ·
( ∫ t

0

g(t− s)(div u(s)− div u(t))ds
)
dx

≤ δ4

∫
Ω

|div u|2dx +
1

4δ4

∫
Ω

( ∫ t

0

g(t− s) (div u(s)− div u(t)) ds
)2

dx

≤ δ4

∫
Ω

|div u|2dx +
µ− l

4δ4

∫
Ω

∫ t

0

g(t− s)|div u(s)− div u(t)|2 ds dx

≤ δ4

∫
Ω

|div u|2dx +
µ− l

2δ4
(g ◦ ∇u)(t).

(3.12)

I3 = −
∫

Ω

∇vt ·
( ∫ t

0

g(t− s)(u(s)− u(t))ds
)
dx

≤ 1
2

∫
Ω

|∇vt|2dx +
c(µ− l)

2
(g ◦ ∇u)(t).

(3.13)

I4 = −
∫

Ω

( ∫ t

0

g(t− s)∇u(s)ds
)
·
( ∫ t

0

g(t− s)(∇u(s)−∇u(t))ds
)
dx

≤ δ3

∫
Ω

( ∫ t

0

g(t− s)|∇u(s)|ds
)2

dx

+
1

4δ3

∫
Ω

( ∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)2

dx

≤ 2(µ− l)2δ3

∫
Ω

|∇u|2dx + (µ− l)
(

2δ3 +
1
4δ

)
(g ◦ ∇u)(t).

(3.14)

I5 =
∫

Ω

ut ·
∫ t

0

g(t− s)(u(s)− u(t))dsdx

≤ δ6

∫
Ω

|ut|2dx +
c(µ− l)

4δ6
(g ◦ ∇u)(t).

(3.15)

I6 =
∫

Ω

z(x, 1, t) ·
∫ t

0

g(t− s)(u(s)− u(t))dsdx

≤ δ5

∫
Ω

z2(x, 1, t)dx +
c(µ− l)

4δ5
(g ◦ ∇u)(t).

(3.16)

I7 = −
∫

Ω

ut ·
∫ t

0

g′(t− s)(u(s)− u(t)) ds dx

≤ δ6

∫
Ω

|ut|2dx +
1

4δ6

∫
Ω

( ∫ t

0

g′(t− s)(u(s)− u(t))ds
)2

dx

≤ δ6

∫
Ω

|ut|2dx +
1

4δ6

∫
Ω

( ∫ t

0

−g′(s)ds
)( ∫ t

0

−g′(t− s)|(u(s)− u(t)|2ds
)
dx

≤ δ6

∫
Ω

|ut|2dx− cg(0)
4δ6

(g′ ◦ ∇u)(t).

(3.17)
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Since the function g is positive, continuous and g(0) > 0, then for any t ≥ t0 > 0,
we have ∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0. (3.18)

A combination of (3.10)−(3.18), bearing in mind that µ1 = |µ2| leads to

F ′
4(t) ≤ −[g0 − δ6(1 + µ1)]

∫
Ω

|ut|2dx + δ5µ1

∫
Ω

z2(x, 1, t)dx− cg(0)
4δ6

(g′o∇u)(t)

+
β

2

∫
Ω

|∇vt|2dx + δ3[µ + 2(µ− l)2]
∫

Ω

|∇u|2dx + δ4(µ + λ)
∫

Ω

|div u|2dx

+ (µ− l)
[µ + 1

4δ3
+

µ + λ

2δ4
+ 2δ3 +

cµ1

4
( 1
δ5

+
1
δ6

)
+

cβ

2
]
(g ◦ ∇u)(t),

for all t ≥ t0. Next, we choose δ6 small enough to obtain (3.9). �

4. Asymptotic Stability

This section is divided into two parts. In the first subsection, we discuss the case
where |µ2| < µ1 and in the second, we discuss the case where µ1 = |µ2|.

4.1. General stability for |µ2| < µ1. For ε > 0, to be chosen appropriately later,
we let

L(t) := E(t) + εF1(t) + εF2(t) + εF3(t). (4.1)

Lemma 4.1. There exist two positive constants α1 and α2 such that

α1E(t) ≤ L(t) ≤ α2E(t), ∀t ≥ 0, (4.2)

for ε small enough

Proof. Let
G(t) = εF1(t) + εF2(t) + εF3(t).

By using Young’s and Poincaré’s inequalities, we obtain

|G(t)| ≤ ε

2

∫
Ω

(
|ut|2 + v2

t + c|∇u|2 + (c(1 + β) + δ) |∇v|2 + |div u|2
)

dx

+ ετ

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx

≤ εcE(t).

Consequently, |L(t)− E(t)| ≤ εcE(t), which yields

(1− εc)E(t) ≤ L(t) ≤ (1 + εc)E(t).

By choosing ε small enough, (4.2) follows. �

Theorem 4.2. let (u, v, z) be the solution of (2.3). Assume |µ2| < µ1 and (A1),
(A2) hold. Then, there exist two positive constants c0 and c1 such that the energy
functional for the system (2.3) satisfies

E(t) ≤ c0e
−c1

R t
0 η(s)ds, ∀t ≥ 0. (4.3)
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Proof. By differentiating (4.1) and using (3.1), (3.4), (3.7) and (3.8), and Poincaré’s
inequality, we obtain

L′(t) ≤ −[m0 − εc]
∫

Ω

|ut|2dx− εm1

∫
Ω

|∇u|2dx− εκ

∫
Ω

|∇v|2dx

− ε [m1 − βδ2]
∫

Ω

|div u|2dx− εm2τ

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx

+ εc(g ◦ ∇u)(t)−
[
δ − εc

(
c +

β

4δ2

)] ∫
Ω

|∇vt|2dx

− [(m0 − εc) + εm2]
∫

Ω

z2(x, 1, t)dx.

At this point, we choose δ2 small enough such that (m1 − βδ2) > 0. Next, by
picking

ε < min{m0

c
,

δ

c(c + β
4δ2

)
},

we obtain

L′(t) ≤ k1(g ◦ ∇u)(t)− k2

{∫
Ω

|ut|2dx +
∫

Ω

|∇u|2dx +
∫

Ω

|∇v|2dx

+
∫

Ω

|div u|2dx +
∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx +
∫

Ω

|∇vt|2dx
}

,

for positive constants k1 and k2. Then, using Poincaré’s inequality and (2.5), we
obtain

L′(t) ≤ −k0E(t) + k1(g ◦ ∇u)(t), ∀t ≥ 0, (4.4)

for a positive constant k0. By multiplying (4.4) by η(t) and using (A2) and (3.1),
we arrive at

η(t)L′(t) ≤ −k0η(t)E(t)− 2k1E
′(t), ∀t ≥ 0,

which can be rewritten as

(η(t)L(t) + 2k1E(t))′ − η′(t)L(t) ≤ −k0η(t)E(t), ∀t ≥ 0.

Using the fact that η′(t) ≤ 0,∀t ≥ 0, we have

(η(t)L(t) + 2k1E(t))′ ≤ −k0η(t)E(t), ∀t ≥ 0.

By exploiting (4.2), it can easily be shown that

R(t) = η(t)L(t) + 2k1E(t) ∼ E(t). (4.5)

Consequently, for some positive constant c1, we obtain

R′(t) ≤ −c1η(t)R(t), ∀t ≥ 0. (4.6)

A simple integration of (4.6) over (0, t) leads to

R(t) ≤ R(0)e−c1
R t
0 η(s)ds, ∀t ≥ 0. (4.7)

The conclusion of the theorem follows by combining (4.5) and (4.7). �
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4.2. General stability for |µ2| = µ1. By recalling (2.4), we have ξ = τµ1. Hence,
(3.1) takes the form

E′(t) ≤ 1
2
(g′ ◦ ∇u)(t)− 1

2
g(t)

∫
Ω

|∇u|2dx− δ

∫
Ω

|∇vt|2dx ≤ 0, ∀t ≥ 0. (4.8)

We then use (3.4), (3.7), and (3.8) with µ1 = |µ2| and define another Lyapunov
functional

L̃(t) := NE(t) + ε1F1(t) + F2(t) + ε2F3(t) + F4(t), (4.9)
where N, ε1 and ε2 are positive real numbers which will be chosen properly later.

Lemma 4.3. For N large enough, L̃(t) and E(t) satisfy

α3E(t) ≤ L̃(t) ≤ α4E(t), ∀t ≥ 0, (4.10)

for two positive constants α3 and α4.

The inequality in the above lemma is established with similar steps as in the
proof of Lemma 4.1.

Theorem 4.4. let (u, v, z) be the solution of (2.3). Assume |µ2| = µ1 and (A1),
(A2) hold. Then, for any t0 > 0, there exist positive constants c2 and c3 independent
of t such that the energy functional of the system (2.3) satisfies

E(t) ≤ c2e
−c3

R t
t0

η(s)ds
, ∀t ≥ t0. (4.11)

Proof. Differentiating L̃(t) and using (3.4), (3.7), (3.8), (3.9), (4.8) and Poincaré’s
inequality, we obtain

L̃′(t) ≤ −[m3 − ε1c− ε2]
∫

Ω

|ut|2dx− [ε1m1 − δ3c]
∫

Ω

|∇u|2dx− κ

∫
Ω

|∇v|2dx

− ε2m2τ

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx− [ε1m1 − βδ2 − δ4(µ + λ)]
∫

Ω

|div u|2dx

−
[
Nδ − βc

2
− c

(
1 +

β

4δ2
+ ε1c

)] ∫
Ω

|∇vt|2dx + [
N

2
− c](g′ ◦ ∇u)(t)

− [ε2m2 − ε1c− δ5µ1]
∫

Ω

z2(x, 1, t)dx + [ε1c + Cδ](g ◦ ∇u)(t).

Now, we let

ε2 =
m3
2

, δ3 =
ε1m1

2c
, δ4 =

ε1m1

2(µ + λ)
.

Next, we choose ε1 small enough so that

k̃1 := [
m3

2
− ε1c] > 0, k̃2 := [

m2m3

2
− ε1c] > 0.

Once ε1 is fixed, we then take δ5 = k̃2/(2µ1) and choose δ2 small enough so that

k̃3 := [
ε1m1

2
− βδ2] > 0.

Finally, we choose N so large that (4.10) remains valid and, furthermore,

k̃4 :=
[
Nδ − βc

2
− c

(
1 +

β

4δ2
+ ε1c

)]
> 0, [

N

2
− c] > 0.

Hence, we arrive at

L̃′(t) ≤ −k̃1

∫
Ω

|ut|2dx− ε1m1

2

∫
Ω

|∇u|2dx− κ

∫
Ω

|∇v|2dx
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− k̃4

∫
Ω

|∇vt|2dx− k̃3

∫
Ω

|div u|2dx + k̃5(g ◦ ∇u)(t)

− m2m3τ

2

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx.

Using Poincaré’s inequality, we obtain

L̃′(t) ≤ −k̃0E(t) + k̃5(g ◦ ∇u)(t), ∀t ≥ t0, (4.12)

where k̃0 and k̃5 are two positive constants.
By multiplying (4.12) by η(t) and using (A2) and (4.8), we obtain

η(t)L̃′(t) ≤ −k̃0η(t)E(t)− 2k̃5E
′(t), ∀t ≥ t0,(

η(t)L̃(t) + 2k̃5E(t)
)′
≤ −k̃0η(t)E(t), ∀t ≥ t0.

If we set

R̃(t) = η(t)L̃(t) + 2k̃5E(t) ∼ E(t), (4.13)

and follow the same steps as in Theorem 4.2, we arrive at

R̃(t) ≤ R̃(t0)e−c̃3
R t
0 η(s)ds, ∀t ≥ t0. (4.14)

Consequently,(4.11) is established by virtue of (4.13) and (4.14).
Note that Estimate (4.11) also holds for t ∈ [0, t0] by the continuity and bound-

edness of E(t) and η(t). �

Now, we give some examples to illustrate the energy decay rates obtained by
Theorem 4.2 which is also valid for Theorem 4.4. We consider the three examples
under Remark 2.1 with the same assumptions on a and b as stated before.

(1) If g(t) = ae−bt, then

E(t) ≤ c0e
−bc1t, ∀t ≥ 0.

(2) If g(t) = a
(1+t)b+1 , then

E(t) ≤ c0

(1 + t)(b+1)c1
, ∀t ≥ 0.

(3) If g(t) = a
(e+t)[ln(e+t)]b+1 , then

E(t) ≤ c0e
c1

{(e + t)[ln(e + t)]b+1}c1
, ∀t ≥ 0.

Remark 4.5. As in Pignotti [21], we do not require that µ2 be positive. Our result
extends, in a way, the result of Kirane and Said-Houari [5], where µ2 is taken to be
positive.
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