Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 129, pp. 1-5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

DECAY OF SOLUTIONS FOR A PLATE EQUATION WITH p-LAPLACIAN AND MEMORY TERM

WENJUN LIU, GANG LI, LINGHUI HONG

Abstract. In this note we show that the assumption on the memory term g in Andrade [1] can be modified to be $g^{\prime}(t) \leq-\xi(t) g(t)$, where $\xi(t)$ satisfies

$$
\xi^{\prime}(t) \leq 0, \quad \int_{0}^{+\infty} \xi(t) \mathrm{d} t=\infty
$$

Then we show that rate of decay for the solution is similar to that of the memory term.

1. Introduction

Consider a bounded domain Ω in \mathbb{R}^{N} with smooth boundary $\Gamma=\partial \Omega$, and study the solutions to the problem

$$
\begin{gather*}
u_{t t}+\Delta^{2} u-\Delta_{p} u+\int_{0}^{t} g(t-s) \Delta u(s) \mathrm{d} s-\Delta u_{t}+f(u)=0 \quad \text { in } \Omega \times \mathbb{R}^{+} \tag{1.1}\\
u=\Delta u=0 \quad \text { on } \Gamma \times \mathbb{R}^{+} \tag{1.2}\\
u(\cdot, 0)=u_{0}, \quad u_{t}(\cdot, 0)=u_{1} \quad \text { in } \Omega \tag{1.3}
\end{gather*}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian operator.
This problem without the memory term models elastoplastic flows. We refer to [1] for a motivation and references concerning the study of problem 1.1$)-(1.3)$. We will us the following assumptions:
(A1) The memory kernel g has typical properties

$$
\begin{equation*}
g(0)>0, \quad l=1-\mu_{1} \int_{0}^{\infty} g(s) \mathrm{d} s>0 \tag{1.4}
\end{equation*}
$$

where $\mu_{1}>0$ is the embedding constant for $\|\nabla u\|_{2}^{2} \leq \mu_{1}\|\Delta u\|_{2}^{2}$. There exists a constant $k_{1}>0$ such that

$$
\begin{equation*}
g^{\prime}(t) \leq-k_{1} g(t), \quad \forall t \geq 0 \tag{1.5}
\end{equation*}
$$

(A2) The forcing term f satisfies

$$
\begin{gather*}
f(0)=0, \quad|f(u)-f(v)| \leq k_{2}\left(1+|u|^{\rho}+|v|^{\rho}\right)|u-v|, \quad \forall u, v \in \mathbb{R}, \tag{1.6}\\
0 \leq \widehat{f}(u) \leq f(u) u, \quad \forall u \in \mathbb{R}, \tag{1.7}
\end{gather*}
$$

2000 Mathematics Subject Classification. 35L75, 35B40.
Key words and phrases. Rate of decay; plate equation; p-Laplacian; memory term.
(C) 2012 Texas State University - San Marcos.

Submitted April 20, 2012. Published August 15, 2012.
where k_{2} is a positive constant, $\widehat{f}(z)=\int_{0}^{z} f(s) \mathrm{d} s$, and

$$
0<\rho \leq \frac{4}{N-4} \text { if } N \geq 5 \quad \text { and } \quad \rho>0 \text { if } 1 \leq N \leq 4
$$

(A3) The constant p satisfies

$$
\begin{equation*}
2 \leq p \leq \frac{2 N-2}{N-2} \text { if } N \geq 3 \quad \text { and } \quad p \geq 2 \text { if } N=1,2 \tag{1.8}
\end{equation*}
$$

Theorem 1.1 ([1, Theorem 2.1]). Assume that (A1)-(A3) hold.
(i) If the initial data $\left(u_{0}, u_{1}\right) \in\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times L^{2}(\Omega)$, then problem (1.1)(1.3) has a unique weak solution

$$
u \in C\left(\mathbb{R}^{+} ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap C^{1}\left(\mathbb{R}^{+} ; L^{2}(\Omega)\right)
$$

(ii) If the initial data $\left(u_{0}, u_{1}\right) \in H_{\Gamma}^{3}(\Omega) \times H_{0}^{1}(\Omega)$, where

$$
H_{\Gamma}^{3}(\Omega)=\left\{u \in H^{3}(\Omega) \mid u=\Delta u=0 \text { on } \Gamma\right\}
$$

then problem (1.1)-1.3 has a unique strong solution satisfying
$u \in L^{\infty}\left(\mathbb{R}^{+} ; H_{\Gamma}^{3}(\Omega)\right), \quad u_{t} \in L^{\infty}\left(\mathbb{R}^{+} ; H_{0}^{1}(\Omega)\right), \quad u_{t t} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$.
(iii) In both cases, the energy $E(t)$ of problem 1.1 - 1.3 satisfies the decay rate

$$
E(t) \leq C E(0) e^{-\gamma t}, \quad t \geq 0
$$

for some $C, \gamma>0$, where

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\|u_{t}(t)\right\|_{2}^{2}+\frac{1}{2}\|\Delta u(t)\|_{2}^{2}+\frac{1}{p}\|\nabla u(t)\|_{p}^{p}+\int_{\Omega} \widehat{f}(u(t)) \mathrm{d} x \tag{1.9}
\end{equation*}
$$

In this note, we shall extend the above exponential rate of decay to the general case, which is similar to that of g. We use the following assumption which is weaker than (1.5).
(A4) There exists a positive differentiable function $\xi(t)$ such that

$$
g^{\prime}(t) \leq-\xi(t) g(t), \quad \forall t \geq 0
$$

and $\xi(t)$ satisfies

$$
\xi^{\prime}(t) \leq 0, \forall t>0, \int_{0}^{+\infty} \xi(t) \mathrm{d} t=\infty
$$

Then, we can prove the following main result.
Theorem 1.2. Assume that (A2)-(A4) and (1.4) hold. If the initial data $\left(u_{0}, u_{1}\right) \in$ $\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times L^{2}(\Omega)$ or $\left(u_{0}, u_{1}\right) \in H_{\Gamma}^{3}(\Omega) \times H_{0}^{1}(\Omega)$, then the energy $E(t)$ of problem (1.1)-(1.3) satisfies the inequality

$$
\begin{equation*}
E(t) \leq K E(0) e^{-k \int_{0}^{t} \xi(s) \mathrm{d} s}, \quad t \geq 0 \tag{1.10}
\end{equation*}
$$

for some $K, k>0$.
Remark 1.3. We note that a similar decay rate was given in [5, Theorem 3.5]. However, unlike [5, (G2)] and [6, (A1)], we do not use the condition of $\left|\frac{\xi^{\prime}(t)}{\xi(t)}\right| \leq k$ here.

Remark 1.4. For $\xi(t) \equiv k_{1}, 1.10$ recaptures the exponential decay rate in [1, Theorem 2.1]. For $\xi(t)=a(1+t)^{-1}$, we can get polynomial decay rate, which is nt addressed in [1.

2. Proof of Theorem 1.2

Let us first prove the decay property for the strong solution u of problem (1.1)(1.3). We modify the perturbed energy method in [1] by using the idea of [4, 5].

Assume that condition (A4) holds and define the modified energy, as in [1],

$$
\begin{aligned}
F(t)= & \frac{1}{2}\left\|u_{t}(t)\right\|_{2}^{2}+\frac{1}{2}\|\Delta u(t)\|_{2}^{2}+\frac{1}{p}\|\nabla u(t)\|_{p}^{p}+\int_{\Omega} \widehat{f}(u(t)) \mathrm{d} x \\
& -\frac{1}{2}\left(\int_{0}^{t} g(s) \mathrm{d} s\right)\|\nabla u(t)\|_{2}^{2}+\frac{1}{2}(g \circ \nabla u)(t),
\end{aligned}
$$

where

$$
(g \circ \nabla u)(t)=\int_{0}^{t} g(t-s)\|\nabla u(t)-\nabla u(s)\|_{2}^{2} \mathrm{~d} s
$$

Then we obtain

$$
E(t) \leq \frac{1}{l} F(t)
$$

and $F(t)$ is decreasing because

$$
\begin{align*}
F^{\prime}(t) & =-\left\|\nabla u_{t}(t)\right\|_{2}^{2}+\frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u(t)\|_{2}^{2} \tag{2.1}\\
& \leq-\left\|\nabla u_{t}(t)\right\|_{2}^{2}-\frac{1}{2} \xi(t)(g \circ \nabla u)(t) \leq 0
\end{align*}
$$

Let

$$
\Psi(t)=\int_{\Omega} u_{t}(t) u(t) \mathrm{d} x
$$

and

$$
F_{\varepsilon}(t)=F(t)+\varepsilon \Psi(t), \quad \forall \varepsilon>0
$$

To obtain the decay result, we use the following lemmas which are of crucial importance in the proof.

Lemma 2.1 ([1, Lemma 4.1]). There exists $C_{1}>0$ such that

$$
\left|F_{\varepsilon}(t)-F(t)\right| \leq \varepsilon C_{1} F(t), \quad \forall t \geq 0, \forall \varepsilon>0
$$

Lemma 2.2 ([1, (27) in Lemma 4.2]). There exist positive constants C_{2}, C_{3} such that

$$
\begin{equation*}
\Psi^{\prime}(t) \leq-F(t)+C_{2}\left\|\nabla u_{t}(t)\right\|_{2}^{2}+C_{3}(g \circ \nabla u)(t) \tag{2.2}
\end{equation*}
$$

Now, we conclude the proof of the decay property. Let

$$
\varepsilon_{0}=\min \left\{\frac{1}{2 C_{1}}, \frac{1}{C_{2}}\right\}
$$

It follows from Lemma 2.1 that, for $\varepsilon<\varepsilon_{0}$,

$$
\begin{equation*}
\frac{1}{2} F(t) \leq F_{\varepsilon}(t) \leq \frac{3}{2} F(t), \quad t \geq 0 \tag{2.3}
\end{equation*}
$$

By the definition of $F_{\varepsilon}(t),(2.1)$ and (2.2), we obtain

$$
\begin{align*}
\xi(t) F_{\varepsilon}^{\prime}(t)= & \xi(t) F^{\prime}(t)+\varepsilon \xi(t) \Psi^{\prime}(t) \\
\leq & -\xi(t)\left\|\nabla u_{t}(t)\right\|_{2}^{2}-\frac{\xi^{2}(t)}{2}(g \circ \nabla u)(t)-\varepsilon \xi(t) F(t) \\
& +\varepsilon C_{2} \xi(t)\left\|\nabla u_{t}(t)\right\|_{2}^{2}+\varepsilon C_{3} \xi(t)(g \circ \nabla u)(t) \tag{2.4}\\
\leq & -\left(1-\varepsilon C_{2}\right) \xi(t)\left\|\nabla u_{t}(t)\right\|_{2}^{2}-\varepsilon \xi(t) F(t)+\varepsilon C_{3} \xi(t)(g \circ \nabla u)(t) \\
\leq & -\varepsilon \xi(t) F(t)+\varepsilon C_{3} \xi(t)(g \circ \nabla u)(t) \\
\leq & -\varepsilon \xi(t) F(t)-2 \varepsilon C_{3} F^{\prime}(t)
\end{align*}
$$

We set

$$
L(t)=\xi(t) F_{\varepsilon}(t)+2 \varepsilon C_{3} F(t)
$$

Then, $L(t)$ is equivalent to $F(t)$. In fact, we have

$$
L(t) \leq \xi(0) F_{\varepsilon}(t)+2 \varepsilon C_{3} F(t) \leq\left(\frac{3}{2} \xi(0)+2 \varepsilon C_{3}\right) F(t)
$$

and

$$
L(t) \geq \frac{1}{2} \xi(t) F(t)+2 \varepsilon C_{3} F(t) \geq 2 \varepsilon C_{3} F(t)
$$

Since $F(t) \geq l E(t) \geq 0$ and $\xi^{\prime}(t) \leq 0$, from 2.3 and 2.4 we obtain

$$
\begin{align*}
L^{\prime}(t) & =\xi^{\prime}(t) F_{\varepsilon}(t)+\xi(t) F_{\varepsilon}^{\prime}(t)+2 \varepsilon C_{3} F^{\prime}(t) \\
& \leq \xi(t) F_{\varepsilon}^{\prime}(t)+2 \varepsilon C_{3} F^{\prime}(t) \tag{2.5}\\
& \leq-\varepsilon \xi(t) F(t) \leq-\varepsilon k \xi(t) L(t)
\end{align*}
$$

where we have used (2.4) and k is a positive constant.
A simple integration of 2.5 leads to

$$
\begin{equation*}
L(t) \leq L(0) e^{-k \int_{0}^{t} \xi(s) \mathrm{d} s}, \quad \forall t \geq 0 . \tag{2.6}
\end{equation*}
$$

This proves the decay property for strong solutions in $H_{\Gamma}^{3}(\Omega)$.
The result can be extended to weak solutions by standard density arguments, as in Cavalcanti et al. 2, 3].

Acknowledgements. This work was partly supported by the Tianyuan Fund of Mathematics (Grant No. 11026211) and the Natural Science Foundation of the Jiangsu Higher Education Institutions (Grant No. 09KJB110005).

References

[1] D. Andrade, M. A. Jorge Silva, T. F. Ma; Exponential stability for a plate equation with p-Laplacian and memory terms, Math. Methods Appl. Sci. 35 (2012), no. 4, 417-426.
[2] M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma; Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains, Differential Integral Equations 17 (2004), no. 5-6, 495-510.
[3] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano; Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math. 6 (2004), no. 5, 705-731.
[4] W. J. Liu, J. Yu; On decay and blow-up of the solution for a viscoelastic wave equation with boundary damping and source terms, Nonlinear Anal. 74 (2011), no. 6, 2175-2190.
[5] S. A. Messaoudi; General decay of the solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal. 69 (2008), no. 8, 2589-2598.
[6] S.-T. Wu; General decay of solutions for a viscoelastic equation with nonlinear damping and source terms, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 4, 1436-1448.

Wenjun Liu
College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

E-mail address: wjliu@nuist.edu.cn
Gang Li
College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

E-mail address: ligang@nuist.edu.cn
Linghui Hong
College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

E-mail address: hlh3411006@163.com

