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POSITIVE SOLUTIONS FOR A NONLINEAR PERIODIC
BOUNDARY-VALUE PROBLEM WITH A PARAMETER

JINGLIANG QIU

Abstract. Using topological degree theory with a partially ordered structure
of space, sufficient conditions for the existence and multiplicity of positive
solutions for a second-order nonlinear periodic boundary-value problem are
established. Inspired by ideas in Guo and Lakshmikantham [6], we study the
dependence of positive periodic solutions as a parameter approaches infinity,

lim
λ→+∞

‖xλ‖ = +∞, or lim
λ→+∞

‖xλ‖ = 0.

1. Introduction

In recent years, periodic boundary value problems have been studied extensively
in the literature; see, for example, [1, 5, 9, 13, 15, 20] and references therein. Many
techniques have been developed for studying the existence and multiplicity of peri-
odic solutions (see [2, 3, 4, 7, 10, 16, 17, 18, 19]). In this article, we apply topological
degree theory combined with partially ordered structure of a space to establish the
existence and multiplicity of positive solutions to the periodic boundary-value prob-
lem

λLx = −g(t)f(t, x), 0 ≤ t ≤ 2π,

x(0) = x(2π), x′(0) = x′(2π),
(1.1)

where λ > 0 is a parameter, Lx = x′′− ρ2x, ρ > 0 is a constant. In addition, f and
g satisfy

(H1) f ∈ C[0,+∞)× [0,+∞), [0,+∞));
(H2) g(t) ∈ Lp[0, 2π] for some 1 ≤ p ≤ +∞ and there exists m > 0 such that

g(t) ≥ m a.e. on [0, 2π].
For the case of g(t) ∈ C[0, 2π], not g(t) ∈ Lp[0, 2π], and f(t, x) is replaced by

f(x), problem (1.1) reduces to the problem studied by Graef, Kong, and Wang in
[5]. By using the fixed-point theorem of cone expansion and compression of norm
type, the authors obtained some sufficient conditions for the existence, multiplicity,
and nonexistence of positive solutions for problem (1.1).
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In the present article, some new criteria for the existence and multiplicity of
positive solutions are established. In particular, we examine the dependence of
positive solution xλ(t) on the parameter λ; i.e.,

lim
λ→+∞

‖xλ‖ = +∞ or lim
λ→+∞

‖xλ‖ = 0.

We remark that our methods are entirely different from those used in [5, 7, 9, 10,
18, 20] and the results obtained in this paper generalize some of their results, to
some degree. Moreover, some of our hypotheses on f involve

lim sup
x→0+

max
t∈[0,2π]

f(t, x)
x

, lim inf
x→∞

min
t∈[0,2π]

f(t, x)
x

.

Our conditions strictly include the sublinear and superlinear cases.
The work is organized in the following fashion. In Section 2, we provide some

necessary background. In particular, we shall introduce some lemmas and defini-
tions associated with topological degree theory and partially ordered structure of
space. The main results will be stated and proved in Section 3. The final section
of the paper considers the dependence of positive solution xλ(t) on the parameter
λ.

At the end of this section, it is worth to mention that some excellent results by
Guo and Lakshmikantham, which can be found in [6].

Theorem 1.1. Let E be a Banach space and let K ⊂ E be a cone in E. Let
operator A : K → K is completely continuous and Aθ = θ, where θ is the zero
element of E. Suppose that one of the two conditions (i)

lim
x∈K, ‖x‖→0

‖Ax‖
‖x‖

= 0, lim
x∈K, ‖x‖→+∞

‖Ax‖
‖x‖

= +∞

and (ii)

lim
x∈K, ‖x‖→0

‖Ax‖
‖x‖

= +∞, lim
x∈K, ‖x‖→+∞

‖Ax‖
‖x‖

= 0

is satisfied. Then the following two conclusions hold.
(1) Every µ > 0 is an eigenvalue of A, which corresponds to positive eigenvec-

tor; i.e., there exists xµ > θ such that Axµ = µxµ;
(2) limµ→+∞ ‖xµ‖ = +∞ under condition (i), and limµ→+∞ ‖xµ‖ = 0 under

condition (ii).

From the proof of Theorem 1.1, it is not difficult to see that the conditions
are different from those used in [6, 7, 11, 14, 21], which can be used to prove the
dependence of positive solution xµ(t) on the parameter µ.

2. Definitions and lemmas

In this section, we provide some background materials associated with topological
degree theory and partially ordered structure of space. The following definitions
can be found in the book by Guo and Lakshmikantham [6].

Definition 2.1. Let E be a real Banach space over R. A nonempty closed set
P ⊂ E is said to be a cone provided that

(i) au + bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0 and
(ii) u,−u ∈ P implies u = 0.
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Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if
y − x ∈ P .

Lemma 2.2. Let K be a closed convex set in a Banach space X and let D be a
bounded open set such that Dk := D ∩K 6= ∅. Let T : D̄k → K be a compact map.
Suppose that x 6= T (x) for all x ∈ ∂Dk.

(P1) (Solution property) If ik(T,Dk) 6= 0, then T has a fixed point in Dk.
(P2) (Normality) If u ∈ Dk, then ik(û, Dk) = 1, where û(x) = u for x ∈ D̄k.
(P3) (Additivity) If V 1, V 2 are disjoint relatively open subsets of Dk such that

x 6= T (x) for x ∈ D̄k \ (V 1 ∪ V 2), then

ik(T,Dk) = ik(T, V 1) + ik(T, V 2).

(P4) (Homotopy invariance) Let h : [0, 1] × D̄k → K be compact such that x 6=
h(t, x) for x ∈ ∂Dk and t ∈ [0, 1].

Then ik(h(0, . . . ), Dk) = ik(h(1, . . . ), Dk).

From these properties, one can have the following consequence.

Lemma 2.3 ([12]). Let K be a cone in a real Banach space X. Let D be an open
bounded subset of X with Dk = D∩K 6= ∅ and D̄k 6= K. Assume that A : D̄k → K
is completely continuous such that x 6= Ax for x ∈ ∂Dk. Then the following results
hold:

(1) If ‖Ax‖ ≤ ‖x‖, x ∈ ∂Dk, then ik(A,Dk) = 1.
(2) If there exists e ∈ K\{0} such that x 6= Ax + λe for all x ∈ ∂Dk and all

λ > 0, then ik(A,Dk) = 0.
(3) Let U be open in K such that Ū ⊂ Dk. If ik(A,Dk) = 1 and ik(A,Uk) = 0,

then A has a fixed point in Dk\Ūk. The same result holds if ik(A,Dk) = 0
and ik(A,Uk) = 1.

Remark 2.4. In Lemma 2.2, using (2) gives better results than use of the common
assumption ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Dk.

Lemma 2.5 ([6]). Let K be a cone in a real Banach space E. Assume Ω1,Ω2 are
bounded open sets in E with 0 ∈ Ω1, Ω̄1 ⊂ Ω2. If

A : K ∩ (Ω̄2\Ω1) → K

is completely continuous such that either
(i) ‖Ax‖ ≤ ‖x‖ for all x ∈ K ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖ for all x ∈ K ∩ ∂Ω2, or
(ii) ‖Ax‖ ≥ ‖x‖ for all x ∈ K ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖ for all x ∈ K ∩ ∂Ω2,

then A has at least one fixed point in K ∩ (Ω̄2\Ω1).

To obtain some of the norm inequalities in our main results we employ Hölder’s
inequality.

Lemma 2.6. Let f ∈ Lp[a, b] with p > 1, g ∈ Lq[a, b] with q > 1, and 1
p + 1

q = 1.
Then fg ∈ L1[a, b] and

‖fg‖1 ≤ ‖f‖p‖g‖q.

Let f ∈ L1[a, b], g ∈ L∞[a, b]. Then fg ∈ L1[a, b] and

‖fg‖1 ≤ ‖f‖1‖g‖∞.
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3. Main results

Let X be the space C[0, 2π] endowed with the norm ‖x‖ = max0≤t≤2π |x(t)|.
By a solution of problem (1.1), we mean a function x ∈ C[0, 2π] ∩ C2(0, 2π) which
satisfies (1.1).

To establish the existence of multiple positive solutions in C[0, 2π] ∩ C2(0, 2π)
of problem (1.1), we construct a cone K in X by

K =
{

x ∈ X : x(t) ≥ 0 on [0, 2π] and min
0≤t≤2π

x(t) ≥ σ‖x‖
}

,

where
σ =

2eπρ

1 + e2πρ
. (3.1)

Let the map Tλ : K → X be defined by

(Tλx)(t) = λ−1

∫ 2π

0

G(t, s)g(s)f(x(s))ds, (3.2)

here

G(t, s) =

{
eρ(t−s)+eρ(2π−t+s)

2ρ(e2ρπ−1) , 0 ≤ s ≤ t ≤ 1,
eρ(s−t)+eρ(2π−s+t)

2ρ(e2ρπ−1) , 0 ≤ t ≤ s ≤ 1.
(3.3)

It follows that
eρπ

2ρ(e2ρπ − 1)
= Ĝ(π) ≤ G(t, s) ≤ Ĝ(0) =

1 + eρ2π

2ρ(e2ρπ − 1)
, t, s ∈ [0, 2π] (3.4)

where

Ĝ(x) =
eρx + eρ(2π−x)

2ρ(e2ρπ − 1)
, x ∈ [0, 2π].

Further, by (3.3) and (3.4), we have

σG(s, s) ≤ G(t, s) ≤ G(s, s), t ∈ [0, 2π], (3.5)

where

G(s, s) =
1 + eρ2π

2ρ(e2ρπ − 1)
.

Noticing ρ > 0, then it is easy to see from (3.4) and (3.5) that there exists τ > 0
such that

G(t, s) ≥ τ, ∀t, s ∈ [0, 2π]. (3.6)

Lemma 3.1 ([5]). Assume that (H1), (H2) hold. Then x ∈ K is a positive fixed
point of Tλ if and only if x is a positive solution of problem (1.1).

We define

Ωr = {x ∈ K : min
t∈[0,2π]

x(t) < σr} = {x ∈ X : σ‖x‖ ≤ min
t∈[0,2π]

x(t) < σr}.

This allows f to satisfy weaker conditions than previously where the index was
shown to be zero on the sets Kr = {x ∈ K : ‖x‖ < r}.

The following results are similar to [12, Lemma 2.5].

Lemma 3.2. Ωr has the following properties:
(a) Ωr is open relative to K;
(b) Kσr ⊂ Ωr ⊂ Kr;
(c) x ∈ ∂Ωr if and only if mint∈[0,2π] x(t) = σr;
(d) if x ∈ ∂Ωr, then σr ≤ x(t) ≤ r for t ∈ [0, 2π].
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Now for convenience we introduce the following notation. Let

fr
σr = min

{
min

t∈[0,2π]

f(t, x)
r

: x ∈ [σr, r]
}

, fr
0 = max{ max

t∈[0,2π]

f(t, x)
r

: x ∈ [0, r]},

fδ = lim
x→δ

sup max
t∈[0,2π]

f(t, x)
x

, fδ = lim
x→δ

inf min
t∈[0,1]

f(t, x)
x

, (δ := ∞, or 0),

l = min{
[
λ−1‖G‖q‖g‖p

]−1
,
[
λ−1‖G‖1‖g‖∞

]−1
,
[
λ−1Ĝ(0)‖g‖1

]−1},

L =
[
2mλ−1τπ

]−1
σ.

We now give our results on the existence of multiple positive solutions of problem
(1.1). We consider the following three cases for g ∈ Lp[0, 1] : p > 1, p = 1, and
p = ∞. Case p > 1 is treated in the following theorem.

Theorem 3.3. Suppose that (H1), (H2) and one of the following two conditions
hold:

(H3) There exist ξ1, ξ2, ξ3 ∈ (0,∞), with ξ1 < σξ2 and ξ2 < ξ3 such that

fξ1
0 < l, fξ2

σξ2
> L, fξ3

0 < l.

(H4) There exist ξ1, ξ2, ξ3 ∈ (0,∞), with ξ1 < ξ2 < ξ3 such that

fξ1
σξ1

> L, fξ2
0 < l, fξ3

σξ3
> L.

Then, for all λ > 0, problem (1.1) has at least two positive solutions x1, x2 with
x1 ∈ Ωξ2\K̄ξ1 , x2 ∈ Kξ3\Ω̄ξ2 .

Proof. We only consider the condition (H3). If (H4) holds, then the proof is sim-
ilar to that of the case when (H3) holds. Let Tλ be cone preserving, completely
continuous operator that was defined by (3.2).

First, we show that ik(Tλ,Kξ1) = 1. In fact, by (3.2) and fξ1
0 < l, we have for

x ∈ ∂Kξ1 ,

(Tλx)(t) = λ−1

∫ 2π

0

G(t, s)g(s)f(s, x(s))ds

< lξ1λ
−1

∫ 2π

0

G(t, s)g(s)ds

≤ lξ1λ
−1

∫ 2π

0

G(s, s)g(s)ds

≤ lξ1λ
−1‖G‖q‖g‖p ≤ ξ1;

(3.7)

i.e., ‖Tλx‖ < ‖x‖ for x ∈ ∂Kξ1 . By (1) of Lemma 2.2, we obtain that ik(Tλ,Kξ1) =
1.

Secondly, we show that ik(Tλ,Ωξ2) = 0. Let e(t) ≡ 1 for t ∈ [0, 2π]. Then
e ∈ ∂K1. We claim that

x 6= Tλx + ζe, for x ∈ ∂Ωξ2 and ζ > 0. (3.8)

In fact, if not, there exist x0 ∈ ∂Ωξ2 and ζ0 > 0 such that x0 = Tλx0 + ζ0e. Then,
by (3.2) (3.6), (d) of Lemma 3.2 and fξ2

σξ2
> L, for t ∈ [0, 2π], we have

x0(t) = (Tλx0)(t) + ζ0e

= λ−1

∫ 2π

0

G(t, s)g(s)f(s, x0(s))ds + ζ0
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> λ−1Lξ2

∫ 2π

0

G(t, s)g(s)ds + ζ0

≥ 2πλ−1τmLξ2 + ζ0

= σξ2 + ζ0,

which implies that mint∈[0,2π] x0(t) > σξ2 + ζ0 > σξ2. Since mint∈[0,2π] x0(t) = σξ2,
by (c) of Lemma 3.2, this is a contradiction. Hence, by (2) of Lemma 2.2, it follows
that ik(Tλ,Ωξ2) = 0.

Finally, similar to the proof of ik(Tλ,Kξ1) = 1, we can prove that ik(Tλ,Kξ3) = 1.
Since ξ1 < σξ2, we have K̄ξ1 ⊂ Kσξ2 ⊂ Ωξ2 . Therefore, (3) of Lemma 2.2 implies
that problem (1.1) has at least two positive solutions x1, x2 with x1 ∈ Ωξ2\K̄ξ1 , x2 ∈
Kξ3 \ Ω̄ξ2 . �

Remark 3.4. From the proof of Theorem 3.1, we can obtain that (1.1) has a third
non-negative solution x3 with x3 ∈ Kξ1 .

The proofs of the remaining results in this section are similar to the proof of
Theorem 3.1. We will present only their sketches. The following result deals with
the case p = ∞.

Corollary 3.5. Suppose that (H1)–(H3) hold, or (H1), (H2), (H4) hold. Then, for
all λ > 0, problem (1.1) has at least two positive solutions x1, x2 with x1 ∈ Ωξ2\K̄ξ1 ,
x2 ∈ Kξ3\Ω̄ξ2 .

Proof. Let ‖G‖1‖g‖∞ replace ‖G‖p‖g‖q and repeat the argument above. �

Now we consider the case of p = 1.

Corollary 3.6. Suppose that (H1)–(H3) hold, or (H1), (H2), (H4) hold. Then, for
all λ > 0, problem (1.1) has at least two positive solutions x1, x2 with x1 ∈ Ωξ2\K̄ξ1 ,
x2 ∈ Kξ3\Ω̄ξ2 .

Proof. For x ∈ ∂Kξ1 , from (3.2) and (3.4) it follows that

(Tλx)(t) = λ−1

∫ 2π

0

G(t, s)g(s)f(x(s))ds

< λ−1lξ1

∫ 2π

0

G(t, s)g(s)ds

≤ λ−1lξ1

∫ 2π

0

G(s, s)g(s)ds

≤ λ−1lξ1Ĝ(0)‖g‖1 ≤ ξ1.

Consequently, for x ∈ ∂Kξ1 , we have ‖Tλx‖ < ‖x‖. By (1) of Lemma 2.2, this
implies that i(Tλ,Kξ1) = 1.

Similarly, if x ∈ ∂Kξ3 we can obtain i(Tλ,Kξ3) = 1. And it also follows from
(3.8) that ik(Tλ,Ωξ2) = 0. This completes the proof. �

As a special case of Theorem 3.1, we obtain the following result.

Corollary 3.7. Assume (H1), (H2) and that there exist ξ′, ξ ∈ (0,∞) with ξ′ < σξ
such that one of the following two conditions hold:

(H5) fξ′

0 < l, fξ
σξ > L, 0 ≤ f∞ < l.
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(H6) fξ′

σξ′ > L, fξ
0 < l, L < f∞ ≤ ∞.

Then, for all λ > 0, problem (1.1) has at least two positive solutions in K.

Proof. We show that (H5) implies (H3). Let α ∈ (f∞, l). Then there exists r > α
such that f(x) ≤ αx for x ∈ [r,∞) since 0 ≤ f∞ < l. Let

β∗ = max{f(x) : 0 ≤ x ≤ r}, ξ3 > max{ β∗

l − α
, ξ}.

Then we have f(x) ≤ αx+β∗ ≤ αξ3 +β∗ < lξ3 for all x ∈ [0, ξ3]. This implies that
fξ3
0 ≤ l. Similarly (H6) implies (H4), and the Corollary is proved. �

By an argument similar to that of Theorem 3.1 we obtain the following results.

Theorem 3.8. Suppose (H1), (H2) and one of the following two conditions hold:

(H7) There exist ξ1, ξ2 ∈ (0,∞) with ξ1 < ξ2 such that fξ1
0 ≤ l and fξ2

σξ2
≥ L.

(H8) There exist ξ1, ξ2 ∈ (0,∞) with ξ1 < ξ2 such that fξ1
σξ1

≥ l and fξ2
0 ≤ L.

Then, for all λ > 0, problem (1.1) has at least one positive solution in K.

As a special case of the above theorem, we obtain the following result.

Corollary 3.9. Suppose (H1), (H2) and one of the following conditions hold:
(H9) 0 ≤ f0 < l and L < f∞ ≤ ∞.

(H10) 0 ≤ f∞ < l and L < f0 ≤ ∞.
Then, for all λ > 0, problem (1.1) has at least one positive solution in K.

Theorem 3.1 can be generalized to obtain many solutions.

Theorem 3.10. Suppose that (H1), (H2) hold. Then the following assertions hold.
(1) If there exists {ξi}2m0

i=1 ⊂ (0,∞) with ξ1 < σξ2 < ξ2 < ξ3 < σξ4 < · · · <
σξ2m0 such that

f
ξ2m−1
0 < l, fξ2m

σξ2m
> L.

Then, for all λ > 0, problem (1.1) has at least 2m0 solutions in K.
(2) If there exists {ξi}2m0

i=1 ⊂ (0,∞) with ξ1 < ξ2 and ξ2 < σξ3 < ξ3 < ξ4 <
σξ5 < · · · < σξ2m0+2 such that

f
ξ2m−1
σξ2m−1

> L, fξ2m

0 < l.

Then, for all λ > 0, problem (1.1) has at least 2m0 − 1 solutions in K.

It is easy to see that our conditions include the sublinear and superlinear cases,
so the results of this paper generalize and improve those in [5] to some degree.

4. Dependence of positive solution on the parameter

In this section, we consider the dependence of the positive solution xλ(t) on the
parameter λ. In the following theorems we only consider the case of p = 1.

Theorem 4.1. Assume that (H1), (H2) hold. Then the following two conditions
hold.
(H11) If f0 = 0 and f∞ = ∞, then for every λ > 0 problem (1.1) has a positive

solution xλ(t) satisfying limλ→∞ ‖xλ‖ = ∞;
(H12) If f0 = ∞ and f∞ = 0, then for every λ > 0 problem (1.1) has a positive

solution xλ(t) satisfying limλ→∞ ‖xλ‖ = 0.
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Proof. We need to prove this theorem only under condition (H11) since the proof
is similar when (H12) holds. Considering f0 = 0, there exists r1 > 0 such that

f(t, x) ≤ ε1x, ∀t ∈ [0, 2π], 0 ≤ x ≤ r1,

where ε1 > 0 and satisfies 2πλ−1ε1Ĝ(0)‖g‖1 ≤ 1. Thus, for x ∈ K ∩ ∂Ωr1 , we have

(Tλx)(t) = λ−1

∫ 2π

0

G(t, s)g(s)f(s, x(s))ds

≤ λ−1ε1‖x‖
∫ 2π

0

G(t, s)g(s)ds

≤ 2πλ−1ε1‖x‖Ĝ(0)‖g‖1 ≤ ‖x‖,
and therefore,

‖Tλx‖ ≤ ‖x‖, ∀t ∈ [0, 2π], x ∈ K ∩ ∂Ωr1 . (4.1)
Next, turning to f∞ = ∞, there exists r̃ satisfying 0 < r1 < r̃ such that

f(t, x) ≥ ε2x, ∀t ∈ [0, 2π], x ≥ r̃,

where ε2 > 0 and satisfies 2πλ−1ε2mστ ≥ 1.
Let r2 = r̃/σ. Then, for x ∈ K ∩ ∂Ωr2 , we have x(t) ≥ σ‖x‖ = σr̃/σ = r̃,

t ∈ [0, 2π]. So, for x ∈ K ∩ ∂Ωr2 , it follows from (3.7) that

(Tλx)(t) = λ−1

∫ 2π

0

G(t, s)g(s)f(s, x(s))ds

≥ λ−1ε2mσ‖x‖
∫ 2π

0

G(t, s)ds

≥ 2πλ−1ε2mστ‖x‖ ≥ ‖x‖,
and hence,

‖Tλx‖ ≥ ‖x‖, ∀t ∈ [0, 2π], x ∈ K ∩ ∂Ωr2 . (4.2)
Applying (i) of Lemma 2.3 to (4.1) and (4.2) yields that the operator Tλ has a fixed
point xλ ∈ K ∩ (Ω̄r2\Ωr1). Thus it follows that for every λ > 0 problem (p) has a
positive solution xλ(t).

It remains to prove ‖xλ‖ = +∞ as λ → +∞. In fact, if not, there exist a number
m > 0 and a sequence λn → +∞ such that

‖xλn‖ ≤ m (n = 1, 2, 3, . . . ).

Furthermore, the sequence xλn contains a subsequence that converges to a number
η(0 ≤ η ≤ m). For simplicity, suppose that {‖xλn‖} itself converges to η.

If η > 0, then ‖xλn‖ > η/2 for sufficiently large n (n > N), and therefore

λn =
‖

∫ 2π

0
G(t, s)g(s)f(s, xλn

(s))ds‖
‖xλn‖

≤
Ĝ(0)

∫ 2π

0
g(s)f(s, xλn(s))ds

‖xλn‖

≤ Ĝ(0)M‖g‖1

‖xλn‖

≤ 2Ĝ(0)M‖g‖1

η
(n > N),
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where, M = maxt∈[0,2π, ‖x‖≤m f(t, x), which contradicts λn → +∞.
If η = 0, then ‖xλn

‖ → 0 for sufficiently large n (n > N), and therefore it follows
from (H11) that for any ε > 0 there exists r3 > 0 such that

f(t, xλn) ≤ εxλn , ∀t ∈ [0, 2π], 0 ≤ xλn ≤ r3,

and hence we obtain

λn =
‖

∫ 2π

0
G(t, s)g(s)f(s, xλn(s))ds‖

‖xλn‖

≤
Ĝ(0)

∫ 2π

0
g(s)f(s, xλn(s))ds

‖xλn‖

≤
Ĝ(0)ε‖xλn

‖
∫ 2π

0
g(s))ds

‖xλn‖

≤ Ĝ(0)ε‖xλn
‖‖g‖1

‖xλn‖
= Ĝ(0)ε‖g‖1.

Since ε is arbitrary, we have λn → 0 (n → +∞) in contradiction with λn → +∞.
Therefore, ‖xλ‖ → +∞ as λ → +∞ and our proof is complete. �

From the proof of Theorem 4.1, it is not difficult to see that the conditions are
different from those used in [6, Theorem 2.3.7], which implies that the results of
this paper are new and they improve [6, Theorem 2.3.7], to some degree.
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