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POSITIVE SOLUTIONS FOR A SYSTEM OF SECOND-ORDER
BOUNDARY-VALUE PROBLEMS INVOLVING FIRST-ORDER

DERIVATIVES

KUN WANG, ZHILIN YANG

Abstract. In this article we study the existence and multiplicity of positive
solutions for the system of second-order boundary value problems involving
first order derivatives

−u′′ = f(t, u, u′, v, v′),

−v′′ = g(t, u, u′, v, v′),

u(0) = u′(1) = 0, v(0) = v′(1) = 0.

Here f, g ∈ C([0, 1]×R4
+, R+)(R+ := [0,∞)). We use fixed point index theory

to establish our main results based on a priori estimates achieved by utilizing
Jensen’s integral inequality for concave functions and R2

+-monotone matrices.

1. Introduction

In this article we study the existence and multiplicity of positive solutions for the
system of second-order boundary value problems involving first order derivatives

−u′′ = f(t, u, u′, v, v′),

−v′′ = g(t, u, u′, v, v′),

u(0) = u′(1) = 0, v(0) = v′(1) = 0,

(1.1)

where f ∈ C([0, 1]×R4
+,R+) and g ∈ C([0, 1]×R4

+,R+). By a positive solution of
(1.1), we mean a pair of functions (u, v) ∈ C2[0, 1] × C2[0, 1] that solve (1.1) and
satisfy u(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0, 1], with at least one of them positive on
(0, 1].

Boundary-value problems for systems of nonlinear second-order ordinary differ-
ential equations arise from physics, biology, chemistry, and other applied sciences,
and, as a result, play an important role in both theory and application. Recently,
there are many articles in this direction. We refer the reader to [2, 4, 5, 6, 7, 8, 9,
10, 11, 12, 14, 15, 16, 20] and the references cited therein. It should remarked that
in the works cited above, only a few of them involve first-order derivatives in their
nonlinearities.
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In [13], the authors study the existence and multiplicity of positive solutions for
the system

(−1)mw(2m)

= f(t, w,w′,−w′′′, . . . , (−1)m−1w(2m−1), z, z′,−z′′′, . . . , (−1)n−1z(2n−1)),

(−1)nz(2n)

= g(t, w,w′,−w′′′, . . . , (−1)m−1w(2m−1), z, z′,−z′′′, . . . , (−1)n−1z(2n−1)),

w(2i)(0) = w(2i+1)(1) = 0 (i = 0, 1, . . . ,m− 1),

z(2j)(0) = z(2j+1)(1) = 0 (j = 0, 1, . . . , n− 1).

The hypotheses imposed on the nonlinearities f and g are formulated in terms
of two linear functions h1(x) and h2(y). The main results in [13] are established
by using fixed point index theory based on a priori estimates of positive solutions
achieved by utilizing new integral inequalities and nonnegative matrices.

In [17], motivated by [18], Yang and Kong studied the system of second-order
boundary value problems involving first-order derivatives

− u′′i = fi(t, u1, u
′
1, . . . , un, u

′
n), ui(0) = u′i(1) = 0, i = 1, . . . , n. (1.2)

To obtain the a priori estimates of positive solutions, the authors develop some
integral identities and inequalities so that the main conditions imposed on f ′is in [17]
can be formulated in terms of simple linear functions of the form gi(x1, . . . , x2n) :=∑n

i=1 ai(x2i−1 + 2x2i). More precisely, for example, (H2) in [17] states that there
exist a nonnegative matrix A = (aij)n×n and a constant c > 0 such that the matrix
A− I is an Rn

+-monotone matrix and

fi(t, x) ≥
n∑

j=1

aij(x2j−1 + 2x2j)− c

for all (t, x) ∈ [0, 1]× R2n
+ , i = 1, . . . , n.

Motivated by [13, 17, 18], in this paper, we study the existence and multiplic-
ity of positive solutions for (1.1). We use fixed point index theory to establish
our main results based on a priori estimates of positive solutions for some associ-
ated problems, generalizing the corresponding ones for the single boundary value
problem

−u′′ = f(t, u, u′), u(0) = u′(1) = 0

in [18]. Our generalizations are not routine, as our conditions imposed on the
nonlinearities f and g, unlike these in [18], involve both linear functions on R4

+ and
concave functions on R+; these functions describe how the nonlinearities f, g grow
and enable us to treat the three cases of them: one with both superlinear, one with
both sublinear and the last with one superlinear and the other sublinear. Also, it is
of interest to note that, for nonnegative constants p, q, ξ, η and nonnegative concave
functions ϕ, ψ, we have to prove the ratio∫ 1

0
(pu(t) + 2qu′(t))ϕ(t)dt∫ 1

0
(ξu(t) + 2ηu′(t))ψ(t)dt

is bounded away from both 0 and ∞ (see Lemma 2.2 below for more details). This
is a great difference between this article and [13, 17].
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We use fixed point index theory to establish our main results based on a priori
estimates of positive solutions achieved by utilizing Jensen’s integral equality for
concave functions and R2

+-monotone matrices. More precisely, Jensen’s inequality is
mainly applied to derive the boundedness of weighted integrals of positive solutions
for some problems associated to (1.1), whereas R2

+-monotone matrices are employed
to solve systems of inequalities resulting from some weighted integrals and thereby
achieve the boundedness of associated weighted integrals.

This article is organized as follows. Section 2 contains some preliminary results,
including two new integral inequalities and a new integral identity. Our main
results, namely Theorems 3.4–3.6, are stated and proved in Section 3. Finally,
in Section 4, we presented four examples of nonlinearities to illustrate our main
results.

2. Preliminaries

Let E := C1([0, 1],R) and

P := {u ∈ E : u(t) ≥ 0, u′(t) ≥ 0,∀t ∈ [0, 1]}, ‖u‖ := max{‖u‖0, ‖u′‖0},
where ‖u‖0 := max{|u(t)| : t ∈ [0, 1]}. Clearly, (E, ‖ · ‖) is a real Banach space and
P is a cone in E. For (u, v) ∈ E2, let

‖(u, v)‖ := max{‖u‖, ‖v‖}.
Then E2 is also a real Banach space under the above norm and P 2 is a cone in E2.

Let k(t, s) := min{t, s} and

(Tu)(t) :=
∫ 1

0

k(t, s)u(s)ds.

Then T : E → E is a completely continuous, positive, linear operator, with the
spectral radius r(T ) = 4

π2 and

(Tϕ)(s) =
∫ 1

0

k(t, s)ϕ(t)dt = r(T )ϕ(s) (2.1)

where ϕ(t) := sin π
2 t.

In our setting, problem (1.1) is equivalent to the system of nonlinear integral
equations

u(t) =
∫ 1

0

k(t, s)f(s, u(s), u′(s), v(s), v′(s))ds,

v(t) =
∫ 1

0

k(t, s)g(s, u(s), u′(s), v(s), v′(s))ds.
(2.2)

Define the operators Ai(i = 1, 2) : P 2 → P and A : P 2 → P 2 by

A1(u, v)(t) :=
∫ 1

0

k(t, s)f(s, u(s), u′(s), v(s), v′(s))ds,

A2(u, v)(t) :=
∫ 1

0

k(t, s)g(s, u(s), u′(s), v(s), v′(s))ds,

A(u, v)(t) := (A1(u, v), A2(u, v)).

Now f ∈ C([0, 1] × R4
+,R+) and g ∈ C([0, 1] × R4

+,R+) imply that Ai and A are
completely continuous operators. Clearly, the existence of positive solutions for
(1.1) is equivalent to that of positive fixed points of A : P 2 → P 2.
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To establish the priori estimates of positive solutions for some problems associ-
ated with (1.1), we need two transcendental equations(see [18]).

For any ξ > η > 0, let µ(ξ, η) ∈ (1/ξ, 1/η) denote the minimal positive solution
of the transcendental equation

ηµ sin
√
ξµ− η2µ2 −

√
ξµ− η2µ2 cos

√
ξµ− η2µ2 = 0. (2.3)

Also, for any η > ξ > 0, let ν(ξ, η) ∈ (1/η, 1/ξ) denote the unique solution of the
transcendental equation

ην sinh
√
η2ν2 − ξν −

√
η2ν2 − ξν cosh

√
η2ν2 − ξν = 0. (2.4)

in (1/η,∞). Let

ϕξ,η(t) :=



π
2 sin πt

2 , ξ > 0, η = 0,
tet, ξ = η > 0,

ξµ(ξ,η)√
ξµ(ξ,η)−η2µ2(ξ,η)

exp(ηµ(ξ, η)t)

× sin(
√
ξµ(ξ, η)− η2µ2(ξ, η)t), ξ > η > 0,

ξν(ξ,η)√
η2ν2(ξ,η)−ξν(ξ,η)

exp(ην(ξ, η)t)

× sinh(
√
η2ν2(ξ, η)− ξν(ξ, η)t), η > ξ > 0,

(2.5)

λ(ξ, η) :=


π2

4ξ , ξ > 0, η = 0
1
ξ , ξ = η > 0,
µ(ξ, η), ξ > η > 0,
ν(ξ, η), η > ξ > 0.

(2.6)

for all ξ > 0, η ≥ 0. Direct calculation shows∫ 1

0

ϕξ,η(t)dt = 1. (2.7)

Lemma 2.1. Suppose ψ ∈ C([0, 1],R+) is not identically vanishing on [0, 1], and
v ∈ C([0, 1],R+) is a concave function. Let %(ψ) :=

∫ 1

0
tψ(t)dt > 0. Then we have∫ 1

0

ψ(t)v(t)dt ≥ v(1)%(ψ). (2.8)

Proof. By the concavity of v and the nonnegativity of ψ, we have∫ 1

0

ψ(t)v(t)dt =
∫ 1

0

ψ(t)v(t · 1 + (1− t) · 0)dt ≥ v(1)
∫ 1

0

tψ(t)dt = v(1)%(ψ).

This completes the proof. �

Denote

P0 := {u ∈ P : u is concave on [0, 1], u(0) = u′(1) = 0}.

Lemma 2.2. Let ξi > 0, ηi ≥ 0, ϕ(ξi,ηi)(i = 1, 2, 3) be defined by (2.5). Define

β(ξ1, η1, ξ2, η2, ξ3, η3) := sup
u∈P0\{0}

∫ 1

0
(ξ1u(t) + 2η1u′(t))ϕξ2,η2(t)dt∫ 1

0
(ξ3u(t) + 2η3u′(t))ϕξ3,η3(t)dt

.

Then 0 < β(ξ1, η1, ξ2, η2, ξ3, η3) <∞.
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Proof. If u ∈ P0, then by Lemma 2.1, we have∫ 1

0

(ξ3u(t) + 2η3u′(t))ϕξ3,η3(t)dt

≥
∫ 1

0

ξ3u(t)ϕξ3,η3(t)dt = ξ3

∫ 1

0

u(t)ϕξ3,η3(t)dt

≥ u(1)ξ3%(ϕξ3,η3) = ξ3‖u‖0%(ϕξ3,η3)

(2.9)

and ∫ 1

0

(ξ1u(t) + 2η1u′(t))ϕξ2,η2(t)dt

= ξ1

∫ 1

0

u(t)ϕξ2,η2(t)dt+ 2η1
∫ 1

0

u′(t)ϕξ2,η2(t)dt

≤ ξ1‖ϕξ2,η2‖0
∫ 1

0

u(t)dt+ 2η1‖ϕξ2,η2‖0
∫ 1

0

u′(t)dt

≤ ξ1‖ϕξ2,η2‖0‖u‖0 + 2η1‖ϕξ2,η2‖0u(1)

= (ξ1 + 2η1)‖ϕξ2,η2‖0‖u‖0.

(2.10)

Combining (2.9) and (2.10), we obtain

β(ξ1, η1, ξ2, η2, ξ3, η3) ≤
(ξ1 + 2η1)‖ϕξ2,η2‖0

ξ3%(ϕξ3,η3)
<∞.

This completes the proof. �

Lemma 2.3. If u ∈ C2[0, 1], u(0) = u′(1) = 0, ξ > 0, η ≥ 0, then∫ 1

0

−u′′(t)ϕξ,η(t)dt = λ(ξ, η)
∫ 1

0

(ξu(t) + 2ηu′(t))ϕξ,η(t)dt, (2.11)

where ϕξ,η and λ(ξ, η) are defined by (2.5) and (2.6) respectively.

Proof. We just prove (2.11) in the case ξ > η > 0; the remaining cases can be
proved in the same way. Let

a := ηµ(ξ, η), b :=
√
ξµ(ξ, η)− η2µ2(ξ, η).

Then ϕξ,η(t) = ξa
ηbe

at sin bt, and

a2 + b2 = ξµ(ξ, η), a sin b− b cos b = 0. (2.12)

Integrate by parts over [0, 1] and use (2.12) to obtain∫ 1

0

−u′′(t)ϕξ,η(t)dt

=
ξa

ηb

∫ 1

0

−u′′(t)eat sin btdt

=
ξa

ηb

∫ 1

0

u′(t)eat(a sin bt+ b cos bt)dt

= µ(ξ, η)
∫ 1

0

2ηu′(t)ϕξ,η(t)dt+
ξa

ηb

∫ 1

0

u′(t)eat(b cos bt− a sin bt)dt

= µ(ξ, η)
∫ 1

0

(ξu(t) + 2ηu′(t))ϕξ,η(t)dt.

(2.13)
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This completes the proof. �

Lemma 2.4 ([3]). Let E be a real Banach space and P a cone on E. Suppose that
Ω ⊂ E is a bounded open set and that T : Ω

⋂
P → P is a completely continuous

operator. If there exists w0 ∈ P\{0} such that

w − Tw 6= λw0,∀λ ≥ 0, ω ∈ ∂Ω ∩ P,
then i(T,Ω

⋂
P, P ) = 0, where i indicates the fixed point index on P .

Lemma 2.5 ([3]). Let E be a real Banach space and P a cone on E. Suppose that
Ω ⊂ E is a bounded open set with 0 ∈ Ω and that T : Ω ∩ P → P is a completely
continuous operator. If

w − λTw 6= 0,∀λ ∈ [0, 1], w ∈ ∂Ω ∩ P,
then i(T,Ω ∩ P, P ) = 1.

Lemma 2.6 ([19, Lemma 2.4]). If p is concave on [d,∞), with limy→∞ p(y)/y ≥ 0,
then p is increasing on [d,∞) and

p(y + z − d) ≤ p(y) + p(z)− p(d) (2.14)

for all y, z ∈ [d,∞).

3. Existence of positive solutions for (1.1)

Definition A real matrix B is said to be nonnegative if all elements of B are
nonnegative.
Definition (see [1, p.112]) A real square matrix M = (mij)2×2 is called R2

+-
monotone, if for any column vector x ∈ R2, Mx ∈ R2

+ ⇒ x ∈ R2
+.

For simplicity, we denote by x := (x1, x2, x3, x4) ∈ R4
+ and Iρ := [0, ρ] for ρ > 0.

Now we list our hypotheses on f and g.
(H1) f, g ∈ C([0, 1]× R4

+,R+).
(H2) There exist p ∈ C(R+,R+) and q ∈ C(R+,R+) such that: (1) p is concave;

(2) There are two constants c > 0 and µ1 > 1 such that

f(t, x) ≥ p(x3)− c, g(t, x) ≥ q(x1)− c, ∀(t, x) ∈ [0, 1]× R4
+,

and

p(q(t)) ≥ π4µ1

16
t− c, ∀t ∈ R+.

(H3) For every N > 0, there exist two functions ΦN ,ΨN ∈ C(R+,R+) such that

f(t, x) ≤ ΦN (x2 + x4), g(t, x) ≤ ΨN (x2 + x4)

for all x ∈ IN × R+ × IN × R+, t ∈ [0, 1], and∫ ∞

0

τdτ

ΦN (τ) + ΨN (τ) + δ
= ∞

for all δ > 0.
(H4) There are constants ai > 0, bi ≥ 0, ci > 0, di ≥ 0 (i = 1, 2) and r > 0 such

that (
f(t, x)
g(t, x)

)
≤
(
a1 2b1 c1 2d1

a2 2b2 c2 2d2

)
x1

x2

x3

x4
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for all (t, x) ∈ [0, 1]× I4
r and the matrix

B1 :=
(

λ(a1, b1)− 1, −β(c1, d1, a1, b1, c2, d2)
−β(a2, b2, c2, d2, a1, b1), λ(c2, d2)− 1

)
is an R2

+-monotone matrix, where the entries β(c1, d1, a1, b1, c2, d2) and
β(a2, b2, c2, d2, a1, b1) are defined as in Lemma 2.2.

(H5) There exist p̃ ∈ C(R+,R+) and q̃ ∈ C(R+,R+) such that: (1) p̃ is concave,
p̃(0) = q̃(0) = 0; (2) There are two constants r2 > 0 and µ2 > 1 such that

f(t, x) ≥ p̃(x3), g(t, x) ≥ q̃(x1),∀(t, x) ∈ [0, 1]× I4
r2
,

p̃(q̃(t)) ≥ π4µ2

16
t,∀t ∈ [0, r2]

(H6) There are nonnegative constants ai > 0, bi ≥ 0, ci > 0, di ≥ 0 (i = 3, 4)
and c > 0 such that

(
f(t, x)
g(t, x)

)
≤
(
a3 2b3 c3 2d3

a4 2b4 c4 2d4

)
x1

x2

x3

x4

+
(
c
c

)

for all (t, x) ∈ [0, 1]× R4
+ and the matrix

B2 :=
(

λ(a3, b3)− 1, −β(c3, d3, a3, b3, c4, d4)
−β(a4, b4, c4, d4, a3, b3), λ(c4, d4)− 1

)
is an R2

+-monotone matrix, where the entries β(c3, d3, a3, b3, c4, d4) and
β(a4, b4, c4, d4, a3, b3) are defined as in Lemma 2.2.

(H7) f(t, x) and g(t, x) are increasing in x ∈ R4
+, and there is a constant ω > 0

such that∫ 1

0

f(s, ω, ω, ω, ω)ds < ω,

∫ 1

0

g(s, ω, ω, ω, ω)ds < ω.

Remark 3.1 ([1, p.113]). A real square matrix M is R2
+-monotone if and only if

M is nonsingular and M−1 is nonnegative.

Remark 3.2. Let lij(i, j = 1, 2) be four nonnegative constants. Then it is easy to

see that the matrix D :=
(
l11 − 1 −l12
−l21 l22 − 1

)
is an R2

+-monotone matrix if and only

if l11 > 1, l22 > 1,detD = (l11 − 1)(l22 − 1)− l12l21 > 0.

Remark 3.3. f(t, x) is said to be increasing in x if

f(t, x) ≤ f(t, y)

holds for every pair x, y ∈ R4
+ with x ≤ y for all t ∈ [0, 1], where the partial ordering

≤ in R4
+ is understood componentwise.

We adopt the convention in the sequel that ĉ1, ĉ2, . . . stand for different positive
constants and Ωρ := {v ∈ E : ‖v‖ < ρ} for ρ > 0.

Theorem 3.4. If (H1)–(H4) hold, then (1.1) has at least one positive solution.
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Proof. By (H2), we obtain

A1(u, v)(t) ≥
∫ 1

0

k(t, s)p(v(s))ds− ĉ1, A2(u, v)(t) ≥
∫ 1

0

k(t, s)q(u(s))ds− ĉ1

(3.1)
for all (u, v) ∈ P 2, t ∈ [0, 1]. We claim that the set

M1 := {(u, v) ∈ P 2 : (u, v) = A(u, v) + λ(σ, σ), λ ≥ 0}
is bounded, where σ(t) := te−t. Indeed, if (u0, v0) ∈M1, then there exist a constant
λ0 ≥ 0 such that (u0, v0) = A(u0, v0) + λ0(σ, σ), which can be written in the form

u0(t) =
∫ 1

0

k(t, s)f(s, u0(s), u′0(s), v0(s), v
′
0(s))ds+ λ0σ(t),

v0(t) =
∫ 1

0

k(t, s)g(s, u0(s), u′0(s), v0(s), v
′
0(s))ds+ λ0σ(t).

By (H2) and (3.1), we have

u0(t) ≥
∫ 1

0

k(t, s)p(v0(s))ds− ĉ1, v0(t) ≥
∫ 1

0

k(t, s)q(u0(s))ds− ĉ1 (3.2)

for all t ∈ [0, 1]. The nonnegativity and concavity of p imply limy→∞ p(y)/y ≥ 0.
We also note max(t,s)∈[0,1]×[0,1] k(t, s) = 1. Now Lemma 2.6 and Jensen’s inequality
imply

p(v0(t)) ≥ p(v0(t) + ĉ1)− p(ĉ1) ≥
∫ 1

0

k(t, s)p(q(u0(s)))ds− p(ĉ1). (3.3)

This, together with (3.2) and (H2), implies

u0(t) ≥
∫ 1

0

k(t, s)
[ ∫ 1

0

k(s, τ)p(q(u0(τ)))dτ − p(ĉ1)
]
ds− ĉ1

≥
∫ 1

0

∫ 1

0

k(t, s)k(s, τ)p(q(u0(τ))) ds dτ − ĉ2

≥
∫ 1

0

∫ 1

0

k(t, s)k(s, τ)
[π4µ1

16
u0(τ)− c

]
ds dτ − ĉ2

≥ π4µ1

16

∫ 1

0

∫ 1

0

k(t, s)k(s, τ)u0(τ) ds dτ − ĉ3.

(3.4)

Multiply both sides of the last inequality by ϕ(t) := sin(πt/2) and integrate over
[0, 1] and use (2.1) twice to obtain∫ 1

0

ϕ(t)u0(t)dt ≥
π4µ1

16

∫ 1

0

∫ 1

0

∫ 1

0

ϕ(t)k(t, s)k(s, τ)u0(τ)dt ds dτ −
2ĉ3
π

= µ1

∫ 1

0

ϕ(t)u0(t)dt−
2ĉ3
π
,

(3.5)

so that ∫ 1

0

ϕ(t)u0(t)dt ≤
2ĉ3

π(µ1 − 1)
. (3.6)

By Lemma 2.1, we have

‖u0‖0 = u0(1) ≤ 2ĉ3
π%(ϕ)(µ1 − 1)

=
ĉ3π

2(µ1 − 1)
. (3.7)
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Multiply the first inequality of (3.2) by ϕ(t), integrate over [0, 1] and use (2.1) to
obtain ∫ 1

0

u0(t)ϕ(t)dt ≥ 4
π2

∫ 1

0

p(v0(t))ϕ(t)dt− 2
π
ĉ1.

This, along with (3.6), implies∫ 1

0

p(v0(t))ϕ(t)dt ≤ π2

4

(2ĉ1
π

+
∫ 1

0

u0(t)ϕ(t)dt
)
≤ ĉ1π

2
+

ĉ3π

2(µ1 − 1)
. (3.8)

By Lemma 2.1, we have

‖v0‖0 = v0(1) ≤ 1
%(ϕ)

∫ 1

0

v0(t)ϕ(t)dt

=
‖v0‖0

%(ϕ)p(‖v0‖0)

∫ 1

0

ϕ(t)
v0(t)
‖v0‖0

p(‖v0‖0)dt

≤ ‖v0‖0
%(ϕ)p(‖v0‖0)

∫ 1

0

ϕ(t)p(v0(t))dt,

(3.9)

so that

p(‖v0‖0) ≤
1

%(ϕ)

∫ 1

0

ϕ(t)p(v0(t))dt ≤
ĉ1π

3

8
+

ĉ3π
4

16(µ1 − 1)
.

(H2) implies that p is strictly increasing and limx→∞ p(x) = ∞ (see Lemma 2.6).
Consequently, there exists ĉ4 > 0 such that

‖v0‖0 ≤ ĉ4.

Let N := max{ bc3π
2(µ1−1) , ĉ4}. Then

‖u‖0 ≤ N, ‖v‖0 ≤ N, ∀(u, v) ∈M1. (3.10)

This establishes the a priori bound of M1 for ‖(u, v)‖0. Now it remains to derive
the a priori bound of M1 for ‖(u′, v′)‖0. To this end, we let

Λ := {µ ≥ 0 : there exists (u, v) ∈ P 2 such that (u, v) = A(u, v) + µ(σ, σ)}.
Now (3.10) imply that µ0 := supΛ < ∞. By (H3), there are two functions
ΦN ,ΨN ∈ C(R+,R+) such that

f(t, u(t), u′(t), v(t), v′(t)) ≤ ΦN (u′(t) + v′(t)),

g(t, u(t), u′(t), v(t), v′(t)) ≤ ΨN (u′(t) + v′(t))

for all (u, v) ∈ M1, t ∈ [0, 1]. Hence, for all (u, v) ∈ M1 and for some µ ≥ 0, we
have

−u′′(t) = f(t, u(t), u′(t), v(t), v′(t)) + µ(2− t)e−t

≤ ΦN (u′(t) + v′(t)) + µ(2− t)e−t

≤ ΦN (u′(t) + v′(t)) + 2µ0,

−v′′(t) = g(t, u(t), u′(t), v(t), v′(t)) + µ(2− t)e−t

≤ ΨN (u′(t) + v′(t)) + µ(2− t)e−t

≤ ΨN (u′(t) + v′(t)) + 2µ0,

so that

−(u′′(t) + v′′(t))(u′(t) + v′(t)) ≤ (u′(t) + v′(t))(ΦN (u′(t) + v′(t))
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+ ΨN (u′(t) + v′(t)) + 4µ0).

This implies∫ u′(0)+v′(0)

0

τdτ

ΦN (τ) + ΨN (τ) + 4µ0
≤
∫ 1

0

(u′(t) + v′(t))dt = u(1) + v(1) ≤ 2N

for all (u, v) ∈M1. By (H3) again, there exists a constant N1 > 0 such that

‖u′ + v′‖0 = u′(0) + v′(0) ≤ N1, ∀(u, v) ∈M1.

This establishes the a priori bound of M1 for ‖(u′, v′)‖0 and, in turn, implies that
M1 is bounded(notice that we have achieved the a priori bound of M1 for ‖(u, v)‖0
in (3.10)). Taking R > max{sup{‖(u, v)‖ : (u, v) ∈M1}, r}, we have

(u, v) 6= A(u, v) + λ(σ, σ), ∀(u, v) ∈ ∂ΩR ∩ P 2, λ ≥ 0.

Now Lemma 2.4 yields
i(A,ΩR ∩ P 2, P 2) = 0. (3.11)

Let
M2 := {(u, v) ∈ Ωr ∩ P 2 : (u, v) = λA(u, v), λ ∈ [0, 1]}.

Now we want to prove that M2 = {0}. Indeed, if (u, v) ∈ M2, then (u, v) ∈ P 2
0

and (u, v) = λA(u, v) for some λ ∈ [0, 1], written componentwise as

u(t) = λ

∫ 1

0

k(t, s)f(s, u(s), u′(s), v(s), v′(s))ds,

v(t) = λ

∫ 1

0

k(t, s)g(s, u(s), u′(s), v(s), v′(s))ds,

which are equivalent to

−u′′(t) = λf(t, u(t), u′(t), v(t), v′(t)),−v′′(t) = λg(t, u(t), u′(t), v(t), v′(t)).

By (H4), we have

−u′′(t) ≤ a1u(t) + 2b1u′(t) + c1v(t) + 2d1v
′(t),

−v′′(t) ≤ a2u(t) + 2b2u′(t) + c2v(t) + 2d2v
′(t).

Multiply the last two inequalities by ϕa1,b1(t) and ϕc2,d2(t) respectively and inte-
grate over [0, 1] and use Lemmas 2.2 and 2.3 to obtain

λ(a1, b1)
∫ 1

0

(a1u(t) + 2b1u′(t))ϕa1,b1(t)dt

≤
∫ 1

0

(a1u(t) + 2b1u′(t))ϕa1,b1(t)dt+
∫ 1

0

(c1v(t) + 2d1v
′(t))ϕa1,b1(t)dt

≤
∫ 1

0

(a1u(t) + 2b1u′(t))ϕa1,b1(t)dt

+ β(c1, d1, a1, b1, c2, d2)
∫ 1

0

(c2v(t) + 2d2v
′(t))ϕc2,d2(t)dt,

λ(c2, d2)
∫ 1

0

(c2v(t) + 2d2v
′(t))ϕc2,d2(t)dt

≤
∫ 1

0

(a2u(t) + 2b2u′(t))ϕc2,d2(t)dt+
∫ 1

0

(c2v(t) + 2d2v
′(t))ϕc2,d2(t)dt
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≤ β(a2, b2, c2, d2, a1, b1)
∫ 1

0

(a1u(t) + 2b1u′(t))ϕa1,b1(t)dt

+
∫ 1

0

(c2v(t) + 2d2v
′(t))ϕc2,d2(t)dt,

which can be written in the form(
λ(a1, b1)− 1 −β(c1, d1, a1, b1, c2, d2)

−β(a2, b2, c2, d2, a1, b1) λ(c2, d2)− 1

)
·

(∫ 1

0
(a1u(t) + 2b1u′(t))ϕa1,b1(t)dt∫ 1

0
(c2v(t) + 2d2v

′(t))ϕc2,d2(t)dt

)

= B1

(∫ 1

0
(a1u(t) + 2b1u′(t))ϕa1,b1(t)dt∫ 1

0
(c2v(t) + 2d2v

′(t))ϕc2,d2(t)dt

)
≤
(

0
0

)
.

(H4) again implies(∫ 1

0
(a1u(t) + 2b1u′(t))ϕa1,b1(t)dt∫ 1

0
(c2v(t) + 2d2v

′(t))ϕc2,d2(t)dt

)
≤ B−1

1

(
0
0

)
=
(

0
0

)
.

Consequently,∫ 1

0

(a1u(t) + 2b1u′(t))ϕa1,b1(t)dt =
∫ 1

0

(c2v(t) + 2d2v
′(t))ϕc2,d2(t)dt = 0

and u = v = 0, whence M2 = {0}, as required. As a result of this, we have

(u, v) 6= λA(u, v), ∀(u, v) ∈ ∂Ωr ∩ P 2, λ ∈ [0, 1].

Now Lemma 2.5 yields
i(A,Ωr ∩ P 2, P 2) = 1.

This together with (3.11) implies

i(A, (ΩR\Ωr) ∩ P 2, P 2) = 0− 1 = −1.

Therefore, A has at least one fixed point (u, v) on (ΩR\Ωr)∩P 2 and thus (1.1) has
at least one positive solution. This completes the proof. �

Theorem 3.5. If (H1), (H5), (H6) hold, then (1.1) has at least one positive solu-
tion.

Proof. By (H5), for all (u, v) ∈ Ωr2 ∩ P 2, we have

A1(u, v)(t) ≥
∫ 1

0

k(t, s)p̃(v(s))ds, A2(u, v)(t) ≥
∫ 1

0

k(t, s)q̃(u(s))ds.

Let
M3 := {(u, v) ∈ Ωr2 ∩ P 2 : (u, v) = A(u, v) + λ(σ, σ), λ ≥ 0}.

Now we want to prove that M3 ⊂ {0}, where σ(t) := te−t. If (ũ, ṽ) ∈ M3, there
exists λ̃ ≥ 0 such that (ũ, ṽ) = A(ũ, ṽ) + λ̃(σ, σ), which implies

ũ(t) ≥
∫ 1

0

k(t, s)p̃(ṽ(s))ds, ṽ(t) ≥
∫ 1

0

k(t, s)q̃(ũ(s))ds (3.12)

Note max(t,s)∈[0,1]×[0,1] k(t, s) = 1. By (H5) and Jensen’s inequality, we have

ũ(t) ≥
∫ 1

0

k(t, s)p̃(ṽ(s))ds
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≥
∫ 1

0

k(t, s)p̃(
∫ 1

0

k(s, τ)q̃(ũ(τ))dτ)ds

≥
∫ 1

0

∫ 1

0

k(t, s)k(s, τ)p̃(q̃(ũ(τ)))dτds

≥
∫ 1

0

∫ 1

0

k(t, s)k(s, τ)p̃(q̃(ũ(τ))) ds dτ

≥ π4µ2

16

∫ 1

0

∫ 1

0

k(t, s)k(s, τ)ũ(τ) ds dτ .

Multiply both sides of the above inequality by ϕ(t) := sin π
2 t and integrate over

[0, 1] and use (2.1) to obtain∫ 1

0

ũ(t)ϕ(t)dt ≥ µ2

∫ 1

0

ũ(t)ϕ(t)dt,

so that
∫ 1

0
ũ(t)ϕ(t)dt = 0, and whence ũ(t) ≡ 0. This, together with (3.12), yields

p̃(ṽ(t)) ≡ 0, and, in particular,

p̃(‖ṽ‖0) = p̃(ṽ(1)) = 0.

Note that (H5) implies that p̃ is strictly increasing on [0, ε] for sufficiently small
ε > 0 (see Lemma 2.6) and thus ṽ(1) = 0. Hence ũ = ṽ = 0, and M3 ⊂ {0}, as
required. As a result of this, we have

(u, v) 6= A(u, v) + λ(ϕ,ϕ),∀(u, v) ∈ ∂Ωr2 ∩ P 2, λ ≥ 0.

Now Lemma 2.4 yields

i(A,Ωr2 ∩ P 2, P 2) = 0. (3.13)

Let

M4 := {(u, v) ∈ P 2 : (u, v) = λA(u, v), λ ∈ [0, 1]}.

We now assert that M4 is bounded. Indeed, if (u, v) ∈ M4, then (u, v) ∈ P 2
0 and

(u, v) = λA(u, v) for some λ ∈ [0, 1], which can be written componentwise as

u(t) = λ

∫ 1

0

k(t, s)f(s, u(s), u′(s), v(s), v′(s))ds,

v(t) = λ

∫ 1

0

k(t, s)g(s, u(s), u′(s), v(s), v′(s))ds.

Differentiate the last equations twice to obtain

−u′′(t) = λf(t, u(t), u′(t), v(t), v′(t)), −v′′(t) = λg(t, u(t), u′(t), v(t), v′(t)),

for t ∈ [0, 1]. By (H6), we have

−u′′(t) ≤ a3u(t) + 2b3u′(t) + c3v(t) + 2d3v
′(t) + c̃, (3.14)

−v′′(t) ≤ a4u(t) + 2b4u′(t) + c4v(t) + 2d4v
′(t) + c̃ (3.15)
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Multiply the last two inequalities by ϕa3,b3(t) and ϕc4,d4(t) respectively and inte-
grate over [0, 1], and use Lemmas 2.2 and 2.3 to obtain

λ(a3, b3)
∫ 1

0

(a3u(t) + 2b3u′(t))ϕa3,b3(t)dt

≤
∫ 1

0

(a3u(t) + 2b3u′(t))ϕa3,b3(t)dt+
∫ 1

0

(c3v(t) + 2d3v
′(t))ϕa3,b3(t)dt+ c̃

≤
∫ 1

0

(a3u(t) + 2b3u′(t))ϕa3,b3(t)dt

+ β(c3, d3, a3, b3, c4, d4)
∫ 1

0

(c4v(t) + 2d4v
′(t))ϕc4,d4(t)dt+ c̃,

and

λ(c4, d4)
∫ 1

0

(c4v(t) + 2d4v
′(t))ϕc4,d4(t)dt

≤
∫ 1

0

(a4u(t) + 2b4u′(t))ϕc4,d4(t)dt+
∫ 1

0

(c4v(t) + 2d4v
′(t))ϕc4,d4(t)dt+ c̃

≤ β(a4, b4, c4, d4, a3, b3)
∫ 1

0

(a3u(t) + 2b3u′(t))ϕa3,b3(t)dt

+
∫ 1

0

(c4v(t) + 2d4v
′(t))ϕc4,d4(t)dt+ c̃,

which can be written in the form(
λ(a3, b3)− 1 −β(c3, d3, a3, b3, c4, d4)

−β(a4, b4, c4, d4, a3, b3) λ(c4, d4)− 1

)
·

(∫ 1

0
(a3u(t) + 2b3u′(t))ϕa3,b3(t)dt∫ 1

0
(c4v(t) + 2d4v

′(t))ϕc4,d4(t)dt

)

= B2

(∫ 1

0
(a3u(t) + 2b3u′(t))ϕa3,b3(t)dt∫ 1

0
(c4v(t) + 2d4v

′(t))ϕc4,d4(t)dt

)
≤
(
c̃
c̃

)
.

(H6) again implies(∫ 1

0
(a3u(t) + 2b3u′(t))ϕa3,b3(t)dt∫ 1

0
(c4v(t) + 2d4v

′(t))ϕc4,d4(t)dt

)
≤ B−1

2

(
c̃
c̃

)
:=
(
c̃1
c̃2

)
.

Let c̃3 := max{c̃1, c̃2} > 0. Then we have∫ 1

0

(a3u(t) + 2b3u′(t))ϕa3,b3(t)dt ≤ c̃3,

∫ 1

0

(c4v(t) + 2d4v
′(t))ϕc4,d4(t)dt ≤ c̃3,

for all (u, v) ∈M4. By Lemma 2.1, we obtain

‖u‖0 = u(1) ≤ c̃3
a3%(ϕa3,b3)

, ‖v‖0 = v(1) ≤ c̃3
c4%(ϕc4,d4)

,

for all (u, v) ∈ M4. Let Ñ = max{ ec3
a3%(ϕa3,b3 ) ,

ec3
c4%(ϕc4,d4 )} > 0. Then by (3.14) and

(3.15), we have

−u′′(t) ≤ (a3 + c3)Ñ + 2b3u′(t) + 2d3v
′(t) + c̃,

−v′′(t) ≤ (a4 + c4)Ñ + 2b4u′(t) + 2d4v
′(t) + c̃,
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for all (u, v) ∈M4. Adding the above inequalities yields

−u′′(t)− v′′(t) ≤ (a3 + a4 + c3 + c4)Ñ + 2(b3 + b4)u′(t) + 2(d3 + d4)v′(t) + 2c̃.

Let
Ñ2 := (a3 + a4 + c3 + c4)Ñ + 2c̃, L̃ := 2(b3 + b4 + d3 + d4) + 1.

Noticing u′(1) = v′(1) = 0, we obtain

u′(t) + v′(t) ≤ Ñ2

L̃
(eeL−eLt − 1),

so that

‖u′ + v′‖0 = u′(0) + v′(0) ≤ Ñ2

L̃
(eeL − 1).

This proves the boundedness of M4, as asserted. Taking R > max{sup{‖(u, v)‖ :
(u, v) ∈M4}, r2}, we have

(u, v) 6= λA(u, v), ∀(u, v) ∈ ∂ΩR ∩ (P × P ), λ ∈ [0, 1].

Now Lemma 2.5 yields
i(A,ΩR ∩ P 2, P 2) = 1. (3.16)

Combining (3.13) and (3.16) gives

i(A, (ΩR\Ωr2) ∩ P 2, P 2) = 1.

Hence A has at least one fixed point on (ΩR\Ωr2)∩P 2. Thus (1.1) has at least one
positive solution. This completes the proof. �

Theorem 3.6. If (H1)–(H3), (H5), (H7) hold, then (1.1) has at least two positive
solutions.

Proof. By (H7), we have

f(t, x) ≤ f(t, ω, ω, ω, ω), g(t, x) ≤ g(t, ω, ω, ω, ω),

for all t ∈ [0, 1] and all x ∈ I4
ω. Consequently, we have for all (u, v) ∈ ∂Ωω ∩ P 2,

‖A1(u, v)‖0 = A1(u, v)(1) =
∫ 1

0

sf(s, u(s), u′(s), v(s), v′(s))ds

≤
∫ 1

0

f(s, u(s), u′(s), v(s), v′(s))ds

≤
∫ 1

0

f(s, ω, ω, ω, ω)ds

< ω = ‖(u, v)‖,

‖A2(u, v)‖0 = A2(u, v)(1) =
∫ 1

0

sg(s, u(s), u′(s), v(s), v′(s))ds

≤
∫ 1

0

g(s, u(s), u′(s), v(s), v′(s))ds

≤
∫ 1

0

g(s, ω, ω, ω, ω)ds

< ω = ‖(u, v)‖,
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‖(A1(u, v))′‖0 = (A1(u, v))′(0) =
∫ 1

0

f(s, u(s), u′(s), v(s), v′(s))ds

≤
∫ 1

0

f(s, ω, ω, ω, ω)ds

< ω = ‖(u, v)‖,

and

‖(A2(u, v))′‖0 = (A2(u, v))′(0) =
∫ 1

0

g(s, u(s), u′(s), v(s), v′(s))ds

≤
∫ 1

0

g(s, ω, ω, ω, ω)ds

< ω = ‖(u, v)‖.

The preceding inequalities imply

‖A(u, v)‖ = ‖(A1(u, v), A2(u, v))‖ < ω = ‖(u, v)‖;

thus
(u, v) 6= λA(u, v), ∀(u, v) ∈ ∂Ωω ∩ P 2, 0 ≤ λ ≤ 1.

Now Lemma 2.5 yields
i(A,Ωω ∩ P 2, P 2) = 1. (3.17)

By (H2), (H3) and (H5), we find that (3.11) and (3.13) hold. Note that we can
choose R > ω > r2 in (3.11) and (3.13) (see the proofs of Theorems 3.4 and 3.5).
Combining (3.11), (3.13) and (3.17), we obtain

i(A, (ΩR\Ωω) ∩ P 2, P 2) = 0− 1 = −1,

i(A, (Ωω\Ωr2) ∩ P 2, P 2) = 1− 0 = 1.

Therefore, A has at least two fixed points, with one on (ΩR\Ωω)∩P 2 and the other
on (Ωω\Ωr2) ∩ P 2. Hence (1.1) has at least two positive solutions. �

4. Examples

In this section we present four examples to illustrate our main results.

Example 4.1. Let (aij)2×4 be a positive matrix with 1 < αi ≤ 2(i = 1, 2) and

f(t, x) :=
( 4∑

j=1

a1jxj

)α1

, g(t, x) :=
( 4∑

j=1

a2jxj

)α2

, x ∈ R4
+, t ∈ [0, 1].

Then (H1)-(H4) holds with both f and g superlinear. By Theorem 3.4, Equaton
(1.1) has at least one positive solution. It suffices to verify (H2)-(H4).

(1) Let p(y) := y and q(y) := a21y
α2 . Then p is concave and p(q(y))/y →∞(y →

∞). It is easy to see that there exists c > 0 such that

f(t, x) ≥ p(x3)− c, g(t, x) ≥ q(x1)− c

for all x ∈ R4
+ and t ∈ [0, 1]. This implies that (H2) holds true.

(2) Assumption (H3) holds with

ΦN (t) :=
(
(a12 + a14)t+ 2N

)α1
, ΨN (t) :=

(
(a22 + a24)t+ 2N

)α2

for every N > 0.
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(3) Note that there is r > 0 such that

(
f(t, x)
g(t, x)

)
≤ 1

3

(
1 2 1 2
1 2 1 2

)
x1

x2

x3

x4


for all x ∈ I4

r , t ∈ [0, 1]. Let a := 1
3 . Then

λ(a, a) =
1
a

= 3, β(a, a, a, a, a, a) = 1.

Obviously, the matrix

B1 :=
(

λ(a, a)− 1 −β(a, a, a, a, a, a)
−β(a, a, a, a, a, a) λ(a, a)− 1

)
=
(

2 −1
−1 2

)
is R+

2 -monotone. Therefore (H4) holds with ai = bi = ci = di = a(i = 1, 2) and B1

as defined above.

Example 4.2. Let (bij)2×4 be a positive matrix with 0 < αi < 1(i = 3, 4) and

f(t, x) :=
( 4∑

j=1

b1jxj

)α3

, g(t, x) :=
( 4∑

j=1

b2jxj

)α4

, x ∈ R4
+, t ∈ [0, 1].

Now (H1), (H5) and (H6) hold with both f and g sublinear. By Theorem 3.5, (1.1)
has at least one positive solution.

Example 4.3. Let (cij)2×4 be a positive matrix and

f(t, x) :=

∑4
j=1 c1jx

5
3
j∑4

j=1 xj + 1
, g(t, x) :=

∑4
j=1 c2jx

3
j∑4

j=1 xj + 1
, x ∈ R4

+, t ∈ [0, 1].

Now (H1)–(H4) hold with f sublinear and g superlinear at ∞. By Theorem 3.4,
Equation (1.1) has at least one positive solution.

Example 4.4. Let (aij)2×4, (bij)2×4 be two positive matrices, with 1 < βi ≤ 2,
0 < γi < 1(i = 1, 2) and( 4∑

j=1

a1j

)β1

+
( 4∑

j=1

b1j

)γ1

< 1,
( 4∑

j=1

a2j

)β2

+
( 4∑

j=1

b2j

)γ2

< 1.

Let

f(t, x) :=
( 4∑

j=1

a1jxj

)β1

+
( 4∑

j=1

b1jxj

)γ1

,

g(t, x) :=
( 4∑

j=1

a2jxj

)β2

+
( 4∑

j=1

b2jxj

)γ2

for x ∈ R4
+, t ∈ [0, 1]. Now (H1)–(H3), (H5) and (H7) hold with both f and

g superlinear at ∞ and sublinear at 0. By Theorem 3.6, (1.1) has at least two
positive solutions.
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