Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 141, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BEHAVIOR OF THE MAXIMAL SOLUTION OF THE CAUCHY PROBLEM FOR SOME NONLINEAR PSEUDOPARABOLIC EQUATION AS $|x| \rightarrow \infty$

TATIANA KAVITOVA

Abstract

We prove a comparison principle for solutions of the Cauchy problem of the nonlinear pseudoparabolic equation $u_{t}=\Delta u_{t}+\Delta \varphi(u)+h(t, u)$ with nonnegative bounded initial data. We show stabilization of a maximal solution to a maximal solution of the Cauchy problem for the corresponding ordinary differential equation $\vartheta^{\prime}(t)=h(t, \vartheta)$ as $|x| \rightarrow \infty$ under certain conditions on an initial datum.

1. Introduction

In this article we consider the Cauchy problem for the pseudoparabolic equation

$$
\begin{equation*}
u_{t}=\Delta u_{t}+\Delta \varphi(u)+h(t, u), \quad x \in \mathbb{R}^{n}, t>0 \tag{1.1}
\end{equation*}
$$

subject to the initial condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}^{n} \tag{1.2}
\end{equation*}
$$

Put $R_{+}=(0,+\infty)$ and $\Pi_{T}=\mathbb{R}^{n} \times[0, T], n \geq 1, T>0$. Throughout this paper we suppose that the functions φ and h satisfy the following conditions:
$\varphi(p)$ is defined for $p \geq 0, h(t, p)$ is defined for $t \geq 0$ and $p \geq 0$, $\varphi(p) \in C^{2}\left(\bar{R}_{+}\right) \cap C^{3}\left(R_{+}\right), h(t, p) \in C_{\mathrm{loc}}^{0, \alpha}\left(\bar{R}_{+} \times \bar{R}_{+}\right) \cap C_{\mathrm{loc}}^{0,1+\alpha}\left(\bar{R}_{+} \times\right.$ $\left.R_{+}\right), 0<\alpha<1, h(t, 0)=0, t \in \bar{R}_{+}, \varphi(p)+h(t, p)$ does not decrease in p for all $t \in \bar{R}_{+}$.
Assume that one of the following conditions is satisfied:

$$
\begin{equation*}
h(t, p) \geq 0, \quad t \in \bar{R}_{+}, p \in \bar{R}_{+} \tag{1.4}
\end{equation*}
$$

or

$$
\begin{equation*}
h(t, p) \text { does not increase in } p \text { for all } t \in \bar{R}_{+} . \tag{1.5}
\end{equation*}
$$

Let the initial data have the following properties:

$$
\begin{gather*}
u_{0}(x) \in C^{2}\left(\mathbb{R}^{n}\right), \quad 0 \leq u_{0}(x) \leq M(M \geq 0), x \in \mathbb{R}^{n} \tag{1.6}\\
\lim _{|x| \rightarrow \infty} u_{0}(x)=M \tag{1.7}
\end{gather*}
$$

2000 Mathematics Subject Classification. 35B40, 35B51, 35K70.
Key words and phrases. Pseudoparabolic equation; comparison principle; stabilization.
© 2012 Texas State University - San Marcos.
Submitted March 22, 2012. Published August 20, 2012.

Equations $u_{t}=\Delta u_{t}+\Delta u^{p}+u^{q}$ and $u_{t}=\Delta u_{t}+\Delta\left(u^{l}+u^{p}\right)-u^{p}$, where $p, l \geq 2, q>$ 0 , are typical examples of equation (1.1) satisfying 1.3 under conditions 1.4 and (1.5) respectively.

If we suppose $u_{0}(x) \equiv M$ in (1.2) then a solution of the Cauchy problem for the corresponding ordinary differential equation

$$
\begin{equation*}
\vartheta^{\prime}(t)=h(t, \vartheta), \quad \vartheta(0)=M \tag{1.8}
\end{equation*}
$$

will be a solution of 1.1, 1.2 .
Remark 1.1. We note that problem (1.8) may have more than one solution. Indeed, we put $h(t, \vartheta)=\vartheta^{p}, 0<p<1$, and $M \equiv 0$ then problem 1.8) has the solutions $\vartheta_{1}(t) \equiv 0$ and $\vartheta_{2}(t)=(1-p)^{\frac{1}{1-p}} t^{\frac{1}{1-p}}$.
Definition 1.2. A nonnegative solution $\vartheta(t)$ of $\sqrt{1.8}$ is called maximal on $[0, T)$ if for any other nonnegative solution $f(t)$ of 1.8 the inequality $f(t) \leq \vartheta(t)$ is satisfied for $0 \leq t<T$.

We suppose that the maximal nonnegative solution $\vartheta(t)$ of 1.8$]$ exists on $\left[0, T_{0}\right)$, $T_{0} \leq+\infty$. Similarly we define the maximal solution of (1.1), 1.2).

Assume that 1.3 and 1.6 hold. Then there exists a nonnegative solution $u(x, t) \in C^{2,1}\left(\Pi_{T}\right)$ of (1.1), 1.2) (see [9]) satisfying for any $T<T_{0}$ the inequality

$$
0 \leq u(x, t) \leq \vartheta(t), \quad(x, t) \in \Pi_{T}
$$

The main result of this article is the following statement.
Theorem 1.3. Let (1.3), 1.6), 1.7) hold and $u(x, t), \vartheta(t)$ are maximal solutions of problems (1.1), 1.2) and (1.8) respectively. Suppose that either (1.4) or (1.5) is satisfied in addition. Then we have

$$
u(x, t) \rightarrow \vartheta(t) \quad \text { as }|x| \rightarrow \infty
$$

uniformly in $[0, T]\left(T<T_{0}\right)$.
Results similar to Theorem 1.3 were obtained in 5, 7 and [2, 3, 8, 11, 12 , 13 respectively in studying of an asymptotic behavior of solutions of parabolic equations, systems and blow-up solutions of nonlinear heat equations and reactiondiffusion systems at infinity. Pseudoparabolic equations has been analyzed by many authors (see [14] and the references therein).

Our main research tool is a comparison principle.
Theorem 1.4. Let 1.3) hold and $u_{1}(x, t), u_{2}(x, t)$ be nonnegative bounded solutions of 1.1 in Π_{T} and one of them is not less some positive constant. Suppose that the corresponding initial data $u_{01}(x)$ and $u_{02}(x)$ satisfying (1.6) and the inequality

$$
u_{01}(x) \leq u_{02}(x), \quad x \in \mathbb{R}^{n}
$$

Then

$$
u_{1}(x, t) \leq u_{2}(x, t), \quad(x, t) \in \Pi_{T}
$$

For problem (1.1), 1.2 with $\varphi(u)=u^{2}$ and $h(t, u)=0$ the comparison principle was established in 11. For an initial-boundary value problem for equation 1.1) with $h(t, u)=h(u)$ it was proved in [10].

This paper is organized as follows. In the next section we prove Theorem 1.4 Some auxiliary statements used for description a behavior of the maximal solution of (1.1), 1.2 at infinity are established in Section 3. Theorem 1.3 is proved in Section 4.

2. Proof of Theorem 1.4

Without loss of generality we may assume that $u_{2}(x, t) \geq \varepsilon, \varepsilon>0,(x, t) \in \Pi_{T}$. Obviously, the function $w(x, t)=u_{2}(x, t)-u_{1}(x, t)$ satisfies the problem

$$
\begin{gather*}
w_{t}=\Delta w_{t}+\Delta(a w)+b w, \quad(x, t) \in \mathbb{R}^{n} \times(0, T) \tag{2.1}\\
w(x, 0)=u_{02}(x)-u_{01}(x), \quad x \in \mathbb{R}^{n} \tag{2.2}
\end{gather*}
$$

Here

$$
a(x, t)=\int_{0}^{1} \varphi^{\prime}(z(\theta)) d \theta, \quad b(x, t)=\int_{0}^{1} h_{z(\theta)}(t, z(\theta)) d \theta
$$

where $z(\theta)=\theta u_{2}(x, t)+(1-\theta) u_{1}(x, t)$. By 1.3) the functions $a(x, t)$ and $b(x, t)$ have the following properties:

$$
\begin{gather*}
a(x, t) \in C^{2,0}\left(\Pi_{T}\right), \quad b(x, t) \in C_{\mathrm{loc}}^{\alpha, 0}\left(\Pi_{T}\right) \tag{2.3}\\
a(x, t)+b(x, t) \geq 0, \quad|a(x, t)|+|b(x, t)| \leq m, \quad(x, t) \in \Pi_{T}
\end{gather*}
$$

where m is some positive constant.
Lemma 2.1. Let $a(x, t)$ and $b(x, t)$ be functions such that conditions (2.3) are satisfied. Then a solution of $(2.1, \sqrt{2.2}$ is unique.

The proof of the above lemma is analogous to the proof the same statement for problem (1.1), 1.2] with $h(t, p)=0$ in (6].

Let Q be a bounded domain in \mathbb{R}^{n} for $n \geq 1$ with a smooth boundary ∂Q. We denote $Q_{T}=Q \times(0, T)$ and $S_{T}=\partial Q \times(0, T)$. Let us consider the equation

$$
\begin{equation*}
u_{t}=\Phi(x, t, u)+F(u(\cdot, t)), \quad(x, t) \in Q_{T} \tag{2.4}
\end{equation*}
$$

subject to the initial data

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad x \in Q \tag{2.5}
\end{equation*}
$$

where the function $\Phi(x, t, \xi)$ is defined on the set $\bar{Q} \times[0, T] \times R$ and $F(u(\cdot, t))$ is a nonlinear integral operator.
Definition 2.2. We shall say that a function $\sigma^{+}(x, t) \in C^{0,1}\left(Q_{T}\right),-\infty<m_{T} \leq$ $\sigma^{+}(x, t) \leq M_{T}<+\infty,(x, t) \in Q_{T}$, is a supersolution of (2.4), (2.5) in Q_{T} if

$$
\begin{gather*}
\sigma_{t}^{+}(x, t) \geq \Phi\left(x, t, \sigma^{+}\right)+F\left(\sigma^{+}(\cdot, t)\right), \quad(x, t) \in Q_{T} \\
\sigma^{+}(x, 0) \geq u_{0}(x), x \in \bar{Q} \tag{2.6}
\end{gather*}
$$

where m_{T}, M_{T} are constants depending on T.
Analogously we say that $\sigma^{-}(x, t) \in C^{0,1}\left(Q_{T}\right), m_{T} \leq \sigma^{-}(x, t) \leq M_{T},(x, t) \in Q_{T}$, is a subsolution of 2.4, 2.5 in Q_{T} if it satisfies inequalities 2.6) in the reverse order. Under the assumption $\sigma^{-}(x, t) \leq \sigma^{+}(x, t),(x, t) \in Q_{T}$, we introduce the set $O\left(\sigma^{-}, \sigma^{+}\right)=\left\{u \in C\left(\bar{Q}_{T}\right) \mid \sigma^{-} \leq u \leq \sigma^{+},(x, t) \in Q_{T}\right\}$ and make the following assumptions on data of $(2.4), 2.5)$:

There exist a supersolution $\sigma^{+}(x, t)$ and a subsolution $\sigma^{-}(x, t)$ of (2.4), 2.5 in Q_{T} such that $\sigma^{-}(x, t) \leq \sigma^{+}(x, t),(x, t) \in Q_{T}$.
$\Phi(x, t, \xi)$ and $\Phi_{\xi}(x, t, \xi)$ are continuous functions on the set $\bar{Q} \times[0, T] \times R$.
The operator $F(u(\cdot, t))$, on $C\left(\bar{Q}_{T}\right)$ into $C\left(\bar{Q}_{T}\right)$, is completely continuous and monotone on $O\left(\sigma^{-}, \sigma^{+}\right)$.

$$
\begin{equation*}
u_{0}(x) \in C(\bar{Q}) \tag{2.9}
\end{equation*}
$$

The following existence theorem has been proved in [1].

Theorem 2.3. Assume that 2.7)-2.10 hold. Then there exists a solution of problem 2.4, 2.5) in Q_{T} such that

$$
\sigma^{-}(x, t) \leq u(x, t) \leq \sigma^{+}(x, t), \quad(x, t) \in Q_{T}
$$

Let $G_{n}(x, \xi)$ be the Green function of the boundary value problem for the operator $L=I-\Delta$ in Q. It is known that

$$
G_{n}(x, \xi)=\mathcal{E}_{n}(x-\xi)+g_{n}(x, \xi), \quad(x, \xi) \in Q \times Q
$$

where $\mathcal{E}_{n}(x)$ is the fundamental solution of the operator L of \mathbb{R}^{n} tending to zero as $|x| \rightarrow \infty$ and for any fixed $\xi \in Q$ the function $g_{n} \in C^{2}(Q) \cap C(\bar{Q})$ satisfies the equation

$$
L_{x} g_{n}=0, \quad x \in Q
$$

and the boundary condition

$$
\left.g_{n}(x, \xi)\right|_{x \in \partial Q}=-\left.\mathcal{E}_{n}(x-\xi)\right|_{x \in \partial Q}, \quad \xi \in Q
$$

It is well known that

$$
\begin{equation*}
\mathcal{E}_{n}(x)=c_{n}|x|^{(2-n) / 2} K_{(2-n) / 2}(|x|), \tag{2.11}
\end{equation*}
$$

where $K_{\mu}(|x|)$ is the μ th order Macdonald function and c_{n} is the normalizing multiplier such that $\int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x) d x=1$.

We note some properties of the Green function (see [4):

$$
\begin{gather*}
0<G_{n}(x, \xi)<\mathcal{E}_{n}(x-\xi), \quad(x, \xi) \in Q \times Q \\
\frac{\partial G_{n}(x, \xi)}{\partial \nu_{\xi}} \leq 0, \quad \xi \in \partial Q, x \in Q \\
\int_{Q} G_{n}(x, \xi) d \xi=1+\int_{\partial Q} \frac{\partial G_{n}(x, \xi)}{\partial \nu_{\xi}} d S, \quad x \in Q \tag{2.12}\\
\min _{y \in \partial Q}\left(-\mathcal{E}_{n}(x-y)\right)<g_{n}(x, \xi)<0, \quad(x, \xi) \in Q \times Q
\end{gather*}
$$

where ν_{ξ} is the outward normal derivative on ∂Q in variables of ξ.
We consider the integro-differential equation, in Q_{T},

$$
\begin{equation*}
w_{t}(x, t)=-a(x, t) w(x, t)+\int_{Q} G_{n}(x, \xi)[a(\xi, t)+b(\xi, t)] w(\xi, t) d \xi \tag{2.13}
\end{equation*}
$$

subject to the initial condition, in Q,

$$
\begin{equation*}
w(x, 0)=u_{02}(x)-u_{01}(x) \tag{2.14}
\end{equation*}
$$

Let $u_{02}(x)-u_{01}(x) \leq M_{1}, x \in \mathbb{R}^{n}, M_{1} \in \bar{R}_{+}$.
Lemma 2.4. Let conditions 2.3) hold. Then there exists a solution of (2.13), (2.14) in Q_{T} such that

$$
\begin{equation*}
0 \leq w(x, t) \leq M_{1} e^{2 m t}, \quad(x, t) \in Q_{T} \tag{2.15}
\end{equation*}
$$

Proof. We use the following functions

$$
\Phi(x, t, w)=-a(x, t) w(x, t), \quad F(w(\cdot, t))=\int_{Q} G_{n}(x, \xi)[a(\xi, t)+b(\xi, t)] w(\xi, t) d \xi
$$

and show that the conditions of Theorem 2.3 are valid. It is obvious, that $\sigma^{-}(x, t) \equiv$ 0 is the subsolution of 2.13), 2.14. We shall show that $\sigma^{+}(x, t)=M_{1} e^{2 m t}$ is the supersolution of 2.13 , (2.14). Indeed,

$$
\begin{aligned}
\Phi\left(x, t, \sigma^{+}\right)+F\left(\sigma^{+}\right)= & -a(x, t) M_{1} e^{2 m t}+\int_{Q} G_{n}(x, \xi)[a(\xi, t)+b(\xi, t)] M_{1} e^{2 m t} d \xi \\
\leq & m M_{1} e^{2 m t}+m M_{1} e^{2 m t} \leq 2 m M_{1} e^{2 m t} \\
= & \sigma_{t}^{+}(x, t),(x, t) \in Q_{T} \\
& \sigma^{+}(x, 0)=M_{1} \geq w_{0}(x), \quad x \in \bar{Q}
\end{aligned}
$$

Condition 2.8) of Theorem 2.3 is satisfied by virtue of 2.3. As $a(x, t)+b(x, t) \geq 0$ then the operator F is monotone on $O\left(\sigma^{-}, \sigma^{+}\right)$. We shall prove that the operator F is completely continuous on $O\left(\sigma^{-}, \sigma^{+}\right)$. Let $w \in O\left(\sigma^{-}, \sigma^{+}\right)$then

$$
|F(w(\cdot, t))|=\left|\int_{Q} G_{n}(x, \xi)[a(\xi, t)+b(\xi, t)] w(\xi, t) d \xi\right| \leq m M_{1} e^{2 m T}
$$

Hence, the operator F is bounded. Suppose $x, y \in Q$ and $w \in O\left(\sigma^{-}, \sigma^{+}\right)$. Then

$$
\begin{aligned}
|F(w(x, t))-F(w(y, t))| & =\left|\int_{Q}\left[G_{n}(x, \xi)-G_{n}(y, \xi)\right](a(\xi, t)+b(\xi, t)) w(\xi, t) d \xi\right| \\
& \leq m M_{1} e^{2 m T} \int_{Q}\left|G_{n}(x, \xi)-G_{n}(y, \xi)\right| d \xi
\end{aligned}
$$

that implies the validity of 2.9 . Relations (1.6) for the initial data $u_{01}(x)$ and $u_{02}(x)$ are valid then all conditions of Theorem 2.3 are satisfied. Hence, there exists a solution $w(x, t)$ of (2.13), (2.14) in Q_{T} for which inequality 2.15 holds.

Lemma 2.5. If conditions (2.3) are satisfied then there exists a nonnegative solution of (2.1), 2.2) in Π_{T}.

Proof. Let $G_{n}(x, \xi, l)$ be the Green function of the boundary value problem for the operator $L=I-\Delta$ in $Q_{l}=\left\{x \in \mathbb{R}^{n}:|x|<l\right\}, l>0$. Let the functions of the sequence $w_{l}(x, t)(l=1,2, \ldots)$ satisfy equation 2.13$)$ in $Q_{l, T}=Q_{l} \times(0, T)$ and initial data 2.14 in Q_{l}. According to Lemma 2.4 there exists a solution $w_{l}(x, t)$ of 2.13, 2.14 in $Q_{l, T}$ such that

$$
\begin{equation*}
0 \leq w_{l}(x, t) \leq M_{1} e^{2 m t}, \quad(x, t) \in Q_{l, T} \tag{2.16}
\end{equation*}
$$

Differentiating 2.13 with respect to $x_{i}(i=1, \ldots, n)$ we obtain

$$
\begin{aligned}
w_{l t x_{i}}(x, t)= & -a_{x_{i}}(x, t) w_{l}(x, t)-a(x, t) w_{l x_{i}}(x, t) \\
& +\int_{Q_{l}} G_{n x_{i}}(x, \xi, l)[a(\xi, t)+b(\xi, t)] w_{l}(\xi, t) d \xi, \quad(x, t) \in Q_{l, T}
\end{aligned}
$$

from which we find that

$$
\begin{equation*}
w_{l x_{i}}(x, t)=e^{-\int_{0}^{t} a(x, \tau) d \tau}\left[u_{02}(x)-u_{01}(x)+\int_{0}^{t} p_{l}(x, \tau) e^{\int_{0}^{\tau} a\left(x, \tau_{1}\right) d \tau_{1}} d \tau\right] \tag{2.17}
\end{equation*}
$$

where

$$
p_{l}(x, t)=-a_{x_{i}}(x, t) w_{l}(x, t)+\int_{Q_{l}} G_{n x_{i}}(x, \xi, l)[a(\xi, t)+b(\xi, t)] w_{l}(\xi, t) d \xi
$$

It follows from $2.12,2.23,2.16$ and 2.17 that absolute values of functions $w_{l}, w_{l t}, w_{l x_{i}}(i=1,2, \ldots, n)$ are uniformly bounded with respect to l on each
set $\bar{Q}_{k, T}$, where k is an arbitrary fixed natural number, $k<l$. According to the Arzela-Ascoli theorem the sequence $w_{l}(x, t)$ is compact in $\bar{Q}_{k, T}$. By applying diagonal process we can extract from the sequence $w_{l}(x, t)$ a subsequence $w_{l_{s}}(x, t)$ such that

$$
\begin{equation*}
w_{l_{s}}(x, t) \rightarrow w(x, t) \quad \text { uniformly in } \bar{Q}_{k, T} \tag{2.18}
\end{equation*}
$$

Without loss of generality we assume that (2.18) is valid for the sequence $w_{l}(x, t)$. Integrating equation 2.13 with respect to t we obtain

$$
\begin{align*}
w_{l}(x, t)= & u_{02}(x)-u_{01}(x)-\int_{0}^{t} a(x, \tau) w_{l}(x, \tau) d \tau \\
& +\int_{0}^{t} \int_{Q_{l}} G_{n}(x, \xi, l)[a(\xi, \tau)+b(\xi, \tau)] w_{l}(\xi, \tau) d \xi d \tau, \quad(x, t) \in Q_{l, T} \tag{2.19}
\end{align*}
$$

Let (x, t) be an arbitrary point of Π_{T} and let k be such that $(x, t) \in \bar{Q}_{k, T}, k<l$. By virtue of $(2.12), \sqrt{2.16}$ and (2.18) we obtain

$$
\begin{align*}
& \lim _{l \rightarrow \infty} \int_{0}^{t} \int_{Q_{l}} G_{n}(x, \xi, l)[a(\xi, \tau)+b(\xi, \tau)] w_{l}(\xi, \tau) d \xi d \tau \tag{2.20}\\
& =\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)[a(\xi, \tau)+b(\xi, \tau)] w(\xi, \tau) d \xi d \tau
\end{align*}
$$

Letting $l \rightarrow \infty$ in 2.19 and using 2.18 and 2.20 we conclude that

$$
\begin{align*}
w(x, t)= & u_{02}(x)-u_{01}(x)-\int_{0}^{t} a(x, \tau) w(x, \tau) d \tau \tag{2.21}\\
& +\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)[a(\xi, \tau)+b(\xi, \tau)] w(\xi, \tau) d \xi d \tau, \quad(x, t) \in \Pi_{T}
\end{align*}
$$

By (2.3) the solution $w(x, t)$ of 2.21 belongs to the class $C^{2,1}\left(\Pi_{T}\right)$ and

$$
\begin{aligned}
& \Delta\left(w_{t}(x, t)+a(x, t) w(x, t)\right) \\
& =\Delta \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)[a(\xi, t)+b(\xi, t)] w(\xi, t) d \xi \\
& =-[a(x, t)+b(x, t)] w(x, t)+\int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)[a(\xi, t)+b(\xi, t)] w(\xi, t) d \xi \\
& =w_{t}(x, t)-b(x, t) w(x, t),(x, t) \in \mathbb{R}^{n} \times(0, T), \\
& \quad w(x, 0)=u_{02}(x)-u_{01}(x), \quad x \in \mathbb{R}^{n} .
\end{aligned}
$$

According to Lemmas 2.1 and 2.5 we have

$$
u_{2}(x, t) \geq u_{1}(x, t), \quad(x, t) \in \Pi_{T} .
$$

Remark 2.6. The comparison principle is valid without the condition that one of the solution is not less some positive constant if we assume that $h(t, p) \in$ $C_{\mathrm{loc}}^{0,1+\alpha}\left(\bar{R}_{+} \times \bar{R}_{+}\right), 0<\alpha<1$.

Remark 2.7. If the inequality $u_{0}(x) \geq m>0$ and (1.4) hold then problem (1.1), (1.2) has an unique solution.

Indeed, in the same way as it was done in [9] we can show the existence of the solution $u(x, t)$ of problem (1.1), 1.2) such that $u(x, t) \geq m>0$.

3. Auxiliary statements

Let condition (1.4) hold. We consider the Cauchy problem for equation 1.1 subject to the initial condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x)+\varepsilon, \quad x \in \mathbb{R}^{n} . \tag{3.1}
\end{equation*}
$$

If we suppose $u_{0}(x) \equiv M$ in (3.1) then a solution of the Cauchy problem for the corresponding ordinary differential equation

$$
\begin{equation*}
\vartheta^{\prime}(t)=h(t, \vartheta), \quad \vartheta(0)=M+\varepsilon \tag{3.2}
\end{equation*}
$$

will be a solution of (1.1), (3.1).
Suppose that the solution $\vartheta_{\varepsilon}(t)$ of 3.2 exists on $\left[0, T_{0, \varepsilon}\right), T_{0, \varepsilon} \leq+\infty$. It is easy to show (see [9]) that a solution $u_{\varepsilon}(x, t)$ of the integral equation

$$
\begin{align*}
u_{\varepsilon}(x, t)= & u_{0}(x)+\varepsilon-\int_{0}^{t} \varphi\left(u_{\varepsilon}(x, \tau)\right) d \tau \\
& +\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)\left[\varphi\left(u_{\varepsilon}(\xi, \tau)\right)+h\left(\tau, u_{\varepsilon}(\xi, \tau)\right)\right] d \xi d \tau \tag{3.3}
\end{align*}
$$

for any $T_{\varepsilon}<T_{0, \varepsilon}$ solves in $\Pi_{T_{\varepsilon}}$ problem (1.1), (3.1) and satisfies the inequality

$$
\begin{equation*}
\varepsilon \leq u_{\varepsilon}(x, t) \leq \vartheta_{\varepsilon}(t), \quad(x, t) \in \Pi_{T_{\varepsilon}} \tag{3.4}
\end{equation*}
$$

We note that problem (3.2) is equivalent to the integral equation

$$
\begin{equation*}
\vartheta_{\varepsilon}(t)=M+\varepsilon+\int_{0}^{t} h\left(\tau, \vartheta_{\varepsilon}(\tau)\right) d \tau, \quad t \in\left[0, T_{0, \varepsilon}\right) . \tag{3.5}
\end{equation*}
$$

Lemma 3.1. Let (1.3), (1.4, (1.6) and 1.7 hold. Then for some $T_{*, \varepsilon}<T_{0, \varepsilon}$ we have

$$
u_{\varepsilon}(x, t) \rightarrow \vartheta_{\varepsilon}(t) \quad \text { as }|x| \rightarrow \infty
$$

uniformly in $\left[0, T_{*, \varepsilon}\right]$.
Proof. Put $u_{0, \varepsilon}(x, t) \equiv \vartheta_{\varepsilon}(t)$. We define a sequence of functions $u_{k, \varepsilon}(x, t) \quad(k=$ $1,2, \ldots$) in the following way

$$
\begin{align*}
u_{k, \varepsilon}(x, t)= & u_{0}(x)+\varepsilon-\int_{0}^{t} \varphi\left(u_{k-1, \varepsilon}(x, \tau)\right) d \tau \tag{3.6}\\
& +\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)\left[\varphi\left(u_{k-1, \varepsilon}(\xi, \tau)\right)+h\left(\tau, u_{k-1, \varepsilon}(\xi, \tau)\right)\right] d \xi d \tau
\end{align*}
$$

Fix any T_{ε} such that $T_{\varepsilon}<T_{0, \varepsilon}$ and show that the sequence $u_{k, \varepsilon}(x, t)$ converges to the solution $u_{\varepsilon}(x, t)$ of (1.1), 3.1) as $k \rightarrow \infty$ uniformly in some layer $\Pi_{T_{*, \varepsilon}}\left(T_{*, \varepsilon} \leq T_{\varepsilon}\right)$.

At first we show that the sequence $u_{k, \varepsilon}(x, t)$ is uniformly bounded in some layer $\Pi_{T_{*, \varepsilon}}$. Using the method of mathematical induction we prove the inequality

$$
\begin{equation*}
\frac{\varepsilon}{2} \leq u_{k, \varepsilon}(x, t) \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right), \quad(x, t) \in \Pi_{T_{*, \varepsilon}}, k=0,1, \ldots . \tag{3.7}
\end{equation*}
$$

It is obviously that (3.7) is true for $k=0$. We assume that (3.7) holds for $k=k_{0}$ and we shall prove the inequality for $k=k_{0}+1$. Using the property of function
$\varphi+h$ and the mean value theorem we obtain

$$
\begin{align*}
u_{k_{0}+1, \varepsilon}(x, t)= & u_{0}(x)+\varepsilon-\int_{0}^{t} \varphi\left(u_{k_{0}, \varepsilon}(x, \tau)\right) d \tau \\
& +\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)\left[\varphi\left(u_{k_{0}, \varepsilon}(\xi, \tau)\right)+h\left(\tau, u_{k_{0}, \varepsilon}(\xi, \tau)\right)\right] d \xi d \tau \\
\leq & M+\varepsilon+\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)\left[\varphi\left(M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)\right)\right. \\
& \left.+h\left(\tau, M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)\right)\right] d \xi d \tau-\int_{0}^{t} \varphi\left(u_{k_{0}, \varepsilon}(x, \tau)\right) d \tau \tag{3.8}\\
\leq & M+\varepsilon+\int_{0}^{t}\left\{\varphi\left(M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)\right)-\varphi\left(u_{k_{0}, \varepsilon}(x, \tau)\right)\right. \\
& \left.+h\left(\tau, M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)\right)\right\} d \tau \\
\leq & M+\varepsilon+T_{*, \varepsilon}\left(M+\varepsilon+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)\right){ }_{\frac{\varepsilon}{2} \leq \theta \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)}\left|\varphi^{\prime}(\theta)\right| \\
& +T_{*, \varepsilon} \max _{0 \leq t \leq T_{\varepsilon}} h\left(t, M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)\right)
\end{align*}
$$

and

$$
\begin{align*}
& u_{k_{0}+1, \varepsilon}(x, t) \\
& \geq \varepsilon+\int_{0}^{t}\left\{\varphi\left(\frac{\varepsilon}{2}\right)-\varphi\left(u_{k_{0}, \varepsilon}(x, \tau)\right)+h\left(\tau, \frac{\varepsilon}{2}\right)\right\} d \tau \tag{3.9}\\
& \geq \varepsilon-T_{*, \varepsilon}\left(\left(M+\varepsilon+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)\right) \max _{\frac{\varepsilon}{2} \leq \theta \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)}\left|\varphi^{\prime}(\theta)\right|+\max _{0 \leq t \leq T_{\varepsilon}} h\left(t, \frac{\varepsilon}{2}\right)\right)
\end{align*}
$$

From (3.8) and (3.9) we conclude that inequality (3.7) is valid for $k=k_{0}+1$ provided

$$
\begin{equation*}
T_{*, \varepsilon} \leq \min \left\{T_{\varepsilon}, \frac{\varepsilon / 2}{\left(M+\varepsilon+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)\right) \lambda+\mu}\right\} \tag{3.10}
\end{equation*}
$$

where

$$
\lambda=\max _{\frac{\varepsilon}{2} \leq \theta \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)}\left|\varphi^{\prime}(\theta)\right|, \quad \mu=\max _{0 \leq t \leq T_{\varepsilon}, \frac{\varepsilon}{2} \leq \theta \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)} h(t, \theta) .
$$

Using the method of mathematical induction it is easy to show the validity in $\Pi_{T_{*, \varepsilon}}$ the estimate

$$
\begin{equation*}
\left|u_{k, \varepsilon}(x, t)-u_{k-1, \varepsilon}(x, t)\right| \leq M(2 \lambda+\nu)^{k-1} \frac{t^{k-1}}{(k-1)!} \tag{3.11}
\end{equation*}
$$

where

$$
\nu=\max _{0 \leq t \leq T_{\varepsilon}, \frac{\varepsilon}{2} \leq \theta \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)}\left|h_{\theta}(t, \theta)\right|
$$

For $k=1$ we have

$$
\left|u_{1, \varepsilon}(x, t)-u_{0, \varepsilon}(x, t)\right|=\vartheta_{\varepsilon}(t)-u_{0}(x)-\varepsilon-\int_{0}^{t} h\left(\tau, \vartheta_{\varepsilon}(\tau)\right) d \tau \leq M
$$

We assume that (3.11) holds for $k=k_{0}$ and we shall prove the inequality for $k=k_{0}+1$. By (3.11) and the mean value theorem we have

$$
\left|u_{k_{0}+1, \varepsilon}(x, t)-u_{k_{0}, \varepsilon}(x, t)\right|
$$

$$
\begin{aligned}
&=\left|\int_{0}^{t} \varphi^{\prime}\left(\theta_{1}(x, \tau)\right)\left[u_{k_{0}, \varepsilon}(x, \tau)-u_{k_{0}-1, \varepsilon}(x, \tau)\right] d \tau\right| \\
&+\left|\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi) \varphi^{\prime}\left(\theta_{2}(\xi, \tau)\right)\left[u_{k_{0}, \varepsilon}(\xi, \tau)-u_{k_{0}-1, \varepsilon}(\xi, \tau)\right] d \xi d \tau\right| \\
&+\left|\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi) h_{\theta_{3}}\left(\tau, \theta_{3}(\xi, \tau)\right)\left[u_{k_{0}, \varepsilon}(\xi, \tau)-u_{k_{0}-1, \varepsilon}(\xi, \tau)\right] d \xi d \tau\right| \\
& \leq M(2 \lambda+\nu)^{k_{0}} \int_{0}^{t} \frac{\tau^{k_{0}-1}}{\left(k_{0}-1\right)!} d \tau \\
& \leq M(2 \lambda+\nu)^{k_{0}} \frac{t^{k_{0}}}{k_{0}!}
\end{aligned}
$$

where $\frac{\varepsilon}{2} \leq \theta_{i} \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{*, \varepsilon}\right), i=1,2,3$.
To show that the sequence $u_{k, \varepsilon}(x, t)$ converges uniformly in $\Pi_{T_{*, \varepsilon}}$ we consider the series

$$
\begin{equation*}
u_{0, \varepsilon}(x, t)+\sum_{n=1}^{\infty}\left(u_{n, \varepsilon}(x, t)-u_{n-1, \varepsilon}(x, t)\right) \tag{3.12}
\end{equation*}
$$

Then $u_{k, \varepsilon}(x, t)$ is the $(k+1)$ th partial sum of 3.12. By 3.11 every term of series (3.12) for all $(x, t) \in \Pi_{T_{*, \varepsilon}}$ is not greater than the absolute value of the corresponding term of the following convergent series

$$
\vartheta_{\varepsilon}(t)+M \sum_{n=0}^{\infty}(2 \lambda+\nu)^{n} \frac{T_{*, \varepsilon}^{n}}{n!} .
$$

Hence, series 3.12 as well as the sequence $u_{k, \varepsilon}(x, t)$ converge uniformly in $\Pi_{T_{*, \varepsilon}}$. Let

$$
u_{\varepsilon}(x, t)=\lim _{k \rightarrow \infty} u_{k, \varepsilon}(x, t)
$$

Passing to the limit as $k \rightarrow \infty$ in (3.6) and using the Lebesgue theorem we obtain that the function $u_{\varepsilon}(x, t)$ satisfies (3.3). Hence, $u_{\varepsilon}(x, t)$ solves problem (1.1), (3.1) in $\Pi_{T_{*, \varepsilon}}$.

Using the method of mathematical induction we shall prove that

$$
\begin{equation*}
u_{k, \varepsilon}(x, t) \rightarrow \vartheta_{\varepsilon}(t) \quad \text { as }|x| \rightarrow \infty, k=0,1, \ldots \tag{3.13}
\end{equation*}
$$

uniformly in $\left[0, T_{*, \varepsilon}\right]$.
It is obviously that (3.13) is true for $k=0$. We assume that (3.13) holds for $k=k_{0}$ and we shall prove (3.13) for $k=k_{0}+1$. Fix an arbitrary $\delta>0$. By the induction assumption for any $\delta_{0}>0$ there exists a constant $A_{0}=A_{0}\left(\delta_{0}, \varepsilon, T_{*, \varepsilon}, k_{0}\right)$ such that if $|x|>A_{0}$ and $0 \leq t \leq T_{*, \varepsilon}$ then

$$
\left|u_{k_{0}, \varepsilon}(x, t)-\vartheta_{\varepsilon}(t)\right|<\delta_{0}
$$

From (3.5) and (3.6) we have

$$
\begin{aligned}
& \left|u_{k_{0}+1, \varepsilon}(x, t)-\vartheta_{\varepsilon}(t)\right| \\
& =\mid u_{0}(x)+\varepsilon-\int_{0}^{t} \varphi\left(u_{k_{0}, \varepsilon}(x, \tau)\right) d \tau+\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)\left[\varphi\left(u_{k_{0}, \varepsilon}(\xi, \tau)\right)\right. \\
& \left.\quad+h\left(\tau, u_{k_{0}, \varepsilon}(\xi, \tau)\right)\right] d \xi d \tau-M-\varepsilon-\int_{0}^{t} h\left(\tau, \vartheta_{\varepsilon}(\tau)\right) d \tau \mid \\
& \leq\left|u_{0}(x)-M\right|+\int_{0}^{t}\left|\varphi^{\prime}\left(\theta_{1}(x, \tau)\right)\right| \cdot\left|u_{k_{0}, \varepsilon}(x, \tau)-\vartheta_{\varepsilon}(\tau)\right| d \tau
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{t} \int_{|\xi| \leq A_{0}} \mathcal{E}_{n}(x-\xi)\left(\left|\varphi^{\prime}\left(\theta_{2}(\xi, \tau)\right)\right|+\left|h_{\theta_{3}}\left(\tau, \theta_{3}(\xi, \tau)\right)\right|\right)\left|u_{k_{0}, \varepsilon}(\xi, \tau)-\vartheta_{\varepsilon}(\tau)\right| d \xi d \tau \\
& +\int_{0}^{t} \int_{|\xi|>A_{0}} \mathcal{E}_{n}(x-\xi)\left(\left|\varphi^{\prime}\left(\theta_{2}(\xi, \tau)\right)\right|+\left|h_{\theta_{3}}\left(\tau, \theta_{3}(\xi, \tau)\right)\right|\right)\left|u_{k_{0}, \varepsilon}(\xi, \tau)-\vartheta_{\varepsilon}(\tau)\right| d \xi d \tau
\end{aligned}
$$

where $\frac{\varepsilon}{2} \leq \theta_{i} \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{*, \varepsilon}\right), i=1,2,3$. By 1.7 for any $\delta_{1}>0$ there exists a constant $A_{1}=A_{1}\left(\delta_{1}\right)$ such that $\left|u_{0}(x)-M\right|<\delta_{1}$ if $|x|>A_{1}$. Using the property of the fundamental solution \mathcal{E}_{n} and (3.7) we obtain that for any $\delta_{2}>0$ there exists a constant $A_{2}=A_{2}\left(\delta_{2}, \varepsilon\right)$ such that if $|x|>A_{2}$ then

$$
\begin{aligned}
& \int_{0}^{t} \int_{|\xi| \leq A_{0}} \mathcal{E}_{n}(x-\xi)\left(\left|\varphi^{\prime}\left(\theta_{2}(\xi, \tau)\right)\right|+\left|h_{\theta_{3}}\left(\tau, \theta_{3}(\xi, \tau)\right)\right|\right)\left|u_{k_{0}, \varepsilon}(\xi, \tau)-\vartheta_{\varepsilon}(\tau)\right| d \xi d \tau \\
& <\delta_{2}
\end{aligned}
$$

Hence, we obtain

$$
\left|u_{k_{0}+1, \varepsilon}(x, t)-\vartheta_{\varepsilon}(t)\right|<\delta_{1}+\delta_{2}+T_{*, \varepsilon}(2 \lambda+\nu) \delta_{0}
$$

where

$$
\lambda=\max _{\frac{\varepsilon}{2} \leq \theta \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)}\left|\varphi^{\prime}(\theta)\right|, \quad \nu=\max _{0 \leq t \leq T_{\varepsilon}, \frac{\varepsilon}{2} \leq \theta \leq M+\frac{3 \varepsilon}{2}+\vartheta_{\varepsilon}\left(T_{\varepsilon}\right)}\left|h_{\theta}(t, \theta)\right| .
$$

Let $\delta_{0}=\frac{\delta}{3 T_{*, \varepsilon}(2 \lambda+\nu)}, \delta_{1}=\frac{\delta}{3}, \delta_{2}=\frac{\delta}{3}$ and $A=\max \left(A_{0}, A_{1}, A_{2}\right)$ then

$$
\left|u_{k_{0}+1, \varepsilon}(x, t)-\vartheta_{\varepsilon}(t)\right|<\delta
$$

if $0 \leq t \leq T_{*, \varepsilon}$ and $|x|>A$. It follows that for any $\delta>0$ by suitable choosing k and A we obtain

$$
\begin{aligned}
\left|u_{\varepsilon}(x, t)-\vartheta_{\varepsilon}(t)\right| & =\left|u_{\varepsilon}(x, t)-u_{k, \varepsilon}(x, t)+u_{k, \varepsilon}(x, t)-\vartheta_{\varepsilon}(t)\right| \\
& \leq\left|u_{\varepsilon}(x, t)-u_{k, \varepsilon}(x, t)\right|+\left|u_{k, \varepsilon}(x, t)-\vartheta_{\varepsilon}(t)\right|<\delta
\end{aligned}
$$

for $0 \leq t \leq T_{*, \varepsilon}$ and $|x|>A$.
Lemma 3.2. Let (1.3), 1.4, 1.6 and (1.7) hold. Then for any $T_{\varepsilon}<T_{0, \varepsilon}$ we have

$$
u_{\varepsilon}(x, t) \rightarrow \vartheta_{\varepsilon}(t) \quad \text { as }|x| \rightarrow \infty
$$

uniformly in $\left[0, T_{\varepsilon}\right]$.
Proof. Fix any T_{ε} such that $T_{\varepsilon}<T_{0, \varepsilon}$. We recall that for any $T_{\varepsilon}<T_{0, \varepsilon}$ the solution $u_{\varepsilon}(x, t)$ exists in $\Pi_{T_{\varepsilon}}$ and satisfies inequality (3.4). Note that the solution $u_{\varepsilon}(x, t)$ of (1.1), (3.1) is unique by Remark 2.7

By Lemma 3.1 there exists $T_{*, \varepsilon} \leq T_{\varepsilon}$ such that $u_{\varepsilon}(x, t) \rightarrow \vartheta_{\varepsilon}(t)$ as $|x| \rightarrow \infty$ uniformly in $\left[0, T_{*, \varepsilon}\right]$. If $T_{*, \varepsilon}<T_{\varepsilon}$ then we construct for $t \geq T_{*, \varepsilon}$ new sequence $u_{k, \varepsilon}(x, t)$ in the following way:

$$
\begin{aligned}
& u_{0, \varepsilon}(x, t) \equiv \vartheta_{\varepsilon}(t) \\
& u_{k, \varepsilon}(x, t)= u_{\varepsilon}\left(x, T_{*, \varepsilon}\right)-\int_{T_{*, \varepsilon}}^{t} \varphi\left(u_{k_{0}-1, \varepsilon}(x, \tau)\right) d \tau \\
&+\int_{T_{*, \varepsilon}}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)\left[\varphi\left(u_{k_{0}-1, \varepsilon}(\xi, \tau)\right)+h\left(\tau, u_{k_{0}-1, \varepsilon}(\xi, \tau)\right)\right] d \xi d \tau
\end{aligned}
$$

for $k=1,2, \ldots$ By the similar arguments to Lemma 3.1 we can prove that the sequence $u_{k, \varepsilon}(x, t)$ converges to the solution $u_{\varepsilon}(x, t)$ of (1.1), 3.1) as $k \rightarrow \infty$
uniformly in the layer $\mathbb{R}^{n} \times\left[T_{*, \varepsilon}, T_{*, \varepsilon}+\Delta T_{\varepsilon}\right]$ provided ΔT_{ε} satisfies condition 3.10 with $T_{*, \varepsilon}=\Delta T_{\varepsilon}$ and the inequality $T_{*, \varepsilon}+\Delta T_{\varepsilon} \leq T_{\varepsilon}$. It follows that

$$
u_{\varepsilon}(x, t) \rightarrow \vartheta_{\varepsilon}(t) \quad \text { as }|x| \rightarrow \infty
$$

uniformly in $\left[T_{*, \varepsilon}, T_{*, \varepsilon}+\Delta T_{\varepsilon}\right]$. Repeating this procedure we obtain the conclusion of the theorem.

4. Behavior of maximal solution at infinity

Proof of Theorem 1.3. Let (1.4) hold and $u_{\varepsilon}(x, t), \vartheta_{\varepsilon}(t)$ be solutions of problems 1.1, (3.1) and (3.2) respectively. Using Theorem 1.4 for $\varepsilon_{1} \geq \varepsilon_{2}$ we obtain:

$$
\begin{gathered}
u(x, t) \leq u_{\varepsilon_{2}}(x, t) \leq u_{\varepsilon_{1}}(x, t), \quad(x, t) \in \Pi_{T_{\varepsilon_{1}}} \\
\vartheta(t) \leq \vartheta_{\varepsilon_{2}}(t) \leq \vartheta_{\varepsilon_{1}}(t), \quad t \in\left[0, T_{\varepsilon_{1}}\right] .
\end{gathered}
$$

According to Dini's theorem the sequences $u_{\varepsilon}(x, t)$ and $\vartheta_{\varepsilon}(t)$ convergence to some solutions $u(x, t)$ and $\vartheta(t)$ of problems (1.1), 1.2 and 1.8 as $\varepsilon \rightarrow 0$ uniformly respectively in Π_{T} and $[0, T]$, where $T<T_{0}$. It is easy to see that $u(x, t)$ and $\vartheta(t)$ are maximal solutions of problems (1.1), 1.2 and 1.8 respectively.

We fix an arbitrary $\delta>0$ and $0<T<T_{0}$. Choose $\varepsilon_{1}>0$ such that for any $\varepsilon<\varepsilon_{1}$ the inequality $T<T_{0, \varepsilon}$ holds. By the uniform convergence functions $u_{\varepsilon}(x, t)$ to $u(x, t)$ in Π_{T} and $\vartheta_{\varepsilon}(t)$ to $\vartheta(t)$ in $[0, T],\left(T<T_{0}\right)$ as $\varepsilon \rightarrow 0$ we can take $\varepsilon_{2}>0$ such that for any $\varepsilon<\varepsilon_{2}$,

$$
\begin{gather*}
\left|u_{\varepsilon}(x, t)-u(x, t)\right|<\frac{\delta}{3}, \quad(x, t) \in \Pi_{T} \tag{4.1}\\
\left|\vartheta_{\varepsilon}(t)-\vartheta(t)\right|<\frac{\delta}{3}, \quad t \in[0, T] . \tag{4.2}
\end{gather*}
$$

Put $\varepsilon_{0}=\min \left(\varepsilon_{1}, \varepsilon_{2}\right)$. From Lemma 3.2 there exists the constant $A_{0}=A_{0}\left(\delta, \varepsilon_{0}, T\right)$ such that for any $|x|>A_{0}$ we obtain

$$
\begin{equation*}
\left|u_{\varepsilon_{0}}(x, t)-\vartheta_{\varepsilon_{0}}(t)\right|<\frac{\delta}{3}, \quad(x, t) \in \Pi_{T} \tag{4.3}
\end{equation*}
$$

By (4.1)-4.3) we conclude that by suitable choosing $\varepsilon=\varepsilon_{0}$ and $A=A_{0}$,

$$
\begin{aligned}
|u(x, t)-\vartheta(t)| & =\left|u(x, t)-u_{\varepsilon}(x, t)+u_{\varepsilon}(x, t)+\vartheta_{\varepsilon}(t)-\vartheta_{\varepsilon}(t)-\vartheta(t)\right| \\
& \leq\left|u_{\varepsilon}(x, t)-u(x, t)\right|+\left|u_{\varepsilon}(x, t)-\vartheta_{\varepsilon}(t)\right|+\left|\vartheta_{\varepsilon}(t)-\vartheta(t)\right|<\delta
\end{aligned}
$$

for $0 \leq t \leq T$ and $|x|>A$.
Let 1.5 hold. Consider the Cauchy problems

$$
\begin{gather*}
\omega_{t}=\Delta \omega_{t}+\Delta \varphi(\omega)+h(t, \omega)-h(t, \varepsilon), \quad x \in \mathbb{R}^{n}, t>0 \\
\omega(x, 0)=u_{0}(x)+\varepsilon, \quad x \in \mathbb{R}^{n} \tag{4.4}
\end{gather*}
$$

and

$$
\begin{equation*}
g^{\prime}(t)=h(t, g)-h(t, \varepsilon), \quad g(0)=M+\varepsilon \tag{4.5}
\end{equation*}
$$

We suppose that the maximal nonnegative solution $g_{\varepsilon}(t)$ of 4.5 exists on $\left[0, T_{0, \varepsilon}\right)$, $T_{0, \varepsilon} \leq+\infty$. It is easy to show (see [9]) that for any $T_{\varepsilon}<T_{0, \varepsilon}$ there exists in $\Pi_{T_{\varepsilon}}$ a solution $\omega_{\varepsilon}(x, t)$ of (4.4) satisfying the inequality

$$
\varepsilon \leq \omega_{\varepsilon}(x, t) \leq g_{\varepsilon}(t), \quad(x, t) \in \Pi_{T_{\varepsilon}} .
$$

Applying Theorem 1.4 we conclude that the solution $\omega_{\varepsilon}(x, t)$ of 4.4 is unique. Let $\varepsilon_{1} \geq \varepsilon_{2}$ and $\omega_{\varepsilon_{1}}(x, t), \omega_{\varepsilon_{2}}(x, t)$ are nonnegative bounded solutions of 4.4) with $\varepsilon=\varepsilon_{1}$ and $\varepsilon=\varepsilon_{2}$ respectively. Then

$$
\omega_{\varepsilon_{1}}(x, t) \geq \omega_{\varepsilon_{2}}(x, t), \quad(x, t) \in \Pi_{T_{\varepsilon_{1}}}
$$

The proof of this statement is analogous to the proof of Theorem 1.4. Then we consider the sequence $\omega_{k, \varepsilon}(x, t)(k=0,1, \ldots)$:

$$
\begin{aligned}
& \omega_{0, \varepsilon}(x, t) \equiv g_{\varepsilon}(t) \\
& \omega_{k, \varepsilon}(x, t)= u_{0}(x)+\varepsilon-\int_{0}^{t} \varphi\left(\omega_{k-1, \varepsilon}(x, \tau)\right) d \tau+\int_{0}^{t} \int_{\mathbb{R}^{n}} \mathcal{E}_{n}(x-\xi)\left[\varphi\left(\omega_{k-1, \varepsilon}(\xi, \tau)\right)\right. \\
&\left.+h\left(\tau, \omega_{k-1, \varepsilon}(\xi, \tau)\right)-h(\tau, \varepsilon)\right] d \xi d \tau, \quad k=1,2, \ldots
\end{aligned}
$$

Analogous to the arguments in Section 3 can be shown that for any $T_{\varepsilon}<T_{0, \varepsilon}$

$$
\omega_{\varepsilon}(x, t) \rightarrow g_{\varepsilon}(t) \quad \text { as }|x| \rightarrow \infty
$$

uniformly in $\left[0, T_{\varepsilon}\right]$. Further arguments are similar to reasoning in the proof of this theorem with condition (1.4).

References

[1] V. Z. Furaev; About solvability of boundary value problems and the Cauchy problem for generalized Boussinesq equation in the theory of nonstationary filtration, PhD thesis (1983) (in Russian).
[2] Y. Giga, N. Umeda; Blow-up directions at space infinity for solutions of semilinear heat equations, Bol. Soc. Parana Mat. 23 (2005), no. 1-2, 9-28.
[3] Y. Giga, N. Umeda; On blow-up at space infinity for semilinear heat equations, J. Math. Anal. Appl. 316 (2006), no. 2, 538-555.
[4] A. L. Gladkov; The Cauchy problem in classes of increasing functions for some nonlinear pseudoparabolic equations, Differential Equations 24 (1988), no. 2, 211-219.
[5] A. L. Gladkov; Behavior of solutions of semilinear parabolic equations as $\mathrm{x} x \rightarrow \infty$, Math. Notes 51 (1992), no. 2, 124-128.
[6] A. L. Gladkov; Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations, Math. Notes 60 (1996), no. 3, 264-268.
[7] A. L. Gladkov; Stabilization of solutions for semilinear parabolic systems as $|x| \rightarrow \infty$, Electron. J. Differential Equations (2009), no. 7, 1-5.
[8] T. Igarashi, N. Umeda; Nonexistence of global solutions in time for reaction-diffusion systems with inhomogeneous terms in cones, Tsukuba J. Math. 33 (2009), no. 1, 131-145.
[9] T. V. Kavitova; The existence of the solution to the Cauchy problem for some pseudoparabolic equation, Vestnik vitebskogo gosudarstvennogo universiteta (2011), no. 3, 15-19 (in Russian).
[10] A. I. Kozhanov; Initial boundary value problem for generalized boussinesque type equations with nonlinear source, Math. Notes 65 (1999), no. 1, 59-63.
[11] Y. Seki; On directional blow-up for quasilinear parabolic equations with fast diffusion, J. Math. Anal. Appl. 338 (2008), no. 1, 572-587.
[12] Y. Seki, R. Suzuki, N. Umeda; Blow-up directions for quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), no. 2, 379-405.
[13] M. Shimojo, N. Umeda; Blow-Up at Space Infinity for Solutions of Cooperative ReactionDiffusion Systems, Funkcialaj Ekvacioj 54 (2011), no. 2, 315-334.
[14] A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov, Yu. D. Pletner; Linear and nonlinear equations of Sobolev type, Fizmatlit, Moscow, 2007 (in Russian).

Tatiana Kavitova
Department of Mathematics, Vitebsk State University, Moskovskif pr. 33, 210038 Vitebsk, Belarus

E-mail address: KavitovaTV@tut.by

