Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 143, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

GROWTH OF ENTIRE SOLUTIONS OF SINGULAR INITIAL-VALUE PROBLEM IN SEVERAL COMPLEX VARIABLES

DEVENDRA KUMAR, MOHAMMED HARFAOUI

Abstract

In this article, we characterize the order, type, lower order, and lower type of entire function solutions to a class of singular initial-value problems, in terms of multinomials for $n \geq 2$.

1. Introduction

Let $z_{j}=x_{j}+i y_{j}$ denote a complex variable, $1 \leq j \leq n$. Let $z=\left(z_{1}, \ldots, z_{n}\right)$, $z^{2 k}=z_{1}^{2 k_{1}}, \ldots, z_{n}^{2 k_{n}}$ where k is the vector $\left(k_{1}, \ldots, k_{n}\right)$ with k_{j} a nonnegative integer $(j=1, \ldots, n)$ and let $\|k\|=k_{1}+\cdots+k_{n}$. Let $\phi(z)$ be an entire function of $z_{1}^{2}, \ldots, z_{n}^{2}$ in a domain D that includes the origin and let $\Delta_{j}=D_{z_{j}}^{2}+\frac{\alpha_{j}}{z_{j}} D_{z_{j}}, \alpha_{j} \geq$ $0, j=1, \ldots, n$. Also, let $a>-1$ and $\varepsilon_{j}=1$ if $j=1, \ldots, m$ and $\varepsilon_{j}=-1$ if $j=m+1, \ldots, n$. Now consider the representations of an entire function solutions of the problem

$$
\begin{equation*}
\left(D_{t}^{2}+\frac{a}{t} D_{t}\right) u(z, t)=\sum_{j=1}^{n} \varepsilon_{j} \Delta_{j} u(z, t) \tag{1.1}
\end{equation*}
$$

with initial data

$$
u(z, 0)=\phi(z), \quad u_{t}(z, 0)=0
$$

in terms of a set of associated multinomials $\left\{R_{k}(z, t)\right\}$ throughout (z, t) space, t real. These multinomials are solutions of (1.1) corresponding to the choice of $\phi(z)=z^{2 k}$ in (1.1).

Let G be a region in \mathbb{R}^{n} (positive hyper octant) and let $G_{R} \subset \mathbb{C}^{n}$ denote the region obtained from G by a similarity transformation about the origin, with ratio of similitude R.

Definition 1.1. Let $\phi(z)=\sum_{\|k\|=0}^{\infty} a_{k} z_{n}^{2 k_{n}}$ be an entire function of several complex variables. Then $\phi(z)$ is of growth (ρ, T) if

$$
\begin{equation*}
T=\limsup _{\|k\| \rightarrow \infty} \frac{\|2 k\|}{e \rho}\left[\left|a_{k}\right| d_{k}(G)\right]^{\rho /\|2 k\|}, \quad(0<\rho<\infty) \tag{1.2}
\end{equation*}
$$

2000 Mathematics Subject Classification. 30B10, 30D20.
Key words and phrases. Entire function; initial-value problem; multinomials; order and type. © 2012 Texas State University - San Marcos.
Submitted June 22, 2012. Published August 20, 2012.
where

$$
d_{k}(G)=\max _{R \in G}\left(R^{2 k}\right) ; \quad R^{2 k}=R_{1}^{2 k_{1}}, \ldots, R_{n}^{2 k_{n}}
$$

This implies the existence of a positive constant M such that

$$
|\phi(z)| \leq M e^{T\left|z^{2}\right|^{\rho}} \quad \forall z \in \mathbb{C}^{n}
$$

Using 1.2 , for each $\varepsilon>0$ there exists a positive integer k_{0} such that if $k \geq k_{0}$, then

$$
\begin{equation*}
\left|a_{k}\right| d_{k}(G) \leq\left[\frac{e \rho(T+\varepsilon)}{\|2 k\|}\right]^{\|2 k\| / r h o} \tag{1.3}
\end{equation*}
$$

We can easily estimate, from [1, (4.14)], that

$$
\begin{equation*}
\left|R_{k}(z, t)\right| \leq\left(\frac{\|2 k\|}{\rho T}\right)^{\|2 k\| / r h o} \bar{M}(\rho, T) e^{-\|2 k\| / \rho} e^{K|t|+\sum_{j=1}^{n} T_{j}\left|z_{j}^{2}\right|^{\rho_{j}}} \tag{1.4}
\end{equation*}
$$

where

$$
\bar{M}(\rho, T)=\int_{0}^{\infty} e^{-\sigma+T\left|\sigma^{2}\right|^{\rho}} d \sigma
$$

and K is the sum of the absolute values of the coefficients of multinomial and $M(\rho, T)$ is a generic constant depending only on the $\rho_{j}^{\prime} s$ and $T_{j}^{\prime} s$.

Now let

$$
u(z, t)=\sum_{\|k\|=0}^{\infty} a_{k} R_{k}(z, t)
$$

or

$$
\begin{equation*}
|u(z, t)| \leq \sum_{\|k\|=0}^{N}\left|a_{k}\right|\left|R_{k}(z, t)\right|+\sum_{\|k\|=N+1}^{\infty}\left|a_{k}\right|\left|R_{k}(z, t)\right| \tag{1.5}
\end{equation*}
$$

Using the bound 1.5) on $\left|R_{k}(z, t)\right|$ and the estimate on $\left|a_{k}\right| d_{k}(G)$ from 1.3), we see that the bound on second sum in 1.5 is given by

$$
\frac{K(\rho, T)}{d_{k}(G)} e^{K|t|+\sum_{j=1}^{n} T_{j}\left|z_{j}^{2}\right|^{\rho_{j}}} \sum_{\|k\|=N+1}^{\infty}\left(\frac{T+\varepsilon}{T}\right)^{\|2 k\| / \rho}
$$

Since the series of constants in 1.5 converges, it follows that the series $u(z, t)=$ $\sum_{\|k\|=0}^{\infty} a_{k} R^{k}(z, t)$ converges for all n complex variables $\left(z_{1}, \ldots, z_{n}\right)$ and real t and uniformly so in compact subsets of (z, t) space.

Now we can establish a theorem.
Theorem 1.2. Let $\phi(z)=\sum_{\|k\|=0}^{\infty} a_{k} z_{1}^{2 k_{1}}, \ldots, z_{n}^{2 k_{n}}$ be entire in $\left(z_{1}^{2}, \ldots, z_{n}^{2}\right)$ and converge in a domain $G_{r}: z \in \mathbb{C}^{n} ;|z|^{2}=\max _{i \leq j \leq n}\left|z_{j}\right|^{2}<R^{2}, R>0$ is a fixed positive real. Then the series $u(z, t)=\sum_{\|k\|=0}^{\infty} a_{k} R_{k}(z, t)$ converges for all n-complex variables $\left(z_{1}, \ldots, z_{n}\right)$ and real t and uniformly so in compact subsets of (z, t) space.

Bragg and Dettman [2] proved the following theorem.
Theorem 1.3. Let $\phi(x)=\sum_{\|k\|=0}^{\infty} a_{k} x^{2 k}$ be analytic in $\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$ and converge in a domain D that includes the origin. Then the series $\sum_{\|k\|=0}^{\infty} a_{k} P_{k}(x, t)$ converges to an analytic solution of the problem (1.1) replacing z by x, at least in region S where S is defined by $(x, t) \in S$ if and only if

$$
\begin{equation*}
\left|x_{1}\right|+|t|, \ldots,\left|x_{m}\right|+|t|,\left(x_{m+1}^{2}+t^{2}\right)^{1 / 2}, \ldots,\left(x_{n}^{2}+t^{2}\right)^{1 / 2} \in D \tag{1.6}
\end{equation*}
$$

We shall proceed to the complex transformation of above Theorem A in the following manner.

Let $\left(z_{1}, \ldots, z_{n}\right)$ be an element of \mathbb{C}^{n} and $\mathbb{R}^{2 n}$, the space of real coordinates. The transformation from real to the complex coordinates are given by $x_{k}=\frac{z_{k}+\bar{z}_{k}}{2}$, $y_{k}=\frac{z_{k}-\bar{z}_{k}}{2_{i}}$. We equip \mathbb{C}^{n} with the Euclidean metric of $\mathbb{R}^{2 n} ;$

$$
d s^{2}=\sum_{k=1}^{n}\left(d x_{k}^{2}+d y_{k}^{2}\right)=\sum_{k=1}^{n} d z_{k} \cdot d_{\bar{z}_{k}} .
$$

Let z_{k} be a point on the domain G_{R} for which $\left|a_{k} R_{k}\left(z_{k}, 0\right)\right|=\sup _{z_{k} \in G_{R}} \mid a_{k} R_{k}$ $\left(z_{k}, 0\right) \mid=C_{k}$. By a rotation, we can assume that $z_{k}^{2}=\left(x_{k}^{2}, 0, \ldots, 0\right)$. If $\widetilde{f}(w)=$ $f\left(w^{2}, 0, \ldots, 0\right)$ and $\widetilde{f}(w)=\sum_{l=0}^{\infty} a_{l} w^{2 l}$ is the Taylor series expansion of \widetilde{f} at the origin, then $\left|a_{k} x_{k}^{2 k}\right|=C_{k}$ and therefore we have the following theorem.
Theorem 1.4. Let $\phi(z)=\sum_{\|k\|=0}^{\infty} a_{k} z^{2 k}$ be entire in $\left(z_{1}^{2}, \ldots, z_{n}^{2}\right)$ and converge in a domain G_{R} that includes the origin. Then the series $u(z, t)=\sum_{\|k\|+0}^{\infty} a_{k} R_{k}(z, t)$ converges to an entire solution of the problem (1.1) at least in a region S where S is defined by $(z, t) \in S$ if and only if

$$
\left|z_{1}\right|+|t|, \ldots,\left|z_{m}+|t|,\left(z_{m+1}^{2}+t^{2}\right)^{1 / 2}, \ldots,\left(z_{n}^{2}+t^{2}\right)^{1 / 2} \in G_{R}\right.
$$

Let $\phi(z)=\sum_{\|k\|=0}^{\infty} a_{k} z^{2 k}$ be the power series expansion of the function $\phi(z)$. Then the maximum modulus of $u(z, t)$ and $\phi(z)$ are defined as in complex function theory [15, pp. 129, 132],

$$
\begin{gathered}
M_{f, G}(R)=\max _{z \in G_{R}}|f(z)| \\
M_{u, S}(R)=\max _{(z, t) \in S}|u(z, t)| .
\end{gathered}
$$

Following the usual definitions of order and type of an entire function of n-complex variables $\left(z_{1}^{2}, \ldots, z_{n}^{2}\right)$, the order ρ and type T of $u(z, t)$ are defined as in 4]

$$
\begin{gather*}
\rho(u)=\limsup _{R \rightarrow \infty} \frac{\log \log M_{u, S}(R)}{\log R} \tag{1.7}\\
T(u)=\limsup _{R \rightarrow \infty} \frac{\log M_{u, S}(R)}{R^{\rho(u)}} \tag{1.8}
\end{gather*}
$$

In this paper we characterize the order, lower order, type and lower type of entire function solutions of problem (1.1) in terms of a set $\left\{R_{k}(z, t)\right\}$ of multinomials for $n \geq 2$. Multinomials of this type have been constructed by Miles and Yong [12] when $z=x$ and $m=n$ or $m=0$. In these cases (1.1) reduces to either the generalized Euler-Poisson-Darboux or the generalized Beltrami equation. Gilbert and Howard [5, 6] discussed analyticity properties of solutions of special cases of (1.1). Bragg and Dettman obtained representation of analytic solutions of problem (1.1) for $z=x$ in terms of these multinomials for $n \geq 2$ [2] and for $n=1$ in [3]. It has been found [2] that $R_{k}(x, t), n \geq 2$, can be expressed as a convolution of n polynomials $R_{k_{j}}\left(x_{j}, t\right), j=1, \ldots, n$. For $n=1$ the corresponding $R_{k}(x, t)$ are defined in terms of Jacobi polynomials. The Growth estimates for the solutions of (1.1) in terms of multinomials $R_{k}(z, t)$ for $n \geq 2$ then permit the obtaining of global region of convergence from acknowledge of singularities of the given data function $\phi(z)$. It should be noted that the function $\phi(z)$ is the analytic continuation of its restriction to the axis of symmetry; i.e., $\phi(z)=u(z, 0)$. Using various
techniques, the characterizations of order and type of entire function solutions of similar problems were obtained by McCoy [13, 14] Kumar [8, 9, 10] and others for $n=1$. However, non of them have considered the case for $n \geq 2$.

2. Auxiliary Results

In this section we shall prove some auxiliary results which will be used in the sequel.

Lemma 2.1. If $u(z, t)=\sum_{\|k\|=0}^{\infty} a_{k} R_{k}(z, t)$ is an entire function solution of problem (1.1) in terms of a set $\left\{R_{k}(z, t)\right\}$ of multinomials corresponding to given data function $\phi(z)=\sum_{\|k\|=0}^{\infty} a_{k} z^{2 k}$ in 1.1 then ϕ and ϕ^{*} are also entire functions of $n-$ complex variables $\left(z_{1}^{2}, \ldots, z_{n}^{2}\right)$. Further,

$$
\begin{equation*}
[N(\varepsilon)]^{-1} M_{\phi, G}(R) \leq M_{u, S}\left(\varepsilon^{-1} R\right) \leq C M_{\phi^{*}, G}(R) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gathered}
\phi^{*}(z)=\sum_{\|k\|=0}^{\infty}\left|a_{k}\right|\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\} z_{1}^{2 k_{1}}, \ldots, z_{n}^{2 k_{n}}, \\
N(\varepsilon)=\sup \left\{N\left(\varepsilon e^{i \theta}, \xi\right): 0 \leq \theta \leq 2 \pi,-1 \leq \xi \leq 1,0<\varepsilon<1\right\}
\end{gathered}
$$

and C is a constant.
Proof. From Theorem 1.1 and 1.2, bearing in mind with the relation of [2, (3.1)], we obtain

$$
\begin{aligned}
|u(z, t)| \leq & \sum_{\|k\|=0}^{\infty}\left|a_{k}\right|\left\{\Gamma\left(\frac{a+1}{2 n}\right)\right\}^{n} \frac{2^{m} K^{n-m}}{\pi^{m / 2}}\left\{\prod_{j=1}^{m} k_{j} \frac{\Gamma\left(k_{j}+\left(\alpha_{j}+1\right) / 2\right)}{\Gamma\left(k_{j}-1 / 2\right)}\right\} \\
& \times\left\{\left|z_{j}\right|+|t|\right\}^{2 k_{j}}\left\{\prod_{j=m+1}^{n} \frac{k_{j}^{q_{j}} k_{j}!}{\Gamma\left(\left(k_{j}\right)+(a+1) / 2 n\right)}\left(z_{j}^{2}+t^{2}\right)^{k_{j}}\right\}
\end{aligned}
$$

where $q_{j}=\max \left(\left(\alpha_{j}-1\right) / 2,((a+1) / 2 n)-1,-1 / 2\right), j=m+1, \ldots, n$.
Using the relation $\Gamma(x+a) / \Gamma x \sim x^{a}$ as $x \rightarrow \infty$, we have

$$
\frac{\Gamma\left(k_{j}+\left(\alpha_{j}+1\right) / 2\right)}{\Gamma\left(k_{j}-1 / 2\right)} \sim\left(k_{j}-1 / 2\right)^{\left(\alpha_{j}+2\right) / 2}, \quad \frac{k_{j}^{q_{j}} k_{j}!}{\Gamma k_{j}+\frac{(a+1)}{2 n}} \sim k_{j}^{q_{j}+1}\left(k_{j}\right)^{(a+1) / 2 n}
$$

and we see that there exist constants C, p_{1}, \ldots, p_{n} with $p_{j}=p_{j}\left(\alpha_{j}\right), j=1, \ldots, m$ and $p_{j}=p_{j}\left(\alpha_{j}, a, n\right)$ for $j=m+1, \ldots, n$ such that

$$
\begin{align*}
|u(z, t)| \leq & \sum_{\|k\|=0}^{\infty}\left|a_{j}\right| C\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\}\left(\left|z_{1}\right|+|t|\right)^{2 k_{1}} \ldots\left(\left|z_{m}\right|+|t|\right)^{2 k_{m}} \tag{2.2}\\
& \times\left(z_{m+1}^{2}+t^{2}\right)^{k_{m+1}} \ldots\left(z_{n}^{2}+t^{2}\right)^{k_{n}}
\end{align*}
$$

Now, $|\phi(z)| \leq \sum_{\|k\|=0}^{\infty}\left|a_{k}\right|\left|z_{1}\right|^{2 k_{1}} \ldots\left|z_{n}\right|^{2 k_{n}}$, the series 2.2 converges for $z \in G_{R}$. But for $z \in G_{R}$, the series

$$
\sum_{\|k\|=0}^{\infty}\left|a_{k}\right|\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\}\left|z_{1}\right|^{2 k_{1}} \ldots\left|z_{n}\right|^{2 k_{n}}
$$

also converges. By Theorem 1.2, if $\phi(z)$ is entire in $\left(z_{1}^{2}, \ldots, z_{n}^{2}\right)$, then $u(z, t)$ converges to an entire solution of problem (1.1). We see that

$$
\lim _{\|k\| \rightarrow \infty}\left[\left|a_{k}\right| \prod_{j=1}^{n} k_{j}^{p_{j}}\right]^{1 /\|2 k\|}=\lim _{\|k\| \rightarrow \infty}\left|a_{k}\right|^{\frac{1}{\left\|^{2 k}\right\|}}=0
$$

Hence both ϕ and ϕ^{*} are entire.
Using (2.2) we obtain

$$
\begin{equation*}
M_{u, S}(R) \leq C \sum_{\|k\|=0}^{\infty}\left|a_{k}\right|\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\} R^{2 k_{n}}=C M_{\phi^{*}, G}(R) \tag{2.3}
\end{equation*}
$$

where

$$
\phi^{*}(z)=\sum_{\|k\|=0}^{\infty}\left|a_{k}\right|\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\} z_{1}^{2 k_{1}}, \ldots, z_{n}^{2 k_{n}}
$$

Now for reverse relation, we have

$$
\begin{gathered}
\phi(z)=\sum_{\|k\|=0}^{\infty} a_{k} z_{1}^{2 k_{1}} \ldots z_{n}^{2 k_{n}} \\
|\phi(z)| \leq \\
=\sum_{\|k\|=0}^{\infty}\left|a_{k}\right|\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\}\left|z_{1}\right|^{2 k_{1}} \ldots\left|z_{n}\right|^{2 k_{n}} \\
=\sum_{\|k\|=0}^{\infty}\left|a_{k}\right|\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\}\left[\left|z_{1}+|t|\right]^{2 k_{1}} \ldots\left\{\left|z_{m}\right|+|t|\right\}^{2 k_{m}}\right. \\
\\
\times\left[\left(z_{m+1}^{2}+t^{2}\right)^{1 / 2}\right]^{2 k_{m+1}} \ldots\left[\left(z_{n}^{2}+t^{2}\right)^{1 / 2}\right]^{2 k_{n}} \\
\\
\times\left[\frac{\left|z_{1}\right|}{\left|z_{1}\right|+|t|}\right]^{2 k_{1}} \cdots\left[\frac{\left|z_{m}\right|}{\left|z_{m}\right|+|t|}\right]^{2 k_{m}} \\
\\
\times\left[\frac{\left|z_{m+1}\right|}{\left(z_{m+1}^{2}+t^{2}\right)^{1 / 2}}\right]^{2 k_{m+1}} \cdots\left[\frac{\left|z_{n}\right|}{\left(z_{n}^{2}+t^{2}\right)^{1 / 2}}\right]^{2 k_{n}}
\end{gathered}
$$

This relation is valid globally, and leads to the estimates

$$
\begin{aligned}
|\phi(z)| & \leq M_{u, S}(R) N(\varepsilon), \varepsilon=(|z| / R)^{2}=\max _{1 \leq j \leq n}\left(\frac{\left|z_{j}\right|}{R_{j}}\right)^{2} \\
N(\varepsilon) & =\sup \left\{\left|N\left(\varepsilon e^{i \theta}, \xi\right)\right|: 0 \leq \theta \leq 2 \pi,-1 \leq \xi \leq 1\right\}
\end{aligned}
$$

For $z=\varepsilon R e^{i \theta}(\varepsilon$ real, $0<\varepsilon<1\}$, we have

$$
M_{\phi, G}(\varepsilon R) \leq M_{u, S}(R) N(\varepsilon)
$$

or

$$
\begin{equation*}
[N(\varepsilon)]^{-1} M_{\phi, G}(R) \leq M_{u, S}\left(\varepsilon^{-1} R\right) \tag{2.4}
\end{equation*}
$$

Combining 2.3 and 2.4 we obtain 2.1).
Lemma 2.2. Let $u(z, t)$ be an entire function solution of (1.1) in terms of a set $\left\{R_{k}(z, t)\right\}$ of multinomials corresponding to given data function $\phi(z)$ in 1.1). Then the orders and types of $u(z, t)$ and ϕ respectively are identical.

Proof. Let $\phi(z)=\sum_{\|k\|=0}^{\infty} a_{k} z_{1}^{2 k_{1}} \ldots z_{n}^{2 k_{n}}$ be an entire function of order $\rho(\phi)$ and type $T(\phi)$. Then it is well known [7, Thm. 1] that

$$
\begin{align*}
\rho(\phi) & =\limsup _{\|k\| \rightarrow \infty}\left\{\frac{\|2 k\| \log \|k\|}{-\log \left|a_{k}\right|}\right\} \tag{2.5}\\
(e \rho(\phi) T(\phi))^{1 / \rho(\phi)} & =\limsup _{\|k\| \rightarrow \infty}\left\{\|2 k\|^{1 / \rho(\phi)}\left[\left|a_{k}\right| d_{k}(G)\right]^{1 /\|2 k\|}\right\} . \tag{2.6}
\end{align*}
$$

Hence for the function $\phi^{*}(z)=\sum_{\|k\|=0}^{\infty}\left|a_{k}\right|\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\} z_{1}^{2 k_{1}} \ldots z_{n}^{2 k_{n}}$, we have

$$
\begin{aligned}
\frac{1}{\rho\left(\phi^{*}\right)} & =\liminf _{\|k\| \rightarrow \infty} \frac{\log \left[\left|a_{k}\right| \prod_{j=1}^{n} k_{j}^{p_{j}}\right]^{-1}}{2\|k\| \log \|k\|} \\
& =\liminf _{\|k\| \rightarrow \infty} \frac{\log \left|a_{k}\right|^{-1}-\log \left[\prod_{j=1}^{n} k_{j}^{p_{j}}\right]}{2\|k\| \log \|k\|} \\
& =\liminf _{\|k\| \rightarrow \infty} \frac{\log \left|a_{k}\right|^{-1}}{2\|k\| \log \|k\|} .
\end{aligned}
$$

Hence $\rho(\phi)=\rho\left(\phi^{*}\right)$. Since ϕ and ϕ^{*} have same order, using 2.6 we can easily show that $T(\phi)=T\left(\phi^{*}\right)$.

Now using the relation 2.1 with the definitions of order and type given by 1.7 and 1.8 , the proof is complete.

Lemma 2.3. If $\left|a_{k}\right| /\left|a_{k^{\prime}}\right|,\left\|k^{\prime}\right\|=\|k\|+1$, forms a non-decreasing function of k then $\left|\beta_{k}\right| /\left|\beta_{k^{\prime}}\right|$ also forms a non-decreasing function of k, where

$$
\begin{align*}
\beta_{k}= & a_{k}\left\{\Gamma\left(\frac{a+1}{2 n}\right)\right\}^{n} \frac{2^{n} K^{n-m}}{\pi^{m / 2}}\left\{\prod_{j=1}^{m} k_{j}\left(k_{j}-1 / 2\right)^{\left(\alpha_{j}+2\right) / 2}\right\} \\
& \times\left\{\prod_{j=m+1}^{n} k_{j}^{\left(q_{j}+1+(a+1) / 2 n\right)}\right\} . \tag{2.7}
\end{align*}
$$

Proof. We have

$$
\begin{aligned}
\frac{\left|\beta_{k}\right|}{\left|\beta_{k^{\prime}}\right|}= & a_{k}\left\{\Gamma\left(\frac{a+1}{2 n}\right)\right\}^{2} \frac{2^{n} K^{n-m}}{\pi^{m / 2}}\left\{\prod_{j=1}^{m} k_{j}\left(k_{j}-1 / 2\right)^{\left(\alpha_{j}+2\right) / 2}\right\} \\
& \times \frac{\left\{\prod_{j=m+1}^{n} k_{j}^{q_{j}+1+(a+1) / 2 n}\right\}}{a_{k+1}\left\{\Gamma\left(\frac{a+1}{2 n}\right)\right\}^{n} \frac{2^{n} K^{n-m}}{\pi^{m / 2}}\left\{\prod_{j=1}^{m}\left(k_{j}+1\right)\left(k_{j}+\frac{1}{2}\right)^{\left(\alpha_{j}+2\right) / 2}\right\}} \\
& \times \frac{1}{\left\{\prod_{j=m+1}^{n} k_{j}^{q_{j}+1+(a+1) / 2 n}\right\}} \\
= & \frac{a_{k}}{a_{k+1}} \frac{\prod_{j=1}^{m} k_{j}\left(k_{j}-\frac{1}{2}\right)^{\left(\alpha_{j}+2\right) / 2}\left\{\prod_{j=1}^{n}\left(k_{j}+1\right)\left(k_{j}+1 / 2\right)^{\left(\alpha_{j}+2\right) / 2}, \prod_{j=m+1}^{n}\left(k_{j}^{\left(q_{j}+1+(a+1) / 2 n\right)}\right\}\right.}{\left.\prod_{j}^{m}+1\right)^{\left(q_{j}+1+(a+1) / 2 n\right)}} .
\end{aligned}
$$

Let

$$
G(x)=\frac{\prod_{j=1}^{m} x_{j}\left(x_{j}-\frac{1}{2}\right)^{\left(\alpha_{j}+2\right) / 2} \prod_{j=m+1}^{n} x_{j}^{\left(q_{j}+1+(a+1) / 2 n\right)}}{\prod_{j=1}^{m}\left(x_{j}+1\right)\left(x_{j}+\frac{1}{2}\right)^{\left(\alpha_{j}+2\right) / 2} \prod_{j=m+1}^{n}\left(x_{j}+1\right)^{\left(q_{j}+1+(a+1) / 2 n\right)}}
$$

$$
\begin{aligned}
\log G(x)= & \sum_{j=1}^{m} \log \left[x_{j}\left(x_{j}-1 / 2\right)^{\left(\alpha_{j}+2\right) / 2}\right]+\sum_{j=m+1}^{n} \log x_{j}^{\left(q_{j}+1+(a+1) / 2 n\right)} \\
& -\sum_{j=1}^{m} \log \left(x_{j}+1\right)\left(x_{j}+\frac{1}{2}\right)^{\left(\alpha_{j}+2\right) / 2}-\sum_{j=m+1}^{n} \log \left(x_{j}+1\right)^{\left(q_{j}+1+(a+1) / 2 n\right)}
\end{aligned}
$$

By logarithmic differentiation, we obtain

$$
\begin{aligned}
\frac{G^{\prime}(x)}{G(x)}= & \sum_{j=1}^{m}\left(\frac{1}{x_{j}}+\frac{\left(\alpha_{j}+2\right)}{2\left(x_{j}-\frac{1}{2}\right)}\right)+\sum_{j=m+1}^{n} \frac{q_{j}+1+\frac{(a+1)}{2 n}}{x_{j}} \\
& -\sum_{j=1}^{m} \frac{1}{x_{j}+1} \frac{\left(\alpha_{j}+2\right)}{2\left(x_{j}+\frac{1}{2}\right)}-\sum_{j=m+1}^{n} \frac{q_{j}+1+\frac{(a+1)}{2 n}}{x_{j}+1}
\end{aligned}
$$

Let

$$
t\left(x_{j}\right)=\sum_{j=1}^{m} \frac{1}{x_{j}}+\frac{\left(\alpha_{j}+2\right)}{2\left(x_{j}-\frac{1}{2}\right)}+\sum_{j=m+1}^{n} \frac{q_{j}+1+\frac{(a+1)}{2 n}}{x_{j}} .
$$

Then $t\left(x_{j}\right)-t\left(x_{j+1}\right)>0$ for any $x_{j}>0$. Hence $t\left(x_{j}\right)$ is decreasing function and subsequently $G^{\prime}\left(x_{j}\right)>0$ for $x_{j}>0$. Hence $\left|\beta_{k}\right| /\left|\beta_{k^{\prime}}\right|$ is non-decreasing if $\left|a_{k}\right| /\left|a_{k^{\prime}}\right|$ is non-decreasing.

3. Main Results

Theorem 3.1. Let $u(z, t)$ be an entire function converges to solution of problem (1.1) corresponding to given data function $\phi(z)$ in 1.1 having order $\rho(u)$. Then

$$
\begin{equation*}
\rho(u)=\limsup _{\|k\| \rightarrow \infty} \frac{\|2 k\| \log \|k\|}{-\log \left|\beta_{k}\right|} \tag{3.1}
\end{equation*}
$$

where β_{k} is given by (2.7).
Proof. It is well known [7, Thm. 1] that if $f(z)=\sum_{\|k\|=0}^{\infty} a_{k} z^{2 k}$ be an entire function of order $\rho(f)$ then

$$
\begin{equation*}
\rho(f)=\limsup _{\|k\| \rightarrow \infty} \frac{\|2 k\| \log \|k\|}{-\log \left|a_{k}\right|} \tag{3.2}
\end{equation*}
$$

Hence for the function $u(z, 0)=\sum_{\|k\|=0}^{\infty} \beta_{k} z_{1}^{2 k_{1}} \ldots z_{n}^{2 k_{n}}$, we have

$$
\begin{aligned}
\frac{1}{\rho(u)} & =\liminf _{\|k\| \rightarrow \infty} \frac{-\log \left|\beta_{k}\right|}{\|2 k\| \log \|2 k\|} \\
& =\liminf _{\|k\| \rightarrow \infty} \frac{\log \left|a_{k}\right|^{-1}-\log \left[\left\{\Gamma\left(\frac{(a+1)}{2 n}\right)\right\}^{n} \frac{2^{n} K^{n-m}}{\pi^{m / 2}}\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\}\right]}{\|2 k\| \log \|2 k\|} \\
& =\liminf _{\|k\| \rightarrow \infty} \frac{\log \left|a_{k}\right|^{-1}}{\|2 k\| \log \|2 k\|}-\frac{\log \left[\left\{\Gamma\left(\frac{a+1}{2 n}\right)\right\}^{n} \frac{2^{n} K^{n-m}}{\pi^{m / 2}}\left\{\prod_{j=1}^{n} k_{j}^{p_{j}}\right\}\right]^{1 /\|2 k\|}}{\log \|2 k\|} \\
& =\liminf _{\|k\| \rightarrow \infty} \frac{\log \left|a_{k}\right|^{-1}}{\|2 k\| \log \|2 k\|} .
\end{aligned}
$$

Now using $\sqrt{3.2}$ for data function $\phi(z)$, we get the required results.

Theorem 3.2. Let $u(z, t)$ be an entire function converges to solution of 1.1) corresponding to given data function $\phi(z)$ in 1.1) having type $T(u)$. Then

$$
(e \rho(u) T(u))^{1 / \rho(u)}=\limsup _{\|k\| \rightarrow \infty}\left\{\|2 k\|^{1 / \rho(u)}\left[\left|\beta_{k}\right| d_{k}(G)\right]^{1 /\|2 k\|}\right\},(0<\rho(u)<\infty)
$$

Proof. For an entire function $f(z)=\sum_{\|k\|=0}^{\infty} a_{k} z^{2 k}$, Gol'dberg [7] Thm. 1] obtained type in terms of the coefficients of its Taylor series expansion as

$$
\begin{equation*}
(e \rho(f) T(f))^{1 / \rho(f)}=\limsup _{\|k\| \rightarrow \infty}\left\{\|2 k\|^{1 / \rho(f)}\left[\left|a_{k}\right| d_{k}(G)\right]^{1 /\|2 k\|},(0<\rho(f)<\infty)\right\} . \tag{3.3}
\end{equation*}
$$

It can be seen that

$$
\begin{equation*}
\left[\left|\beta_{k}\right| d_{k}(G)\right]^{1 /\|2 k\|} \rightarrow\left[\left|a_{k}\right| d_{k}(G)\right]^{1 /\|2 k\|} \quad \text { as }\|k\| \rightarrow \infty \tag{3.4}
\end{equation*}
$$

Hence the result follows by using (3.3) for data function $\phi(z)$ and taking into account the equation 3.4.

In analogy with the definitions of order $\rho(u)$ and type $T(u)$, we define lower order $\lambda(u)$ and lower type $t(u)$ as

$$
\begin{gathered}
\lambda(u)=\liminf _{R \rightarrow \infty} \frac{\log \log M_{u, S}(R)}{\log R} \\
t(u)=\liminf _{R \rightarrow \infty} \frac{\log M_{u, S}(R)}{R^{\rho(u)}}, 0<\rho(u)<\infty
\end{gathered}
$$

Theorem 3.3. Let $u(z, t)$ be an entire function converges to the problem 1.1) corresponding to data function $\phi(z)$ in 1.1 having lower order $\lambda(u)$. Then

$$
\begin{equation*}
\lambda(u) \geq \liminf _{\|k\| \rightarrow \infty} \frac{\|2 k\| \log \|2 k\|}{-\log \left|\beta_{k}\right|} \tag{3.5}
\end{equation*}
$$

Also if $\left|\beta_{k}\right| /\left|\beta_{k^{\prime}}\right|$, where $\left\|k^{\prime}\right\|=\|k\|+1$, is a non-decreasing function of k, then equality holds in 3.5).
Proof. For entire function $f(z)=\sum_{\| k=0}^{\infty} a_{k} z_{1}^{2 k_{1}} \ldots z_{n}^{2 k_{n}}$, if $\left|a_{k}\right| /\left|a_{k^{\prime}}\right|$ forms a nondecreasing function of k then we have [11, Thm. 1]

$$
\begin{equation*}
\lambda(f)=\liminf _{\|k\| \rightarrow \infty} \frac{\|2 k\| \log \|2 k\|}{\log \left|a_{k}\right|^{-1}} . \tag{3.6}
\end{equation*}
$$

Let $\left|\beta_{k}\right| /\left|\beta_{k^{\prime}}\right|$ forms a non-decreasing function of k for $k>k_{0}$. Applying Lemma 2.3 and 3.6 to $u(z, 0)=\sum_{\|k\|=0}^{\infty} \beta_{k} z_{1}^{2 k_{1}} \ldots z_{n}^{2 k_{n}}$, we obtain

$$
\frac{1}{\lambda(u)}=\limsup _{\|k\| \rightarrow \infty} \frac{\log \left|a_{k}\right|^{-1}-\log \left[C \prod_{j=1}^{n} k_{j}^{p_{j}}\right]}{\|2 k\| \log \|2 k\|}=\limsup _{\|k\| \rightarrow \infty} \frac{\log \left|a_{k}\right|^{-1}}{\|2 k\| \log \|2 k\|}
$$

Then $\lambda(u)=\lambda(\phi)$.
In a similar manner we can prove the following theorem.
Theorem 3.4. Let $u(z, t)$ be an entire function converging to a solution of 1.1 corresponding to data function $\phi(z)$ in (1.1) having lower type $t(u)$. Then

$$
\begin{equation*}
t(u) \geq \liminf _{\|k\| \rightarrow \infty} \frac{\|2 k\|}{e \rho(u)}\left|\beta_{k}\right|^{\rho(u) /\|2 k\|} \tag{3.7}
\end{equation*}
$$

Also, if $\left|\beta_{k}\right| /\left|\beta_{k^{\prime}}\right|$, where $\left\|k^{\prime}\right\|=\|k\|+1$, is a non-decreasing function of $k>k_{0}$, then equality holds in (3.7).

References

[1] L. R. Bragg; Complex transformations of solutions of generalized initial value heat problems, Rocky Mountain J. Math. 20 No. 3(1990), 677-705.
[2] L. R. Bragg, J .W. Dettman; Multinomial representation of solutions of a class of singular initial value problems, Proc. Amer. Math. Soc. 21(1969), 629-634.
[3] L. R. Bragg, J.W. Dettman; Expansions of solutions of certain hyperbolic and elliptic problems in terms of Jacobi polynomials, Duke Math. J. 36, No. 1 (1969), 129-144.
[4] B. A. Fuks; Introduction to the Theory of Analytic Functions of Several Complex Variables, Translation Math. Monographs \& Amer. Math. Soc. Providence, RI 1963.
[5] R. P. Gilbert; An investigation of the analytic properties of solutions to the generalized axially symmetric reduced wave equation in $n+1$ variables, with an application to the theory of potential scattering, SIAM J. Math. 16 (1968), 30-50.
[6] R. P. Gilbert, H. C. Howard; On solutions of the generalized bi-axially symmetric Helmholts equation generated by integral operators, J. Reine Angew. Math. 218 (1965), 109-120.
[7] A. A. Gol'dberg; Elementary remarks on the formulas defining order and type of functions of several variable, (Russian) Akad. Nauk. Armjan SSR, Dokl. 29 (1959), 145-151.
[8] D. Kumar; On the (p, q)-growth of entire function solution of Helmholtz equation, J. Nonlinear Sci. Appl. 4 (2011), No.1, 5-14.
[9] D. Kumar; Growth and Chebyshev approximation of entire function solution of Helmholtz equation in R^{2}, Europian J. Pure and Appl. Math. 3, No. 6 (2010), 1062-1069.
[10] D. Kumar; Ultraspherical expansions of generalized bi-axially symmetric potentials and pseudo-analytic functions, Complex Variables and Elliptic Equations, Vol. 53, Issue 1 (2008), 53-64.
[11] S. Kumar, G.S. Srivastava; Maximum term and lower order of entire functions of several complex variables, Bulletin of Math. Anal. and Appl. 3(1) (2011), 156-164.
[12] E. P. Miles, Jr.; E.C. Young; Basic sets of polynomial for generalized Beltrami and Euler-Poisson-Darboux equations and their iterates, Proc. Amer. Math. Soc. 18 (1567), 981-986.
[13] P. A. McCoy; Polynomial approximation of generalized biaxisymmetric potentials, J. Approx. Theory, 25 (1979), 153-168.
[14] P. A. McCoy; Polynomial approximation and growth of generalized axisymmetric potentials, Can. J. Math. 31, No. 1 (1979), 49-59.
[15] A. R. Reddy; Approximation of an entire function, J. Approx. Theory, 3 (1970), 128-137.
Devendra Kumar
Department of Mathematics, Research and Post Graduate Studies, M. M. H. College, Model Town, Ghaziabad-201001, U. P., India

E-mail address: d_kumar001@rediffmail.com
Mohammed Harfaoui
University Hassan II Mohammedia, Laboratory of Mathematics, Criptography and Mechanical F. S. T., BP 146, Mohammedia 20650 Morocco

E-mail address: mharfaoui04@yahoo.fr

