Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 143, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

GROWTH OF ENTIRE SOLUTIONS OF SINGULAR INITIAL-VALUE PROBLEM IN SEVERAL COMPLEX VARIABLES

DEVENDRA KUMAR, MOHAMMED HARFAOUI

ABSTRACT. In this article, we characterize the order, type, lower order, and lower type of entire function solutions to a class of singular initial-value problems, in terms of multinomials for $n \geq 2$.

1. INTRODUCTION

Let $z_j = x_j + iy_j$ denote a complex variable, $1 \le j \le n$. Let $z = (z_1, \ldots, z_n)$, $z^{2k} = z_1^{2k_1}, \ldots, z_n^{2k_n}$ where k is the vector (k_1, \ldots, k_n) with k_j a nonnegative integer $(j = 1, \ldots, n)$ and let $||k|| = k_1 + \cdots + k_n$. Let $\phi(z)$ be an entire function of z_1^2, \ldots, z_n^2 in a domain D that includes the origin and let $\Delta_j = D_{z_j}^2 + \frac{\alpha_j}{z_j} D_{z_j}, \alpha_j \ge 0, j = 1, \ldots, n$. Also, let a > -1 and $\varepsilon_j = 1$ if $j = 1, \ldots, m$ and $\varepsilon_j = -1$ if $j = m + 1, \ldots, n$. Now consider the representations of an entire function solutions of the problem

$$\left(D_t^2 + \frac{a}{t}D_t\right)u(z,t) = \sum_{j=1}^n \varepsilon_j \Delta_j u(z,t)$$
(1.1)

with initial data

$$u(z,0) = \phi(z), \quad u_t(z,0) = 0$$

in terms of a set of associated multinomials $\{R_k(z,t)\}$ throughout (z,t) space, t real. These multinomials are solutions of (1.1) corresponding to the choice of $\phi(z) = z^{2k}$ in (1.1).

Let G be a region in \mathbb{R}^n (positive hyper octant) and let $G_R \subset \mathbb{C}^n$ denote the region obtained from G by a similarity transformation about the origin, with ratio of similitude R.

Definition 1.1. Let $\phi(z) = \sum_{\|k\|=0}^{\infty} a_k z_n^{2k_n}$ be an entire function of several complex variables. Then $\phi(z)$ is of growth (ρ, T) if

$$T = \limsup_{\|k\| \to \infty} \frac{\|2k\|}{e\rho} [|a_k| d_k(G)]^{\rho/\|2k\|}, \quad (0 < \rho < \infty)$$
(1.2)

²⁰⁰⁰ Mathematics Subject Classification. 30B10, 30D20.

Key words and phrases. Entire function; initial-value problem; multinomials; order and type. ©2012 Texas State University - San Marcos.

Submitted June 22, 2012. Published August 20, 2012.

where

$$d_k(G) = \max_{R \in G} (R^{2k}); \quad R^{2k} = R_1^{2k_1}, \dots, R_n^{2k_n}.$$

This implies the existence of a positive constant M such that

$$|\phi(z)| \le M e^{T|z^2|^{\rho}} \quad \forall z \in \mathbb{C}^n.$$

Using (1.2), for each $\varepsilon > 0$ there exists a positive integer k_0 such that if $k \ge k_0$, then

$$|a_k|d_k(G) \le \left[\frac{e\rho(T+\varepsilon)}{\|2k\|}\right]^{\|2k\|/rho}.$$
(1.3)

We can easily estimate, from [1, (4.14)], that

$$|R_k(z,t)| \le \left(\frac{\|2k\|}{\rho T}\right)^{\|2k\|/rho} \overline{M}(\rho,T) e^{-\|2k\|/\rho} e^{K|t| + \sum_{j=1}^n T_j |z_j^2|^{\rho_j}}, \qquad (1.4)$$

where

$$\overline{M}(\rho,T) = \int_0^\infty e^{-\sigma + T|\sigma^2|^{\rho}} d\sigma,$$

and K is the sum of the absolute values of the coefficients of multinomial and $M(\rho, T)$ is a generic constant depending only on the $\rho'_j s$ and $T'_j s$.

Now let

$$u(z,t) = \sum_{\|k\|=0}^{\infty} a_k R_k(z,t)$$

or

$$|u(z,t)| \le \sum_{\|k\|=0}^{N} |a_k| |R_k(z,t)| + \sum_{\|k\|=N+1}^{\infty} |a_k| |R_k(z,t)|.$$
(1.5)

Using the bound (1.5) on $|R_k(z,t)|$ and the estimate on $|a_k|d_k(G)$ from (1.3), we see that the bound on second sum in (1.5) is given by

$$\frac{K(\rho,T)}{d_k(G)}e^{K|t|+\sum_{j=1}^n T_j|z_j^2|^{\rho_j}}\sum_{\|k\|=N+1}^{\infty} \left(\frac{T+\varepsilon}{T}\right)^{\|2k\|/\rho}.$$

Since the series of constants in (1.5) converges, it follows that the series $u(z,t) = \sum_{\|k\|=0}^{\infty} a_k R^k(z,t)$ converges for all *n* complex variables (z_1, \ldots, z_n) and real *t* and uniformly so in compact subsets of (z,t) space.

Now we can establish a theorem.

Theorem 1.2. Let $\phi(z) = \sum_{\|k\|=0}^{\infty} a_k z_1^{2k_1}, \ldots, z_n^{2k_n}$ be entire in (z_1^2, \ldots, z_n^2) and converge in a domain $G_r: z \in \mathbb{C}^n; |z|^2 = \max_{i \le j \le n} |z_j|^2 < R^2, R > 0$ is a fixed positive real. Then the series $u(z,t) = \sum_{\|k\|=0}^{\infty} a_k R_k(z,t)$ converges for all n-complex variables (z_1, \ldots, z_n) and real t and uniformly so in compact subsets of (z, t) space.

Bragg and Dettman [2] proved the following theorem.

Theorem 1.3. Let $\phi(x) = \sum_{\|k\|=0}^{\infty} a_k x^{2k}$ be analytic in (x_1^2, \ldots, x_n^2) and converge in a domain D that includes the origin. Then the series $\sum_{\|k\|=0}^{\infty} a_k P_k(x,t)$ converges to an analytic solution of the problem (1.1) replacing z by x, at least in region S where S is defined by $(x,t) \in S$ if and only if

$$|x_1| + |t|, \dots, |x_m| + |t|, (x_{m+1}^2 + t^2)^{1/2}, \dots, (x_n^2 + t^2)^{1/2} \in D.$$
 (1.6)

EJDE-2012/143

We shall proceed to the complex transformation of above Theorem A in the following manner.

Let (z_1, \ldots, z_n) be an element of \mathbb{C}^n and \mathbb{R}^{2n} , the space of real coordinates. The transformation from real to the complex coordinates are given by $x_k = \frac{z_k + \overline{z}_k}{2}$, $y_k = \frac{z_k - \overline{z}_k}{2}$. We equip \mathbb{C}^n with the Euclidean metric of \mathbb{R}^{2n} ;

$$ds^{2} = \sum_{k=1}^{n} (dx_{k}^{2} + dy_{k}^{2}) = \sum_{k=1}^{n} dz_{k} . d_{\overline{z}_{k}}.$$

Let z_k be a point on the domain G_R for which $|a_k R_k(z_k, 0)| = \sup_{z_k \in G_R} |a_k R_k(z_k, 0)| = C_k$. By a rotation, we can assume that $z_k^2 = (x_k^2, 0, \dots, 0)$. If $\tilde{f}(w) = f(w^2, 0, \dots, 0)$ and $\tilde{f}(w) = \sum_{l=0}^{\infty} a_l w^{2l}$ is the Taylor series expansion of \tilde{f} at the origin, then $|a_k x_k^{2k}| = C_k$ and therefore we have the following theorem.

Theorem 1.4. Let $\phi(z) = \sum_{\|k\|=0}^{\infty} a_k z^{2k}$ be entire in (z_1^2, \ldots, z_n^2) and converge in a domain G_R that includes the origin. Then the series $u(z,t) = \sum_{\|k\|+0}^{\infty} a_k R_k(z,t)$ converges to an entire solution of the problem (1.1) at least in a region S where S is defined by $(z,t) \in S$ if and only if

$$|z_1| + |t|, \dots, |z_m + |t|, \ (z_{m+1}^2 + t^2)^{1/2}, \dots, (z_n^2 + t^2)^{1/2} \in G_R.$$

Let $\phi(z) = \sum_{\|k\|=0}^{\infty} a_k z^{2k}$ be the power series expansion of the function $\phi(z)$. Then the maximum modulus of u(z,t) and $\phi(z)$ are defined as in complex function theory [15, pp. 129, 132],

$$M_{f,G}(R) = \max_{z \in G_R} |f(z)|,$$

$$M_{u,S}(R) = \max_{\substack{(z,t) \in S}} |u(z,t)|.$$

Following the usual definitions of order and type of an entire function of *n*-complex variables (z_1^2, \ldots, z_n^2) , the order ρ and type *T* of u(z, t) are defined as in [4]

$$\rho(u) = \limsup_{R \to \infty} \frac{\log \log M_{u,S}(R)}{\log R},$$
(1.7)

$$T(u) = \limsup_{R \to \infty} \frac{\log M_{u,S}(R)}{R^{\rho(u)}}.$$
(1.8)

In this paper we characterize the order, lower order, type and lower type of entire function solutions of problem (1.1) in terms of a set $\{R_k(z,t)\}$ of multinomials for $n \ge 2$. Multinomials of this type have been constructed by Miles and Yong [12] when z = x and m = n or m = 0. In these cases (1.1) reduces to either the generalized Euler-Poisson-Darboux or the generalized Beltrami equation. Gilbert and Howard [5, 6] discussed analyticity properties of solutions of special cases of (1.1). Bragg and Dettman obtained representation of analytic solutions of problem (1.1) for z = x in terms of these multinomials for $n \ge 2$ [2] and for n = 1 in [3]. It has been found [2] that $R_k(x,t), n \ge 2$, can be expressed as a convolution of n polynomials $R_{k_j}(x_j,t), j = 1, \ldots, n$. For n = 1 the corresponding $R_k(x,t)$ are defined in terms of Jacobi polynomials. The Growth estimates for the solutions of (1.1) in terms of multinomials $R_k(z,t)$ for $n \ge 2$ then permit the obtaining of global region of convergence from acknowledge of singularities of the given data function $\phi(z)$. It should be noted that the function $\phi(z)$ is the analytic continuation of its restriction to the axis of symmetry; i.e., $\phi(z) = u(z, 0)$. Using various techniques, the characterizations of order and type of entire function solutions of similar problems were obtained by McCoy [13, 14] Kumar [8, 9, 10] and others for n = 1. However, non of them have considered the case for $n \ge 2$.

2. Auxiliary Results

In this section we shall prove some auxiliary results which will be used in the sequel.

Lemma 2.1. If $u(z,t) = \sum_{\|k\|=0}^{\infty} a_k R_k(z,t)$ is an entire function solution of problem (1.1) in terms of a set $\{R_k(z,t)\}$ of multinomials corresponding to given data function $\phi(z) = \sum_{\|k\|=0}^{\infty} a_k z^{2k}$ in (1.1) then ϕ and ϕ^* are also entire functions of n-complex variables (z_1^2, \ldots, z_n^2) . Further,

$$[N(\varepsilon)]^{-1}M_{\phi,G}(R) \le M_{u,S}(\varepsilon^{-1}R) \le CM_{\phi^*,G}(R)$$
(2.1)

where

$$\phi^*(z) = \sum_{\|k\|=0}^{\infty} |a_k| \left\{ \prod_{j=1}^n k_j^{p_j} \right\} z_1^{2k_1}, \dots, z_n^{2k_n},$$
$$N(\varepsilon) = \sup\{ N(\varepsilon e^{i\theta}, \xi) : 0 \le \theta \le 2\pi, -1 \le \xi \le 1, 0 < \varepsilon < 1 \}$$

and C is a constant.

Proof. From Theorem 1.1 and 1.2, bearing in mind with the relation of [2, (3.1)], we obtain

$$\begin{aligned} |u(z,t)| &\leq \sum_{\|k\|=0}^{\infty} |a_k| \Big\{ \Gamma\left(\frac{a+1}{2n}\right) \Big\}^n \frac{2^m K^{n-m}}{\pi^{m/2}} \Big\{ \prod_{j=1}^m k_j \frac{\Gamma(k_j + (\alpha_j + 1)/2)}{\Gamma(k_j - 1/2)} \Big\} \\ &\times \{|z_j| + |t|\}^{2k_j} \Big\{ \prod_{j=m+1}^n \frac{k_j^{q_j} k_j!}{\Gamma((k_j) + (a+1)/2n)} (z_j^2 + t^2)^{k_j} \Big\} \end{aligned}$$

where $q_j = \max((\alpha_j - 1)/2, ((a+1)/2n) - 1, -1/2), j = m+1, \dots, n.$ Using the relation $\Gamma(x+a)/\Gamma x \sim x^a$ as $x \to \infty$, we have

$$\frac{\Gamma(k_j + (\alpha_j + 1)/2)}{\Gamma(k_j - 1/2)} \sim (k_j - 1/2)^{(\alpha_j + 2)/2}, \quad \frac{k_j^{q_j} k_j!}{\Gamma k_j + \frac{(a+1)}{2n}} \sim k_j^{q_j + 1} (k_j)^{(a+1)/2n}$$

and we see that there exist constants C, p_1, \ldots, p_n with $p_j = p_j(\alpha_j), j = 1, \ldots, m$ and $p_j = p_j(\alpha_j, a, n)$ for $j = m + 1, \ldots, n$ such that

$$|u(z,t)| \leq \sum_{\|k\|=0}^{\infty} |a_j| C \Big\{ \prod_{j=1}^n k_j^{p_j} \Big\} (|z_1| + |t|)^{2k_1} \dots (|z_m| + |t|)^{2k_m} \times (z_{m+1}^2 + t^2)^{k_{m+1}} \dots (z_n^2 + t^2)^{k_n}.$$
(2.2)

Now, $|\phi(z)| \leq \sum_{\|k\|=0}^{\infty} |a_k| |z_1|^{2k_1} \dots |z_n|^{2k_n}$, the series (2.2) converges for $z \in G_R$. But for $z \in G_R$, the series

$$\sum_{\|k\|=0}^{\infty} |a_k| \Big\{ \prod_{j=1}^n k_j^{p_j} \Big\} |z_1|^{2k_1} \dots |z_n|^{2k_n}$$

EJDE-2012/143

also converges. By Theorem 1.2, if $\phi(z)$ is entire in (z_1^2, \ldots, z_n^2) , then u(z, t) converges to an entire solution of problem (1.1). We see that

$$\lim_{\|k\|\to\infty} \left[|a_k| \prod_{j=1}^n k_j^{p_j} \right]^{1/\|2k\|} = \lim_{\|k\|\to\infty} |a_k|^{\frac{1}{\|2k\|}} = 0.$$

Hence both ϕ and ϕ^* are entire.

Using (2.2) we obtain

$$M_{u,S}(R) \le C \sum_{\|k\|=0}^{\infty} |a_k| \Big\{ \prod_{j=1}^n k_j^{p_j} \Big\} R^{2k_n} = C M_{\phi^*,G}(R)$$
(2.3)

where

$$\phi^*(z) = \sum_{\|k\|=0}^{\infty} |a_k| \Big\{ \prod_{j=1}^n k_j^{p_j} \Big\} z_1^{2k_1}, \dots, z_n^{2k_n}.$$

Now for reverse relation, we have

$$\begin{split} \phi(z) &= \sum_{\|k\|=0}^{\infty} a_k z_1^{2k_1} \dots z_n^{2k_n} \\ |\phi(z)| &\leq \sum_{\|k\|=0}^{\infty} |a_k| \Big\{ \prod_{j=1}^n k_j^{p_j} \Big\} |z_1|^{2k_1} \dots |z_n|^{2k_n} \\ &= \sum_{\|k\|=0}^{\infty} |a_k| \Big\{ \prod_{j=1}^n k_j^{p_j} \Big\} [|z_1 + |t|]^{2k_1} \dots \{|z_m| + |t|\}^{2k_m} \\ &\times \Big[\Big(z_{m+1}^2 + t^2 \Big)^{1/2} \Big]^{2k_{m+1}} \dots \Big[\big(z_n^2 + t^2 \big)^{1/2} \Big]^{2k_n} \\ &\times \Big[\frac{|z_1|}{|z_1| + |t|} \Big]^{2k_1} \dots \Big[\frac{|z_m|}{|z_m| + |t|} \Big]^{2k_m} \\ &\times \Big[\frac{|z_{m+1}|}{(z_{m+1}^2 + t^2)^{1/2}} \Big]^{2k_{m+1}} \dots \Big[\frac{|z_n|}{(z_n^2 + t^2)^{1/2}} \Big]^{2k_n} . \end{split}$$

This relation is valid globally, and leads to the estimates

$$\begin{aligned} |\phi(z)| &\leq M_{u,S}(R) N(\varepsilon), \varepsilon = (|z|/R)^2 = \max_{1 \leq j \leq n} \left(\frac{|z_j|}{R_j}\right)^2, \\ N(\varepsilon) &= \sup\{|N(\varepsilon e^{i\theta}, \xi)| : 0 \leq \theta \leq 2\pi, -1 \leq \xi \leq 1\}. \end{aligned}$$

For $z = \varepsilon R e^{i\theta} (\varepsilon \text{ real}, 0 < \varepsilon < 1)$, we have

$$M_{\phi,G}(\varepsilon R) \le M_{u,S}(R)N(\varepsilon)$$

or

$$[N(\varepsilon)]^{-1}M_{\phi,G}(R) \le M_{u,S}(\varepsilon^{-1}R).$$
(2.4)

Combining (2.3) and (2.4) we obtain (2.1).

Lemma 2.2. Let u(z,t) be an entire function solution of (1.1) in terms of a set $\{R_k(z,t)\}$ of multinomials corresponding to given data function $\phi(z)$ in (1.1). Then the orders and types of u(z,t) and ϕ respectively are identical.

Proof. Let $\phi(z) = \sum_{\|k\|=0}^{\infty} a_k z_1^{2k_1} \dots z_n^{2k_n}$ be an entire function of order $\rho(\phi)$ and type $T(\phi)$. Then it is well known [7, Thm. 1] that

$$\rho(\phi) = \limsup_{\|k\| \to \infty} \left\{ \frac{\|2k\| \log \|k\|}{-\log |a_k|} \right\},$$
(2.5)

$$(e\rho(\phi)T(\phi))^{1/\rho(\phi)} = \limsup_{\|k\| \to \infty} \left\{ \|2k\|^{1/\rho(\phi)} [|a_k|d_k(G)]^{1/\|2k\|} \right\}.$$
 (2.6)

Hence for the function $\phi^*(z) = \sum_{\|k\|=0}^{\infty} |a_k| \left\{ \prod_{j=1}^n k_j^{p_j} \right\} z_1^{2k_1} \dots z_n^{2k_n}$, we have

$$\frac{1}{\rho(\phi^*)} = \liminf_{\|k\| \to \infty} \frac{\log[|a_k| \prod_{j=1}^n k_j^{p_j}]^{-1}}{2\|k\| \log \|k\|}$$
$$= \liminf_{\|k\| \to \infty} \frac{\log |a_k|^{-1} - \log[\prod_{j=1}^n k_j^{p_j}]}{2\|k\| \log \|k\|}$$
$$= \liminf_{\|k\| \to \infty} \frac{\log |a_k|^{-1}}{2\|k\| \log \|k\|}.$$

Hence $\rho(\phi) = \rho(\phi^*)$. Since ϕ and ϕ^* have same order, using (2.6) we can easily show that $T(\phi) = T(\phi^*)$.

Now using the relation (2.1) with the definitions of order and type given by (1.7) and (1.8), the proof is complete. $\hfill \Box$

Lemma 2.3. If $|a_k|/|a_{k'}|$, ||k'|| = ||k|| + 1, forms a non-decreasing function of k then $|\beta_k|/|\beta_{k'}|$ also forms a non-decreasing function of k, where

$$\beta_{k} = a_{k} \left\{ \Gamma\left(\frac{a+1}{2n}\right) \right\}^{n} \frac{2^{n} K^{n-m}}{\pi^{m/2}} \left\{ \prod_{j=1}^{m} k_{j} (k_{j} - 1/2)^{(\alpha_{j}+2)/2} \right\} \times \left\{ \prod_{j=m+1}^{n} k_{j}^{(q_{j}+1+(a+1)/2n)} \right\}.$$
(2.7)

Proof. We have

$$\begin{split} \frac{|\beta_k|}{|\beta_{k'}|} &= a_k \Big\{ \Gamma\left(\frac{a+1}{2n}\right) \Big\}^2 \frac{2^n K^{n-m}}{\pi^{m/2}} \Big\{ \prod_{j=1}^m k_j (k_j - 1/2)^{(\alpha_j + 2)/2} \Big\} \\ &\times \frac{\Big\{ \prod_{j=m+1}^n k_j^{q_j + 1 + (a+1)/2n} \Big\}}{a_{k+1} \Big\{ \Gamma\left(\frac{a+1}{2n}\right) \Big\}^n \frac{2^n K^{n-m}}{\pi^{m/2}} \Big\{ \prod_{j=1}^m (k_j + 1) \left(k_j + \frac{1}{2}\right)^{(\alpha_j + 2)/2} \Big\} \\ &\times \frac{1}{\Big\{ \prod_{j=m+1}^n k_j^{q_j + 1 + (a+1)/2n} \Big\}} \\ &= \frac{a_k}{a_{k+1}} \frac{\prod_{j=1}^m k_j \left(k_j - \frac{1}{2}\right)^{(\alpha_j + 2)/2} \Big\{ \prod_{j=m+1}^n k_j^{(q_j + 1 + (a+1)/2n)} \Big\}}{\prod_{j=1}^m (k_j + 1)(k_j + 1/2)^{(\alpha_j + 2)/2}, \prod_{j=m+1}^n (k_j + 1)^{(q_j + 1 + (a+1)/2n)}}. \end{split}$$

Let

$$G(x) = \frac{\prod_{j=1}^{m} x_j (x_j - \frac{1}{2})^{(\alpha_j + 2)/2} \prod_{j=m+1}^{n} x_j^{(q_j + 1 + (a+1)/2n)}}{\prod_{j=1}^{m} (x_j + 1)(x_j + \frac{1}{2})^{(\alpha_j + 2)/2} \prod_{j=m+1}^{n} (x_j + 1)^{(q_j + 1 + (a+1)/2n)}}$$

EJDE-2012/143

$$\log G(x) = \sum_{j=1}^{m} \log[x_j(x_j - 1/2)^{(\alpha_j + 2)/2}] + \sum_{j=m+1}^{n} \log x_j^{(q_j + 1 + (a+1)/2n)} - \sum_{j=1}^{m} \log(x_j + 1)(x_j + \frac{1}{2})^{(\alpha_j + 2)/2} - \sum_{j=m+1}^{n} \log(x_j + 1)^{(q_j + 1 + (a+1)/2n)}$$

By logarithmic differentiation, we obtain

$$\frac{G'(x)}{G(x)} = \sum_{j=1}^{m} \left(\frac{1}{x_j} + \frac{(\alpha_j + 2)}{2(x_j - \frac{1}{2})} \right) + \sum_{\substack{j=m+1\\ j=m+1}}^{n} \frac{q_j + 1 + \frac{(a+1)}{2n}}{x_j} - \sum_{\substack{j=1\\ j=1}}^{m} \frac{1}{x_j + 1} \frac{(\alpha_j + 2)}{2(x_j + \frac{1}{2})} - \sum_{\substack{j=m+1\\ j=m+1}}^{n} \frac{q_j + 1 + \frac{(a+1)}{2n}}{x_j + 1}.$$

Let

$$t(x_j) = \sum_{j=1}^m \frac{1}{x_j} + \frac{(\alpha_j + 2)}{2(x_j - \frac{1}{2})} + \sum_{j=m+1}^n \frac{q_j + 1 + \frac{(a+1)}{2n}}{x_j}$$

Then $t(x_j) - t(x_{j+1}) > 0$ for any $x_j > 0$. Hence $t(x_j)$ is decreasing function and subsequently $G'(x_j) > 0$ for $x_j > 0$. Hence $|\beta_k|/|\beta_{k'}|$ is non-decreasing if $|a_k|/|a_{k'}|$ is non-decreasing.

3. Main Results

Theorem 3.1. Let u(z,t) be an entire function converges to solution of problem (1.1) corresponding to given data function $\phi(z)$ in (1.1) having order $\rho(u)$. Then

$$\rho(u) = \limsup_{\|k\| \to \infty} \frac{\|2k\| \log \|k\|}{-\log |\beta_k|}$$
(3.1)

where β_k is given by (2.7).

Proof. It is well known [7, Thm. 1] that if $f(z) = \sum_{\|k\|=0}^{\infty} a_k z^{2k}$ be an entire function of order $\rho(f)$ then

$$\rho(f) = \limsup_{\|k\| \to \infty} \frac{\|2k\| \log \|k\|}{-\log |a_k|}.$$
(3.2)

Hence for the function $u(z,0) = \sum_{\|k\|=0}^{\infty} \beta_k z_1^{2k_1} \dots z_n^{2k_n}$, we have

$$\frac{1}{\rho(u)} = \liminf_{\|k\|\to\infty} \frac{-\log|\beta_k|}{\|2k\|\log\|2k\|}
= \liminf_{\|k\|\to\infty} \frac{\log|a_k|^{-1} - \log\left[\left\{\Gamma\left(\frac{(a+1)}{2n}\right)\right\}^n \frac{2^n K^{n-m}}{\pi^{m/2}} \left\{\prod_{j=1}^n k_j^{p_j}\right\}\right]}{\|2k\|\log\|2k\|}
= \liminf_{\|k\|\to\infty} \frac{\log|a_k|^{-1}}{\|2k\|\log\|2k\|} - \frac{\log\left[\left\{\Gamma\left(\frac{a+1}{2n}\right)\right\}^n \frac{2^n K^{n-m}}{\pi^{m/2}} \left\{\prod_{j=1}^n k_j^{p_j}\right\}\right]^{1/\|2k\|}}{\log\|2k\|}
= \liminf_{\|k\|\to\infty} \frac{\log|a_k|^{-1}}{\|2k\|\log\|2k\|}.$$

Now using (3.2) for data function $\phi(z)$, we get the required results.

Theorem 3.2. Let u(z,t) be an entire function converges to solution of (1.1) corresponding to given data function $\phi(z)$ in (1.1) having type T(u). Then

$$(e\rho(u)T(u))^{1/\rho(u)} = \limsup_{\|k\| \to \infty} \left\{ \|2k\|^{1/\rho(u)} \left[|\beta_k| d_k(G) \right]^{1/\|2k\|} \right\}, (0 < \rho(u) < \infty).$$

Proof. For an entire function $f(z) = \sum_{\|k\|=0}^{\infty} a_k z^{2k}$, Gol'dberg [7, Thm. 1] obtained type in terms of the coefficients of its Taylor series expansion as

$$(e\rho(f)T(f))^{1/\rho(f)} = \limsup_{\|k\| \to \infty} \left\{ \|2k\|^{1/\rho(f)} [|a_k|d_k(G)]^{1/\|2k\|}, (0 < \rho(f) < \infty) \right\}.$$
(3.3)

It can be seen that

$$[|\beta_k|d_k(G)]^{1/\|2k\|} \to [|a_k|d_k(G)]^{1/\|2k\|} \quad \text{as } \|k\| \to \infty.$$
(3.4)

Hence the result follows by using (3.3) for data function $\phi(z)$ and taking into account the equation (3.4).

In analogy with the definitions of order $\rho(u)$ and type T(u), we define lower order $\lambda(u)$ and lower type t(u) as

$$\lambda(u) = \liminf_{R \to \infty} \frac{\log \log M_{u,S}(R)}{\log R}$$
$$t(u) = \liminf_{R \to \infty} \frac{\log M_{u,S}(R)}{R^{\rho(u)}}, 0 < \rho(u) < \infty.$$

Theorem 3.3. Let u(z,t) be an entire function converges to the problem (1.1) corresponding to data function $\phi(z)$ in (1.1) having lower order $\lambda(u)$. Then

$$\lambda(u) \ge \liminf_{\|k\| \to \infty} \frac{\|2k\| \log \|2k\|}{-\log |\beta_k|}.$$
(3.5)

Also if $|\beta_k|/|\beta_{k'}|$, where ||k'|| = ||k|| + 1, is a non-decreasing function of k, then equality holds in (3.5).

Proof. For entire function $f(z) = \sum_{k=0}^{\infty} a_k z_1^{2k_1} \dots z_n^{2k_n}$, if $|a_k|/|a_{k'}|$ forms a nondecreasing function of k then we have [11, Thm. 1]

$$\lambda(f) = \liminf_{\|k\| \to \infty} \frac{\|2k\| \log \|2k\|}{\log |a_k|^{-1}}.$$
(3.6)

Let $|\beta_k|/|\beta_{k'}|$ forms a non-decreasing function of k for $k > k_0$. Applying Lemma 2.3 and (3.6) to $u(z,0) = \sum_{\|k\|=0}^{\infty} \beta_k z_1^{2k_1} \dots z_n^{2k_n}$, we obtain

$$\frac{1}{\lambda(u)} = \limsup_{\|k\| \to \infty} \frac{\log |a_k|^{-1} - \log \left[C \prod_{j=1}^n k_j^{p_j} \right]}{\|2k\| \log \|2k\|} = \limsup_{\|k\| \to \infty} \frac{\log |a_k|^{-1}}{\|2k\| \log \|2k\|}$$
$$\lambda(u) = \lambda(\phi).$$

Then $\lambda(u) = \lambda(\phi)$.

In a similar manner we can prove the following theorem.

Theorem 3.4. Let u(z,t) be an entire function converging to a solution of (1.1) corresponding to data function $\phi(z)$ in (1.1) having lower type t(u). Then

$$t(u) \ge \liminf_{\|k\| \to \infty} \frac{\|2k\|}{e\rho(u)} |\beta_k|^{\rho(u)/\|2k\|}.$$
(3.7)

Also, if $|\beta_k|/|\beta_{k'}|$, where ||k'|| = ||k|| + 1, is a non-decreasing function of $k > k_0$, then equality holds in (3.7).

References

- L. R. Bragg; Complex transformations of solutions of generalized initial value heat problems, Rocky Mountain J. Math. 20 No. 3(1990), 677-705.
- [2] L. R. Bragg, J.W. Dettman; Multinomial representation of solutions of a class of singular initial value problems, Proc. Amer. Math. Soc. 21(1969), 629-634.
- [3] L. R. Bragg, J.W. Dettman; Expansions of solutions of certain hyperbolic and elliptic problems in terms of Jacobi polynomials, Duke Math. J. 36, No. 1 (1969), 129-144.
- [4] B. A. Fuks; Introduction to the Theory of Analytic Functions of Several Complex Variables, Translation Math. Monographs & Amer. Math. Soc. Providence, RI 1963.
- [5] R. P. Gilbert; An investigation of the analytic properties of solutions to the generalized axially symmetric reduced wave equation in n+1 variables, with an application to the theory of potential scattering, SIAM J. Math. 16 (1968), 30-50.
- [6] R. P. Gilbert, H. C. Howard; On solutions of the generalized bi-axially symmetric Helmholts equation generated by integral operators, J. Reine Angew. Math. 218 (1965), 109-120.
- [7] A. A. Gol'dberg; Elementary remarks on the formulas defining order and type of functions of several variable, (Russian) Akad. Nauk. Armjan SSR, Dokl. 29 (1959), 145-151.
- [8] D. Kumar; On the (p,q)-growth of entire function solution of Helmholtz equation, J. Nonlinear Sci. Appl. 4 (2011), No.1, 5-14.
- D. Kumar; Growth and Chebyshev approximation of entire function solution of Helmholtz equation in R², Europian J. Pure and Appl. Math. 3, No. 6 (2010), 1062-1069.
- [10] D. Kumar; Ultraspherical expansions of generalized bi-axially symmetric potentials and pseudo-analytic functions, Complex Variables and Elliptic Equations, Vol. 53, Issue 1 (2008), 53-64.
- [11] S. Kumar, G.S. Srivastava; Maximum term and lower order of entire functions of several complex variables, Bulletin of Math. Anal. and Appl. 3(1) (2011), 156-164.
- [12] E. P. Miles, Jr.; E.C. Young; Basic sets of polynomial for generalized Beltrami and Euler-Poisson-Darboux equations and their iterates, Proc. Amer. Math. Soc. 18 (1567), 981-986.
- [13] P. A. McCoy; Polynomial approximation of generalized biaxisymmetric potentials, J. Approx. Theory, 25 (1979), 153-168.
- [14] P. A. McCoy; Polynomial approximation and growth of generalized axisymmetric potentials, Can. J. Math. 31, No. 1 (1979), 49-59.
- [15] A. R. Reddy; Approximation of an entire function, J. Approx. Theory, 3 (1970), 128-137.

Devendra Kumar

DEPARTMENT OF MATHEMATICS, RESEARCH AND POST GRADUATE STUDIES, M. M. H. COLLEGE, MODEL TOWN, GHAZIABAD-201001, U. P., INDIA

E-mail address: d_kumar001@rediffmail.com

Mohammed Harfaoui

UNIVERSITY HASSAN II MOHAMMEDIA, LABORATORY OF MATHEMATICS, CRIPTOGRAPHY AND ME-CHANICAL F. S. T., BP 146, MOHAMMEDIA 20650 MOROCCO

E-mail address: mharfaoui04@yahoo.fr