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GROWTH OF ENTIRE SOLUTIONS OF SINGULAR
INITIAL-VALUE PROBLEM IN SEVERAL COMPLEX

VARIABLES

DEVENDRA KUMAR, MOHAMMED HARFAOUI

Abstract. In this article, we characterize the order, type, lower order, and
lower type of entire function solutions to a class of singular initial-value prob-
lems, in terms of multinomials for n ≥ 2.

1. Introduction

Let zj = xj + iyj denote a complex variable, 1 ≤ j ≤ n. Let z = (z1, . . . , zn),
z2k = z2k1

1 , . . . , z2kn
n where k is the vector (k1, . . . , kn) with kj a nonnegative integer

(j = 1, . . . , n) and let ‖k‖ = k1 + · · · + kn. Let φ(z) be an entire function of
z2
1 , . . . , z2

n in a domain D that includes the origin and let ∆j = D2
zj

+ αj

zj
Dzj , αj ≥

0, j = 1, . . . , n. Also, let a > −1 and εj = 1 if j = 1, . . . ,m and εj = −1 if
j = m + 1, . . . , n. Now consider the representations of an entire function solutions
of the problem (

D2
t +

a

t
Dt

)
u(z, t) =

n∑
j=1

εj∆ju(z, t) (1.1)

with initial data
u(z, 0) = φ(z), ut(z, 0) = 0

in terms of a set of associated multinomials {Rk(z, t)} throughout (z, t) space, t real.
These multinomials are solutions of (1.1) corresponding to the choice of φ(z) = z2k

in (1.1).
Let G be a region in Rn (positive hyper octant) and let GR ⊂ Cn denote the

region obtained from G by a similarity transformation about the origin, with ratio
of similitude R.

Definition 1.1. Let φ(z) =
∑∞

‖k‖=0 akz2kn
n be an entire function of several complex

variables. Then φ(z) is of growth (ρ, T ) if

T = lim sup
‖k‖→∞

‖2k‖
eρ

[|ak|dk(G)]ρ/‖2k‖, (0 < ρ < ∞) (1.2)
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where
dk(G) = max

R∈G
(R2k); R2k = R2k1

1 , . . . , R2kn
n .

This implies the existence of a positive constant M such that

|φ(z)| ≤ MeT |z2|ρ ∀z ∈ Cn.

Using (1.2), for each ε > 0 there exists a positive integer k0 such that if k ≥ k0,
then

|ak|dk(G) ≤
[eρ(T + ε)

‖2k‖
]‖2k‖/rho

. (1.3)

We can easily estimate, from [1, (4.14)], that

|Rk(z, t)| ≤
(‖2k‖

ρT

)‖2k‖/rho

M(ρ, T )e−‖2k‖/ρeK|t|+
Pn

j=1 Tj |z2
j |

ρj
, (1.4)

where

M(ρ, T ) =
∫ ∞

0

e−σ+T |σ2|ρdσ,

and K is the sum of the absolute values of the coefficients of multinomial and
M(ρ, T ) is a generic constant depending only on the ρ

′

js and T
′

js.
Now let

u(z, t) =
∞∑

‖k‖=0

akRk(z, t)

or

|u(z, t)| ≤
N∑

‖k‖=0

|ak||Rk(z, t)|+
∞∑

‖k‖=N+1

|ak||Rk(z, t)|. (1.5)

Using the bound (1.5) on |Rk(z, t)| and the estimate on |ak|dk(G) from (1.3), we
see that the bound on second sum in (1.5) is given by

K(ρ, T )
dk(G)

eK|t|+
Pn

j=1 Tj |z2
j |

ρj

∞∑
‖k‖=N+1

(T + ε

T

)‖2k‖/ρ

.

Since the series of constants in (1.5) converges, it follows that the series u(z, t) =∑∞
‖k‖=0 akRk(z, t) converges for all n complex variables (z1, . . . , zn) and real t and

uniformly so in compact subsets of (z, t) space.
Now we can establish a theorem.

Theorem 1.2. Let φ(z) =
∑∞

‖k‖=0 akz2k1
1 , . . . , z2kn

n be entire in (z2
1 , . . . , z2

n) and
converge in a domain Gr : z ∈ Cn; |z|2 = maxi≤j≤n |zj |2 < R2, R > 0 is a fixed pos-
itive real. Then the series u(z, t) =

∑∞
‖k‖=0 akRk(z, t) converges for all n-complex

variables (z1, . . . , zn) and real t and uniformly so in compact subsets of (z, t) space.

Bragg and Dettman [2] proved the following theorem.

Theorem 1.3. Let φ(x) =
∑∞

‖k‖=0 akx2k be analytic in (x2
1, . . . , x

2
n) and converge

in a domain D that includes the origin. Then the series
∑∞

‖k‖=0 akPk(x, t) con-
verges to an analytic solution of the problem (1.1) replacing z by x, at least in
region S where S is defined by (x, t) ∈ S if and only if

|x1|+ |t|, . . . , |xm|+ |t|,
(
x2

m+1 + t2
)1/2

, . . . ,
(
x2

n + t2
)1/2 ∈ D. (1.6)
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We shall proceed to the complex transformation of above Theorem A in the
following manner.

Let (z1, . . . , zn) be an element of Cn and R2n, the space of real coordinates.
The transformation from real to the complex coordinates are given by xk = zk+zk

2 ,
yk = zk−zk

2i
. We equip Cn with the Euclidean metric of R2n;

ds2 =
n∑

k=1

(dx2
k + dy2

k) =
n∑

k=1

dzk.dzk
.

Let zk be a point on the domain GR for which |akRk(zk, 0)| = supzk∈GR
|akRk

(zk, 0)| = Ck. By a rotation, we can assume that z2
k = (x2

k, 0, . . . , 0). If f̃(w) =
f(w2, 0, . . . , 0) and f̃(w) =

∑∞
l=0 alw

2l is the Taylor series expansion of f̃ at the
origin, then

∣∣akx2k
k

∣∣ = Ck and therefore we have the following theorem.

Theorem 1.4. Let φ(z) =
∑∞

‖k‖=0 akz2k be entire in (z2
1 , . . . , z2

n) and converge in
a domain GR that includes the origin. Then the series u(z, t) =

∑∞
‖k‖+0 akRk(z, t)

converges to an entire solution of the problem (1.1) at least in a region S where S
is defined by (z, t) ∈ S if and only if

|z1|+ |t|, . . . , |zm + |t|, (z2
m+1 + t2)1/2, . . . , (z2

n + t2)1/2 ∈ GR.

Let φ(z) =
∑∞

‖k‖=0 akz2k be the power series expansion of the function φ(z).
Then the maximum modulus of u(z, t) and φ(z) are defined as in complex function
theory [15, pp. 129, 132],

Mf,G(R) = max
z∈GR

|f(z)|,

Mu,S(R) = max
(z,t)∈S

|u(z, t)|.

Following the usual definitions of order and type of an entire function of n-complex
variables (z2

1 , . . . , z2
n), the order ρ and type T of u(z, t) are defined as in [4]

ρ(u) = lim sup
R→∞

log log Mu,S(R)
log R

, (1.7)

T (u) = lim sup
R→∞

log Mu,S(R)
Rρ(u)

. (1.8)

In this paper we characterize the order, lower order, type and lower type of en-
tire function solutions of problem (1.1) in terms of a set {Rk(z, t)} of multinomials
for n ≥ 2. Multinomials of this type have been constructed by Miles and Yong
[12] when z = x and m = n or m = 0. In these cases (1.1) reduces to either the
generalized Euler-Poisson-Darboux or the generalized Beltrami equation. Gilbert
and Howard [5, 6] discussed analyticity properties of solutions of special cases of
(1.1). Bragg and Dettman obtained representation of analytic solutions of problem
(1.1) for z = x in terms of these multinomials for n ≥ 2 [2] and for n = 1 in [3].
It has been found [2] that Rk(x, t), n ≥ 2, can be expressed as a convolution of
n polynomials Rkj (xj , t), j = 1, . . . , n. For n = 1 the corresponding Rk(x, t) are
defined in terms of Jacobi polynomials. The Growth estimates for the solutions
of (1.1) in terms of multinomials Rk(z, t) for n ≥ 2 then permit the obtaining of
global region of convergence from acknowledge of singularities of the given data
function φ(z). It should be noted that the function φ(z) is the analytic continua-
tion of its restriction to the axis of symmetry; i.e., φ(z) = u(z, 0). Using various
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techniques, the characterizations of order and type of entire function solutions of
similar problems were obtained by McCoy [13, 14] Kumar [8, 9, 10] and others for
n = 1. However, non of them have considered the case for n ≥ 2.

2. Auxiliary Results

In this section we shall prove some auxiliary results which will be used in the
sequel.

Lemma 2.1. If u(z, t) =
∑∞

‖k‖=0 akRk(z, t) is an entire function solution of prob-
lem (1.1) in terms of a set {Rk(z, t)} of multinomials corresponding to given data
function φ(z) =

∑∞
‖k‖=0 akz2k in (1.1) then φ and φ∗ are also entire functions of

n−complex variables (z2
1 , . . . , z2

n). Further,

[N(ε)]−1Mφ,G(R) ≤ Mu,S(ε−1R) ≤ CMφ∗,G(R) (2.1)

where

φ∗(z) =
∞∑

‖k‖=0

|ak|
{ n∏

j=1

k
pj

j

}
z2k1
1 , . . . , z2kn

n ,

N(ε) = sup{N(εeiθ, ξ) : 0 ≤ θ ≤ 2π,−1 ≤ ξ ≤ 1, 0 < ε < 1}

and C is a constant.

Proof. From Theorem 1.1 and 1.2, bearing in mind with the relation of [2, (3.1)],
we obtain

|u(z, t)| ≤
∞∑

‖k‖=0

|ak|
{

Γ
(

a + 1
2n

) }n 2mKn−m

πm/2

{ m∏
j=1

kj
Γ(kj + (αj + 1)/2)

Γ(kj − 1/2)

}

× {|zj |+ |t|}2kj

{ n∏
j=m+1

k
qj

j kj !
Γ((kj) + (a + 1)/2n)

(z2
j + t2)kj

}
where qj = max((αj − 1)/2, ((a + 1)/2n)− 1,−1/2), j = m + 1, . . . , n.

Using the relation Γ(x + a)/Γx ∼ xa as x →∞, we have

Γ(kj + (αj + 1)/2)
Γ(kj − 1/2)

∼ (kj − 1/2)(αj+2)/2,
k

qj

j kj !

Γkj + (a+1)
2n

∼ k
qj+1
j (kj)(a+1)/2n

and we see that there exist constants C, p1, . . . , pn with pj = pj(αj), j = 1, . . . ,m
and pj = pj(αj , a, n) for j = m + 1, . . . , n such that

|u(z, t)| ≤
∞∑

‖k‖=0

|aj |C
{ n∏

j=1

k
pj

j

}
(|z1|+ |t|)2k1 . . . (|zm|+ |t|)2km

× (z2
m+1 + t2)km+1 . . . (z2

n + t2)kn .

(2.2)

Now, |φ(z)| ≤
∑∞

‖k‖=0 |ak||z1|2k1 . . . |zn|2kn , the series (2.2) converges for z ∈ GR.
But for z ∈ GR, the series

∞∑
‖k‖=0

|ak|
{ n∏

j=1

k
pj

j

}
|z1|2k1 . . . |zn|2kn
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also converges. By Theorem 1.2, if φ(z) is entire in (z2
1 , . . . , z2

n), then u(z, t) con-
verges to an entire solution of problem (1.1). We see that

lim
‖k‖→∞

[
|ak|

n∏
j=1

k
pj

j

]1/‖2k‖
= lim

‖k‖→∞
|ak|

1
‖2k‖ = 0.

Hence both φ and φ∗ are entire.
Using (2.2) we obtain

Mu,S(R) ≤ C

∞∑
‖k‖=0

|ak|
{ n∏

j=1

k
pj

j

}
R2kn = CMφ∗,G(R) (2.3)

where

φ∗(z) =
∞∑

‖k‖=0

|ak|
{ n∏

j=1

k
pj

j

}
z2k1
1 , . . . , z2kn

n .

Now for reverse relation, we have

φ(z) =
∞∑

‖k‖=0

akz2k1
1 . . . z2kn

n

|φ(z)| ≤
∞∑

‖k‖=0

|ak|
{ n∏

j=1

k
pj

j

}
|z1|2k1 . . . |zn|2kn

=
∞∑

‖k‖=0

|ak|
{ n∏

j=1

k
pj

j

}
[|z1 + |t|]2k1 . . . {|zm|+ |t|}2km

×
[(

z2
m+1 + t2

)1/2
]2km+1

. . .
[
(z2

n + t2)1/2
]2kn

×
[

|z1|
|z1|+ |t|

]2k1

. . .

[
|zm|

|zm|+ |t|

]2km

×
[

|zm+1|
(z2

m+1 + t2)1/2

]2km+1

. . .

[
|zn|

(z2
n + t2)1/2

]2kn

.

This relation is valid globally, and leads to the estimates

|φ(z)| ≤ Mu,S(R)N(ε), ε = (|z|/R)2 = max
1≤j≤n

( |zj |
Rj

)2

,

N(ε) = sup{|N(εeiθ, ξ)| : 0 ≤ θ ≤ 2π,−1 ≤ ξ ≤ 1}.

For z = εReiθ(ε real, 0 < ε < 1}, we have

Mφ,G(εR) ≤ Mu,S(R)N(ε)

or
[N(ε)]−1Mφ,G(R) ≤ Mu,S(ε−1R). (2.4)

Combining (2.3) and (2.4) we obtain (2.1). �

Lemma 2.2. Let u(z, t) be an entire function solution of (1.1) in terms of a set
{Rk(z, t)} of multinomials corresponding to given data function φ(z) in (1.1). Then
the orders and types of u(z, t) and φ respectively are identical.
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Proof. Let φ(z) =
∑∞

‖k‖=0 akz2k1
1 . . . z2kn

n be an entire function of order ρ(φ) and
type T (φ). Then it is well known [7, Thm. 1] that

ρ(φ) = lim sup
‖k‖→∞

{‖2k‖ log ‖k‖
− log |ak|

}
, (2.5)

(eρ(φ)T (φ))1/ρ(φ) = lim sup
‖k‖→∞

{
‖2k‖1/ρ(φ)[|ak|dk(G)]1/‖2k‖}. (2.6)

Hence for the function φ∗(z) =
∑∞

‖k‖=0 |ak|
{∏n

j=1 k
pj

j

}
z2k1
1 . . . z2kn

n , we have

1
ρ(φ∗)

= lim inf
‖k‖→∞

log[|ak|
∏n

j=1 k
pj

j ]−1

2‖k‖ log ‖k‖

= lim inf
‖k‖→∞

log |ak|−1 − log[
∏n

j=1 k
pj

j ]
2‖k‖ log ‖k‖

= lim inf
‖k‖→∞

log |ak|−1

2‖k‖ log ‖k‖
.

Hence ρ(φ) = ρ(φ∗). Since φ and φ∗ have same order, using (2.6) we can easily
show that T (φ) = T (φ∗).

Now using the relation (2.1) with the definitions of order and type given by (1.7)
and (1.8), the proof is complete. �

Lemma 2.3. If |ak|/|ak′ |, ‖k′‖ = ‖k‖ + 1, forms a non-decreasing function of k
then |βk|/|βk′ | also forms a non-decreasing function of k, where

βk = ak

{
Γ

(
a + 1
2n

) }n 2nKn−m

πm/2

{ m∏
j=1

kj(kj − 1/2)(αj+2)/2
}

×
{ n∏

j=m+1

k
(qj+1+(a+1)/2n)
j

}
.

(2.7)

Proof. We have

|βk|
|βk′ |

= ak

{
Γ

(
a + 1
2n

) }2 2nKn−m

πm/2

{ m∏
j=1

kj(kj − 1/2)(αj+2)/2
}

×
{ ∏n

j=m+1 k
qj+1+(a+1)/2n
j

}
ak+1

{
Γ

(
a+1
2n

) }n 2nKn−m

πm/2

{ ∏m
j=1(kj + 1)

(
kj + 1

2

)(αj+2)/2 }
× 1{ ∏n

j=m+1 k
qj+1+(a+1)/2n
j

}
=

ak

ak+1

∏m
j=1 kj

(
kj − 1

2

)(αj+2)/2 { ∏n
j=m+1 k

(qj+1+(a+1)/2n)
j

}∏m
j=1(kj + 1)(kj + 1/2)(αj+2)/2,

∏n
j=m+1(kj + 1)(qj+1+(a+1)/2n)

.

Let

G(x) =

∏m
j=1 xj(xj − 1

2 )(αj+2)/2
∏n

j=m+1 x
(qj+1+(a+1)/2n)
j∏m

j=1(xj + 1)(xj + 1
2 )(αj+2)/2

∏n
j=m+1(xj + 1)(qj+1+(a+1)/2n)
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log G(x) =
m∑

j=1

log[xj(xj − 1/2)(αj+2)/2] +
n∑

j=m+1

log x
(qj+1+(a+1)/2n)
j

−
m∑

j=1

log(xj + 1)(xj +
1
2
)(αj+2)/2 −

n∑
j=m+1

log(xj + 1)(qj+1+(a+1)/2n)

By logarithmic differentiation, we obtain

G′(x)
G(x)

=
m∑

j=1

(
1
xj

+
(αj + 2)
2(xj − 1

2 )

)
+

n∑
j=m+1

qj + 1 + (a+1)
2n

xj

−
m∑

j=1

1
xj + 1

(αj + 2)
2(xj + 1

2 )
−

n∑
j=m+1

qj + 1 + (a+1)
2n

xj + 1
.

Let

t(xj) =
m∑

j=1

1
xj

+
(αj + 2)
2(xj − 1

2 )
+

n∑
j=m+1

qj + 1 + (a+1)
2n

xj
.

Then t(xj) − t(xj+1) > 0 for any xj > 0. Hence t(xj) is decreasing function and
subsequently G

′
(xj) > 0 for xj > 0. Hence |βk|/|βk′ | is non-decreasing if |ak|/|ak′ |

is non-decreasing. �

3. Main Results

Theorem 3.1. Let u(z, t) be an entire function converges to solution of problem
(1.1) corresponding to given data function φ(z) in (1.1) having order ρ(u). Then

ρ(u) = lim sup
‖k‖→∞

‖2k‖ log ‖k‖
− log |βk|

(3.1)

where βk is given by (2.7).

Proof. It is well known [7, Thm. 1] that if f(z) =
∑∞

‖k‖=0 akz2k be an entire
function of order ρ(f) then

ρ(f) = lim sup
‖k‖→∞

‖2k‖ log ‖k‖
− log |ak|

. (3.2)

Hence for the function u(z, 0) =
∑∞

‖k‖=0 βkz2k1
1 . . . z2kn

n , we have

1
ρ(u)

= lim inf
‖k‖→∞

− log |βk|
‖2k‖ log ‖2k‖

= lim inf
‖k‖→∞

log |ak|−1 − log
[{

Γ
(

(a+1)
2n

) }n 2nKn−m

πm/2

{∏n
j=1 k

pj

j

} ]
‖2k‖ log ‖2k‖

= lim inf
‖k‖→∞

log |ak|−1

‖2k‖ log ‖2k‖
−

log
[{

Γ
(

a+1
2n

)}n 2nKn−m

πm/2

{∏n
j=1 k

pj

j

}]1/‖2k‖

log ‖2k‖

= lim inf
‖k‖→∞

log |ak|−1

‖2k‖ log ‖2k‖
.

�

Now using (3.2) for data function φ(z), we get the required results.
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Theorem 3.2. Let u(z, t) be an entire function converges to solution of (1.1)
corresponding to given data function φ(z) in (1.1) having type T (u). Then

(eρ(u)T (u))1/ρ(u) = lim sup
‖k‖→∞

{
‖2k‖1/ρ(u) [|βk|dk(G)]1/‖2k‖

}
, (0 < ρ(u) < ∞).

Proof. For an entire function f(z) =
∑∞

‖k‖=0 akz2k, Gol’dberg [7, Thm. 1] obtained
type in terms of the coefficients of its Taylor series expansion as

(eρ(f)T (f))1/ρ(f) = lim sup
‖k‖→∞

{
‖2k‖1/ρ(f)[|ak|dk(G)]1/‖2k‖, (0 < ρ(f) < ∞)

}
. (3.3)

It can be seen that

[|βk|dk(G)]1/‖2k‖ → [|ak|dk(G)]1/‖2k‖ as ‖k‖ → ∞. (3.4)

Hence the result follows by using (3.3) for data function φ(z) and taking into account
the equation (3.4). �

In analogy with the definitions of order ρ(u) and type T (u), we define lower order
λ(u) and lower type t(u) as

λ(u) = lim inf
R→∞

log log Mu,S(R)
log R

t(u) = lim inf
R→∞

log Mu,S(R)
Rρ(u)

, 0 < ρ(u) < ∞.

Theorem 3.3. Let u(z, t) be an entire function converges to the problem (1.1)
corresponding to data function φ(z) in (1.1) having lower order λ(u). Then

λ(u) ≥ lim inf
‖k‖→∞

‖2k‖ log ‖2k‖
− log |βk|

. (3.5)

Also if |βk|/|βk′ |, where ‖k′‖ = ‖k‖ + 1, is a non-decreasing function of k, then
equality holds in (3.5).

Proof. For entire function f(z) =
∑∞

‖k=0 akz2k1
1 . . . z2kn

n , if |ak|/|ak′ | forms a non-
decreasing function of k then we have [11, Thm. 1]

λ(f) = lim inf
‖k‖→∞

‖2k‖ log ‖2k‖
log |ak|−1

. (3.6)

Let |βk|/|βk′ | forms a non-decreasing function of k for k > k0. Applying Lemma
2.3 and (3.6) to u(z, 0) =

∑∞
‖k‖=0 βkz2k1

1 . . . z2kn
n , we obtain

1
λ(u)

= lim sup
‖k‖→∞

log |ak|−1 − log
[
C

∏n
j=1 k

pj

j

]
‖2k‖ log ‖2k‖

= lim sup
‖k‖→∞

log |ak|−1

‖2k‖ log ‖2k‖

Then λ(u) = λ(φ). �

In a similar manner we can prove the following theorem.

Theorem 3.4. Let u(z, t) be an entire function converging to a solution of (1.1)
corresponding to data function φ(z) in (1.1) having lower type t(u). Then

t(u) ≥ lim inf
‖k‖→∞

‖2k‖
eρ(u)

|βk|ρ(u)/‖2k‖. (3.7)

Also, if |βk|/|βk′ |, where ‖k′‖ = ‖k‖ + 1, is a non-decreasing function of k > k0,
then equality holds in (3.7).
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