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EXACT BEHAVIOR OF SINGULAR SOLUTIONS TO
PROTTER’S PROBLEM WITH LOWER ORDER TERMS

ALEKSEY NIKOLOV, NEDYU POPIVANOV

Abstract. For the (2+1)-D wave equation Protter formulated (1952) some
boundary value problems which are three-dimensional analogues of the Dar-
boux problems on the plane. Protter studied these problems in a 3-D domain,
bounded by two characteristic cones and by a planar region. Now it is well
known that, for an infinite number of smooth functions in the right-hand side,
these problems do not have classical solutions, because of the strong power-
type singularity which appears in the generalized solution. In the present paper
we consider the wave equation involving lower order terms and obtain new a
priori estimates describing the exact behavior of singular solutions of the third
boundary value problem. According to the new estimates their singularity is
of the same order as in case of the wave equation without lower order terms.

1. Introduction

We denote points in R3 by (x, t) = (x1, x2, t) and consider the wave equation
involving lower order terms

Lu ≡ ux1x1 + ux2x2 − utt + b1ux1 + b2ux2 + but + cu = f (1.1)

in a simply connected region

Ω0 := {(x, t) : 0 < t < 1/2, t <
√
x2

1 + x2
2 < 1− t}.

The region Ω0 ⊂ R3 is bounded by the disk

Σ0 := {(x, t) : t = 0, x2
1 + x2

2 < 1}

with center at the origin O(0, 0, 0) and the characteristic surfaces of (1.1):

Σ1 := {(x, t) : 0 < t < 1/2,
√
x2

1 + x2
2 = 1− t},

Σ2,0 := {(x, t) : 0 < t < 1/2,
√
x2

1 + x2
2 = t}.

In this work we will study the problem
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Problem Pα. Find solutions to (1.1) in Ω0 that satisfy the conditions

u|Σ1 = 0, [ut + αu]|Σ0\O = 0, (1.2)

where α ∈ C1(Σ̄0). The adjoint problem to Pα is as follows.

Problem P ∗
α. Find a solution of the adjoint equation

L∗u ≡ ux1x1 + ux2x2 − utt − (b1u)x1 − (b2u)x2 − (bu)t + cu = g in Ω0

with the boundary conditions:

u|Σ2,0 = 0, [ut + (α+ b)u]|Σ0 = 0.

The following problems were introduced by Protter [31].

Protter’s Problems. Find a solution of the wave equation

�u ≡ ∆xu− utt ≡ ux1x1 + ux2x2 − utt = f in Ω0 (1.3)

with one of the following boundary conditions
P1 : u|Σ0∪Σ1 = 0, P1∗ : u|Σ0∪Σ2,0 = 0 ;

P2 : u|Σ1 = 0, ut|Σ0 = 0, P2∗ : u|Σ2,0 = 0, ut|Σ0 = 0 .

Protter [31] formulated and investigated both Problems P1 and P1∗ in Ω0 as
multi-dimensional analogues of the Darboux problem on the plane. It is well known
that the corresponding Darboux problems on R2 are well posed, which is not true
for the Protter’s problems in R3 or R4. The uniqueness of a classical solution of
Problem P1 in the (3 + 1) − D case was proved by Garabedian [11]. For recent
results concerning the Protter’s problems with lower order terms (1.1) – (1.2) see
Hristov, Popivanov, Schneider [15] and references therein, also see Grammatikopou-
los et al [12]. For further publications in this area see Aldashev [1] – [2], Edmunds
and Popivanov [10], Choi and Park [8], Cher [18], Popivanov and Popov [28] – [30].
Let us mention some special orthogonality conditions on f , found in Popivanov and
Popov [28] – [30], which in the case of the wave equation in R3 and R4 control the
order of singularity of the generalized solutions of Problems P1 and P2. Unfortu-
nately, we do not know of any such conditions in the more general case of equation
(1.1).

On the other hand, Bazarbekov and Bazarbekov [5] gives in R4 another analogue
of the classical Darboux problem in the four-dimensional domain corresponding to
Ω0. Some different statements of Darboux type problems in R3 or some connected
with them Protter problems for mixed type equations (also studied in Protter [32])
can be found in Aldashev [3], Aziz and Schneider [4], Bitsadze [6], Kharibegashvili
[17], Popivanov and Schneider [26]. Protter problems for mixed type equations in R3

involving lower order terms are considered in Rassias [33]–[34] and Hristov et al [16],
where uniqueness theorems are proved under some conditions on the coefficients of
the equation. In Lupo and Payne [20]–[21] and Lupo et al [22] one finds results
for mixed type equations including some special nonlinearity with supercritical
exponent term in various situations, namely for the Frankl’ and Guderley-Morawetz
problem in R2 and for the Protter problem in RN+1 with N ≥ 2. The existence of
bounded or unbounded solutions for the wave equation in R3 and R4, as well as for
the Euler-Poisson-Darboux equation has been studied in Cher [18], Choi [7], Choi
and Park [8], Grammatikopoulos et al [13], Popivanov and Popov [30].

According to the ill-possedness of Protter’s Problems P1 and P2, it is interesting
to find some of their regularizations. A nonstandard, nonlocal regularization of
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Problem P1, can be found in Edmunds and Popivanov [10]. In the present paper
we are looking for some other kind of regularization and formulate the following
problem.

Open Question 1. Is it possible to find conditions for the coefficients b1, b2, b, c
and α, under which for all smooth functions f Problem Pα has only regular solu-
tions?

Remark. If the answer to the above question is positive, then, using an operator
Lk with lower order perturbations in the wave equation (1.3), we can find possible
regularization for Problem P2. Solving the equation Lkuk = f , with Lk → � (i.e.
b1k, b2k, b3k, ck → 0) and αk → 0, we can find an approximated sequence uk. Due
to the fact that in this case the cones Σ1 and Σ2,0 are again characteristics for Lk,
this process, with respect to our boundary value problem, looks to be natural.

For Problem (1.1), (1.2), i.e. Pα and α(x) 6= 0, there are only few publications
and we refer the reader to [15] and [12]. In the case of the equation (1.1), which
involves either lower order terms or some other type of perturbation, Problem Pα
in Ω0 with α(x) ≡ 0 has been studied by Aldashev [1]–[2].

Next, we formulate the following well known result Kwang-Chang [35], Popivanov
and Schneider [25], presented here in the terms of the polar coordinates x1 = % cosϕ,
x2 = % sinϕ.

Theorem 1.1. For all n ∈ N, n ≥ 4; an, bn arbitrary constants, the functions

vn(%, ϕ, t) = t%−n
(
%2 − t2

)n− 3
2 (an cosnϕ+ bn sinnϕ) (1.4)

are classical solutions of the homogeneous problem P1∗ and the functions

wn(%, ϕ, t) = %−n
(
%2 − t2

)n− 1
2 (an cosnϕ+ bn sinnϕ) (1.5)

are classical solutions of the homogeneous problem P2∗.

This theorem shows that for the classical solvability (see Bitsadze [6]) of the
problem P1 (respectively, P2) the function f at least must be orthogonal to all
smooth functions (1.4) (respectively, (1.5)). The reason of this fact has been found
by Popivanov and Schneider in [25], where they announced for Problems P1 and
P2 that there exist singular solutions for the wave equation (1.3) with power type
isolated singularities even for very smooth functions f . Using Theorem 1.1, Popi-
vanov and Schneider [27] proved the existence of generalized solutions of Problems
P1 and P2, which have at least power type singularities at the vertex O of the cone
Σ2,0. Considering Problems P1 and P2, Popivanov and Schneider [25] announced
the existence of singular solutions for both wave and degenerate hyperbolic equa-
tions (see Popivanov and Schneider [26]). The first a priori estimates for singular
solutions of Protter’s Problems P1 and P2, concerning the wave equation in R3,
were obtained in [27]. On the other hand, for the case of the wave equation in Rm+1,
Aldashev [1] announced that there exist solutions of Problem P1 (respectively, P2)
in the domain Ωε, which blow up on the cone Σ2,ε like ε−(n+m−2) (respectively,
ε−(n+m−1)), when ε → 0 and the cone Σ2,ε := {% = t + ε} approximates Σ2,0. It
is obvious that for m = 2 this result can be compared with the estimate (1.6) of
Theorem 1.3 below. For the homogeneous Problem P ∗α (except the case α ≡ 0 ,
i.e. except Problem P2∗), even for the wave equation, we do not know of nontrivial
solutions analogous to (1.4) and (1.5). Anyway, in Grammatikopoulos et al [12]
under appropriate conditions for the coefficients of the general equation (1.1), we
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derive results which ensure the existence of many singular solutions of Problem Pα.
Here we refer also to Khe Kan Cher [18], who gives some nontrivial solutions for
the homogeneous Problems P1∗ and P2∗, but in the case of Euler-Poisson-Darboux
equation. These results are closely connected to those of Theorem 1.1.

To formulate known results for Problem Pα we first recall the definition of gen-
eralized solutions.

Definition 1.2 ([12]). A function u = u(x1,x2, t) is called a generalized solution
of problem Pα in Ω0, if

(1) u ∈ C1(Ω̄0\O), [ut + α(x)u]
∣∣
Σ0\O

= 0, u
∣∣
Σ1

= 0,
(2) the equality∫

Ω0

[utvt − ux1vx1 − ux2vx2 + (b1ux1 + b2ux2 + but + cu− f)v]dx1dx2dt

=
∫

Σ0

α(x)(uv)(x, 0)dx1dx2

holds for all v from

V0 := {v ∈ C1(Ω̄0) : [vt + (α+ b)v]
∣∣
Σ0

= 0, v = 0 in a neighborhood of Σ2,0}.

The Definition 1.2 assures that generalized solutions of Problem Pα may have
singularities on the cone Σ2,0.

In [12] is proved the following existence theorem for solutions of Problem Pα
which have singularities on Σ2,0.

In next Theorem we denote a1 := b1 cosϕ+b2 sinϕ, a2 := %−1(b2 cosϕ−b1 sinϕ)
and we assume that a1, a2, b, c are independent on ϕ, i. e. they are functions of
(|x|, t) only and α is function of (|x|).

Theorem 1.3 ([12]). Let α ≥ 0; a1, b, c ∈ C1(Ω̄0\O), a2 ≡ 0 and

a1(|x|, t) ≥ |b|(|x|, t), a1(|x|, t) ≥ 2|x|c(|x|, t), (x, t) ∈ Ω0.

Then for each function

fn(x, t) = |x|−n(|x|2 − t2)n−1/2 cosn(arctan
x2

x1
) ∈ Cn−2(Ω̄0) ∩ C∞(Ω0),

n ∈ N, n ≥ 4 the corresponding generalized solution un of the problem Pα belongs
to C2(Ω̄0\O) and satisfies the estimate

|un(x, t)|t=|x| ≥ c0|x|−n| cosn(arctan
x2

x1
)|, 0 < |x| < 1/2, (1.6)

where c0 = const > 0.

In the same paper one can find a proof of the uniqueness of the treated problem.
Note that the generalized solutions in this theorem have singularities at the vertex
O of the cone Σ2,0 and that these singularities do not propagate in the direction
of the bicharacteristics on the characteristic cone Σ2,0. For results concerning the
propagation of singularities for solutions of second order operators see Hörmander
[14, Chapter 24.5].

On the other hand, Hristov, Popivanov and Schneider in [15] (see Theorem 4.4
there in) obtained some upper bounds for all the solutions of this problem, consid-
ering the case that the coefficients b1, b2, b, c and α are smooth functions in Ω̄0 (the
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coefficients of the equation (1.1) in polar coordinates, like it is in Theorem 1.3, do
not depend on ϕ) and also assuming the function f ∈ C(Ω̄0) to be of the form

f(%, ϕ, t) = f (1)
n (%, t) cosnϕ+ f (2)

n (%, t) sinnϕ, n ∈ N. (1.7)

These upper bounds can be written of the form:

|u(x, t)| ≤ C0 max
Ω̄0

{|f (1)
n |+ |f (2)

n |}|x|−n−ψ(K), (1.8)

where C0 is a positive constant,

K := max
{

sup
Ω̄0

|b1|, sup
Ω̄0

|b2|, sup
Ω̄0

|b|, sup
Ω̄0

|c|, sup
0≤|x|≤1

|α(|x|)|
}

and ψ(K) is a positive function which blows up as K blows up.
In the present paper this estimate is improved by the following main result

Theorem 1.4. Let the right-hand side function f in the equation (1.1) is of the
form (1.7), b1, b2, b, c ∈ C(Ω̄0), α ∈ C1([0, 1]), f (i)

n ∈ C(Ω̄0), i = 1, 2 and a1, a2, b, c
are functions of (|x|, t), α = α(|x|), where a1 := b1 cos(arctan x2

x1
)+b2 sin(arctan x2

x1
),

a2 := |x|−1(b2 cos(arctan x2
x1

)− b1 sin(arctan x2
x1

)). Then for the generalized solution
u(x, t) of Problem Pα the following estimate

|u(x, t)| ≤ Cσ max
Ω̄0

{|f (1)
n |+ |f (2)

n |}|x|−n−σ (1.9)

holds, where σ is an arbitrary positive number and Cσ is a positive constant de-
pending on σ, n and all coefficients of (1.1).

Remark 1.5. A new point here, as distinct from (1.8), is the fact that the order of
singularity does not depend on the lower order terms of (1.1) and on the boundary
coefficient α.

Comparing this estimate with the lower bound of the singular solutions found in
Theorem 1.3, we see that we have obtained their exact asymptotic behavior.

First, in this work we follow the exposition of Hristov et al [15] until Theorem
4.4. This takes the next three sections.

In Section 2 Problem Pα is reduced to a two-dimensional problem in the following
steps. First, we transform equation (1.1) in polar coordinates, i.e.

Lu =
1
%
(%u%)% +

1
%2
uϕϕ − utt + a1u% + a2uϕ + but + cu = f, (1.10)

(a1 := b1cosϕ+ b2sinϕ, a2 := %−1(b2cosϕ− b1sinϕ)), considering, as noted before,
a polar symmetry of a1, a2, b, c and α, and a special form of the right-hand side
(1.7). Next, we ask for generalized solution of the form

u(%, ϕ, t) = u(1)
n (%, t) cosnϕ+ u(2)

n (%, t) sinnϕ. (1.11)

Thus separating the variables we succeed in reducing the problem to a two-dimen-
sional one for functions {u(1)

n (%, t), u(2)
n (%, t)}, called Problem Pα,1. Finally, using

characteristic coordinates ξ = 1− %− t, η = 1− %+ t and new functions

u(i)
n (ξ, η) := z(i)

n (%, t) := %
1
2u(i)

n (%, t), i = 1, 2, (1.12)

we obtain a system for {u(1)
n (ξ, η), u(2)

n (ξ, η)}, called Problem Pα,2.
In Section 3 an equivalent integral equation system of Problem Pα,2 is con-

structed.
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In Section 4 are presented some results from [15] which we use in the next
section. Also, here is formulated the main result of [15], Theorem 4.4, which ensures
the existence of a generalized solution of the two-dimensional Problem Pα,2 and
gives upper bounds of possible singularity. Using this theorem, after the inverse
transformation to Problem Pα, one comes to (1.8).

In Section 5 we prove Theorem 1.4, the main result of this work.
The next Section 6 is dedicated to the singular solutions. Modifying a little the

proof of Theorem 1.3, we deduce the following result.

Theorem 1.6. Let α ≥ 0; b1, b2, b, c ∈ C1(Ω̄0\O) and

b1 = a1(|x|, t) cos(arctanx2/x1), b2 = a1(|x|, t) sin(arctanx2/x1)

with some function a1(|x|, t) for which a1 ≥ |b|, a1 ≥ 2|x|c. Then for each function
of the form

f(x, t) = fn(|x|, t) cosn(arctanx2/x1) or

f(x, t) = fn(|x|, t) sinn(arctanx2/x1), n ∈ N

in the right-hand side of the equation, satisfying the following conditions:

fn ∈ C(Ω̄0), fn 6≡ 0 in Ω0, either fn ≥ 0 or fn ≤ 0 in Ω0,

the corresponding generalized solution un of the problem Pα satisfies the estimate

|un(x, t)| ≥ C0|x|−n| cosn(arctan
x2

x1
)|, C0 = const > 0 (1.13)

in some neighborhood of O(0, 0, 0).

The difference between this theorem and Theorem 1.3 is that we have the same
result for a wider class of right-hand side functions and, as well, in (1.13) we estimate
|un(x, t)|, while in (1.6) is estimated the restriction |un(x, t)|t=|x|.

In the case of wave equation without lower order terms and α ≡ 0, Theorem
1.6 is in correspondence with the results deduced so far. Actually, in [9] one can
find an asymptotic expansion of the generalized solution at the origin. According
to this work, the order of singularity of the solution is less than n only if some
orthogonality conditions are fulfilled, namely if the function fn is orthogonal to
some solutions of the adjoint homogeneous problem P2∗. If fn does not change its
sign, a necessary orthogonality condition is not fulfilled.

In the case of wave equation with lower order terms, we do not know such
orthogonality conditions “controlling” the order of singularity of the corresponding
solution.

Open Question 2. Can one find some orthogonality conditions in the case of the
equation (1.1), under which we have a lower order of singularity?

2. Preliminaries

As we noted in the previous section, we consider (1.1) in polar coordinates (see
(1.10)) in case that the right-hand side of the equation is of the form (1.7) and we
ask for the generalized solution to be of the form (1.11). Here we assume that all
coefficients of (1.10) depend only on % and t, and we set α(x) ≡ α(%) ∈ C1[0, 1].



EJDE-2012/149 EXACT BEHAVIOR OF SINGULAR SOLUTIONS 7

Thus from (1.1) we obtain the system

1
%
(%u(1)

n,%)% − u
(1)
n,tt + a1u

(1)
n,% + bu

(1)
n,t + (c− n2

%2
)u(1)
n + na2u

(2)
n = f (1)

n ,

1
%
(%u(2)

n,%)% − u
(2)
n,tt + a1u

(2)
n,% + bu

(2)
n,t + (c− n2

%2
)u(2)
n − na2u

(1)
n = f (2)

n .

(2.1)

To deal with singularities on t = %, especially at (0, 0), we consider (2.1) in the
domain

Gε = {(%, t) : t > 0, ε+ t < % < 1− t}, ε > 0
which is bounded by the disc S0 = {(%, t) : t = 0, 0 < % < 1}, and

S1 = {(%, t) : % = 1− t}, S2,ε = {(%, t) : % = t+ ε}

and treat the following problem (omitted the index n):

Problem Pα,1. Find solutions u = (u(1), u(2)) of system (2.1) which satisfy

u(i)|S1∩∂Gε = 0, [u(i)
t + α(%)u(i)]|S0∩∂Gε = 0, i = 1, 2.

Definition 2.1. A function u = (u(1), u(2))(%, t) is called a generalized solution of
Problem Pα,1 in Gε, ε > 0, if:

(1) u ∈ C1(Ḡε), [u(i)
t + α(%)u(i)]

∣∣
S0∩∂Gε

= 0, u(i)
∣∣
S1∩∂Gε

= 0, i = 1, 2;
(2) The equalities∫

Gε

[
u

(1)
t v1,t − u(1)

% v1,% +
(
a1u

(1)
% + bu

(1)
t + (c− n2

%2
)u(1) + na2u

(2) − f (1)
)
v1

]
%d% dt

=
∫
S0∩∂Gε

α(%)u(1)v1% d%,∫
Gε

[u(2)
t v2,t − u(2)

% v2,% +
(
a1u

(2)
ρ + bu

(2)
t + (c− n2

%2
)u(2) − na2u

(1) − f (2)
)
v2

]
%d% dt

=
∫
S0∩∂Gε

α(%)u(2)v2% d%

hold for all

v1, v2 ∈ V (1)
ε = {v ∈ C1(Ḡε) : [vt + (α+ b)v]

∣∣
S0∩∂Gε

= 0, v
∣∣
S2,ε∩∂Gε

= 0}.

Introducing a new function

z(i)(%, t) = %
1
2u(i)(%, t) = z(i)(%(ξ, η), t(ξ, η)) =: U (i)(ξ, η), i = 1, 2, (2.2)

in characteristic coordinates

ξ = 1− %− t, η = 1− %+ t (2.3)

we obtain the system

U
(1)
ξη −A1U

(1)
ξ −B1U

(1)
η − C1U

(1) −D1U
(2) = F 1(ξ, η) in Dε,

U
(2)
ξη −A2U

(2)
ξ −B2U

(2)
η − C2U

(2) −D2U
(1) = F 2(ξ, η) in Dε,

(2.4)

where Dε = {(ξ, η) : 0 < ξ < η < 1− ε} and

F (i)(ξ, η) =
1

4
√

2
(2− ξ − η)

1
2 f (i)(%(ξ, η), t(ξ, η)), i = 1, 2, (2.5)
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A1 = A2 =
1
4
(a1 + b), B1 = B2 =

1
4
(a1 − b),

D2 = −D1 =
1
4
na2, C1 = C2 =

1
4

{ 4n2 − 1
(2− ξ − η)2

+
a1

2− ξ − η
− c

}
.

(2.6)

Note, that Problem Pα,1 is reduced to the Darboux-Goursat problem for the system
(2.4) in Dε. Note also, that if we consider this problem in D0 , then the coefficients
Ci, Di(i = 1, 2) are singular at the point (1, 1).

To investigate the smoothness or the singularities of solutions at the original
problem Pα on Σ2,0, we are looking for classical solutions for the system (2.4) not
only in the domain Dε, but also in the domain

D(1)
ε := {(ξ, η) : 0 < ξ < η < 1, 0 < ξ < 1− ε}, ε > 0,

where Dε ⊂ D
(1)
ε . Thus we come to the following question.

Problem Pα,2. Find solutions (U (1), U (2))(ξ, η) of system (2.4) in D
(1)
ε , which

satisfy the boundary conditions

U (i)(0, η) = 0, (U (i)
η − U

(i)
ξ )(ξ, ξ) + α(1− ξ)U (i)(ξ, ξ) = 0, (2.7)

i = 1, 2, ξ ∈ (0, 1− ε), η ∈ (0, 1).

3. A system of integral equations for problem Pα,2

We consider a point (ξ0, η0) ∈ D(1)
ε and rectangle R, triangle T defined by

R := {(ξ, η) : 0 < ξ < ξ0, ξ0 < η < η0},
T := {(ξ, η) : 0 < ξ < ξ0, ξ < η < ξ0}.

By use of Green’s theorem in

I
(i)
R :=

∫∫
R

U
(i)
ξη (ξ, η) dξdη =

∫ ξ0

0

( ∫ η0

ξ0

U
(i)
ξη (ξ, η) dη

)
dξ,

I
(i)
T :=

∫∫
T

U
(i)
ξη (ξ, η) dξdη =

∫ ξ0

0

( ∫ ξ0

ξ

U
(i)
ξη (ξ, η) dη

)
dξ,

(3.1)

i = 1, 2, and the boundary conditions (2.7) we obtain

I
(i)
R + 2I(i)

T = U (i)(ξ0, η0)−
∫ ξ0

0

α(1− ξ)U (i)(ξ, ξ) dξ. (3.2)

We set p(i) := U
(i)
ξ , q(i) := U

(i)
η and define (see (2.4))

E(1)(ξ, η) := [F 1 +A1p
(1) +B1q

(1) + C1U
(1) +D1U

(2)](ξ, η),

E(2)(ξ, η) := [F 2 +A2p
(2) +B2q

(2) + C2U
(2) +D2U

(1)](ξ, η).
(3.3)

Using (3.1) - (3.3) and (2.4) we obtain six integral equations (i = 1, 2)

U (i)(ξ0, η0) =
∫ ξ0

0

( ∫ η0

ξ0

E(i)(ξ, η) dη
)
dξ + 2

∫ ξ0

0

( ∫ η

0

E(i)(ξ, η) dξ
)
dη

+
∫ ξ0

0

α(1− ξ)U (i)(ξ, ξ)dξ,

(3.4)

p(i)(ξ0, η0) =
∫ ξ0

0

E(i)(ξ, ξ0)dξ +
∫ η0

ξ0

E(i)(ξ0, η)dη + α(1− ξ0)U (i)(ξ0, ξ0), (3.5)
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q(i)(ξ0, η0) =
∫ ξ0

0

E(i)(ξ, η0)dξ (3.6)

The system (3.4)–(3.6) is equivalent to the system (2.4) with the boundary condi-
tions (2.7).

Remark 3.1. We recall that in Section 2 the index n in system (2.1) was omitted.
We see that in (2.4) the coefficients Ci, Di (i = 1, 2) depend on n, where on the
right-hand side we have

F (i)(ξ, η) =
1

4
√

2
(2− ξ − η)

1
2 f (i)
n (%(ξ, η), t(ξ, η)).

Therefore for fixed n ∈ N solutions (U (1), U (2)) of the integral equation system (3.4)
- (3.6) depend on n and will be later marked by (U (1)

n , U
(2)
n ), which gives functions

(u(1)
n , u

(2)
n ) by relation %

1
2u(i)(%, t) = U

(i)
n (ξ, η) (see (2.2)).

Furthermore we observe that classical solutions (U (1)
n , U

(2)
n ) ∈ C1(D̄(1)

ε ), U (i)
n,ξη ∈

C(D̄(1)
ε ) of the integral equation system define functions (u(1)

n , u
(2)
n ) which are gen-

eralized solutions of Problem Pα,1 in Ḡ0\(0, 0).

4. Solutions of the system and first upper estimates

We define in D(1)
ε functions (U (i)

m , p
(i)
m , q

(i)
m ), i = 1, 2, m ∈ N, by the formulas

U
(i)
m+1(ξ0, η0) =

∫ ξ0

0

( ∫ η0

ξ0

E(i)
m (ξ, η) dη

)
dξ + 2

∫ ξ0

0

( ∫ η

0

E(i)
m (ξ, η) dξ

)
dη

+
∫ ξ0

0

α(1− ξ)U (i)
m (ξ, ξ) dξ, i = 1, 2; m = 0, 1, 2 . . .

p
(i)
m+1(ξ0, η0) =

∫ ξ0

0

E(i)
m (ξ, ξ0) dξ +

∫ η0

ξ0

E(i)
m (ξ0, η) dη

+ α(1− ξ0)U (i)
m (ξ0, ξ0), i = 1, 2; m = 0, 1, 2 . . .

q
(i)
m+1(ξ0, η0) =

∫ ξ0

0

E(i)
m (ξ, η0) dξ, i = 1, 2; m = 0, 1, 2 . . .

U
(i)
0 (ξ0, η0) = 0, p

(i)
0 (ξ0, η0) = 0, q(i)0 (ξ0, η0) = 0, i = 1, 2,

(4.1)

in D(1)
ε , where

E(1)
m (ξ, η) := [F 1 +A1p

(1)
m +B1q

(1)
m + C1U

(1)
m +D1U

(2)
m ](ξ, η),

E(2)
m (ξ, η) := [F 2 +A2p

(2)
m +B2q

(2)
m + C2U

(2)
m +D2U

(1)
m ](ξ, η).

(4.2)

Now we formulate some results from Hristov et al [15] which we use later.

Lemma 4.1 ([15]). Let for (ξ0, η0) ∈ D
(1)
ε = {(ξ, η) : 0 < ξ < η < 1, 0 < ξ <

1− ε}, ε > 0, and µ ∈ R+ define

Iµ :=
∫ ξ0

0

( ∫ η0

ξ0

(2− ξ − η)−µ−2dη
)
dξ + 2

∫ ξ0

0

( ∫ ξ0

ξ

(2− ξ − η)−µ−2dη
)
dξ.

Then

Iµ ≤
1

µ(µ+ 1)
(2− ξ0 − η0)−µ.
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As we mentioned in the introduction, we treat in this paper the equation (1.1)
in case that its coefficients are continuous in Ω̄0, so we may set

sup
Ω̄0

{|b1|, |b2|, |b|} ≤ K1, sup
Ω̄0

|c| ≤ K0, sup
[0,1]

|α(%)| ≤ Kα. (4.3)

Then, from (2.6) we obtain the following bounds

|a1| ≤ 2K1, |a2| ≤
2K1

ρ
, |A1| = |A2| ≤

3K1

4
,

|B1| = |B2| ≤
3K1

4
, |D1| = |D2| ≤

nK1

2ρ
=

nK1

2− ξ − η
,

|C1| = |C2| ≤
ν(ν + 1)

(2− ξ − η)2
+

K1

2(2− ξ − η)
+
K0

4
,

where ν := n− 1
2 . According to (4.2)

E(i)
m (ξ, η) := [F i +Aip

(i)
m +Biq

(i)
m + CiU

(i)
m +DiU

(γi)
m ](ξ, η),

with γ1 = 2, γ2 = 1 and thus for i = 1, 2 we have

|(E(i)
m − E

(i)
m−1)(ξ, η)|

≤
{ ν(ν + 1)

(2− ξ − η)2
+

K1

2(2− ξ − η)
+
K0

4
}
|U (i)
m − U

(i)
m−1|

+
(ν + 1/2)K1

2− ξ − η
|U (γi)
m − U

(γi)
m−1|+

3K1

4
|p(i)
m − p

(i)
m−1|+

3K1

4
|q(i)m − q

(i)
m−1|.

(4.4)

Lemma 4.2 ([15]). Let the conditions (4.3) be fulfilled and there exists a constant
A > 0, such that

|(U (i)
m − U

(i)
m−1)(ξ0, η0)| ≤ A(2− ξ0 − η0)−µ,

|(p(i)
m − p

(i)
m−1)(ξ0, η0)| ≤ µA(2− ξ0 − η0)−µ−1,

|(q(i)m − q
(i)
m−1)(ξ0, η0)| ≤ µA(2− ξ0 − η0)−µ−1,

where µ ∈ R+, µ > ν = n− 1/2,m ∈ N. If the parameter δν is such, that

(µ− ν)(µ+ ν + 1) ≥ δνµ(µ+ 1) + (3µ+ 2ν + 2)K1 + 2(µ+ 1)Kα +K0, (4.5)

then for m ∈ N, i = 1, 2 we have

|(U (i)
m+1 − U (i)

m )(ξ0, η0)| ≤ A(1− δν)(2− ξ0 − η0)−µ,

|(p(i)
m+1 − p(i)

m )(ξ0, η0)| ≤ µA(1− δν)(2− ξ0 − η0)−µ−1,

|(q(i)m+1 − q(i)m )(ξ0, η0)| ≤ µA(1− δν)(2− ξ0 − η0)−µ−1.

Lemma 4.3 ([15]). Let now ν = n − 1/2, n ∈ N be fixed. If the parameter µ is
large enough, µ > ν, then

(µ− ν)(µ+ ν + 1)− [(3µ+ 2ν + 2)K1 + 2(µ+ 1)Kα +K0] > 0 (4.6)

and we can choose the parameter δν > 0, such that the condition (4.5) to be fulfilled.

In [15] the integral equation system (3.4)–(3.6) is solved by the successive ap-
proximations method and the following important theorem is proved.

Theorem 4.4 ([15]). Let n ∈ N be fixed. Assume:



EJDE-2012/149 EXACT BEHAVIOR OF SINGULAR SOLUTIONS 11

(i) a1 = b1cosϕ+b2sinϕ, a2 = %−1(b2cosϕ−b1sinϕ), b, c are functions of (%, t),
α = α(ρ);

(ii) b1, b2, b, c ∈ C(Ω̄0), α(%) ∈ C1([0, 1]), f (i)
n ∈ C(Ω̄0), i = 1, 2;

(iii) the parameter µ = µn is such large, that

(µ− ν)(µ+ ν + 1) > (3µ+ 2ν + 2)K1 + 2(µ+ 1)Kα +K0

(see Lemma 4.3).

Then there exists a classical solution (U (1)
n , U

(2)
n ) ∈ C1(D̄(1)

ε ), U (i)
n,ξ0η0

∈ C(D̄(1)
ε ) of

Problem Pα,2 and the following estimates hold:

|U (i)
n (ξ, η)| ≤ Aµδ

−1
ν (2− ξ − η)−µ,

|U (i)
n,ξ(ξ, η)| ≤ µAµδ

−1
ν (2− ξ − η)−µ−1,

|U (i)
n,η(ξ, η)| ≤ µAµδ

−1
ν (2− ξ − η)−µ−1,

(4.7)

where

Aµ :=
1

µ(µ+ 1)
max
Ḡ0

| 1
4
√

2
(2%)µ+ 5

2 f (i)
n (%, t)|,

δν :=
1

µ(µ+ 1)
{(µ− ν)(µ+ ν + 1)− [(3µ+ 2ν + 2)K1 + 2(µ+ 1)Kα +K0]}

After the inverse transformation to Problem Pα (using the relation (2.2)), we see
that the first estimate of (4.7) is equivalent to (1.8). Next, we aim to refine this
result.

5. New (exact) upper estimates

Theorem 5.1. Let n ∈ N be fixed and the conditions (i) and (ii) from Theorem
4.4 be fulfilled. Then for each number σ > 0 there exists a positive constant Cσ,
such that the inequalities

|U (i)
n (ξ, η)| ≤ Cσ max

D̄
(1)
0

|F (i)|(2− ξ − η)−ν−σ,

|U (i)
n,ξ(ξ, η)| ≤ (ν + σ)Cσ max

D̄
(1)
0

|F (i)|(2− ξ − η)−ν−σ−1,

|U (i)
n,η(ξ, η)| ≤ (ν + σ)Cσ max

D̄
(1)
0

|F (i)|(2− ξ − η)−ν−σ−1

(5.1)

hold in D̄
(1)
ε , i = 1, 2. Cσ > 0 depends on the numbers ν, σ,K1,K0 and Kα.

Proof. Let us choose and fix some µ > ν satisfying Lemma 4.3. Next, we choose
and fix an arbitrary positive number σ, such that ν + σ < µ. Further, we choose
δν ∈ (0, 1) satisfying the condition (4.5) from Lemma 4.2. From Lemma 4.3 we see
that it is possible. Now we introduce the positive number

τ := max{(1− δν), θ} < 1, (5.2)

where

θ :=
ν(ν + 1)

(ν + σ/2)(ν + σ/2 + 1)
.

For shortness in the further calculations, we denote

N(K1,K0,Kα) :=
(5ν + 3σ + 2)K1 +K0 + 2(ν + σ + 1/2)Kα + 1

(ν + σ − 1/2)(ν + σ + 1/2)
.
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Note that N(K1,K0,Kα) > 0 and

ν(ν + 1)
(ν + σ)(ν + σ + 1)

< θ.

Next, we divide D(1)
ε by the line

2− ξ − η =
1

N(K1,K0,Kα)2

(
θ − ν(ν + 1)

(ν + σ)(ν + σ + 1)

)2

and obtain two parts:

D1 :=
{

(ξ, η) : 0 < ξ < η < 1, 0 < ξ < 1− ε,

(2− ξ − η)1/2 >
1

N(K1,K0,Kα)

(
θ − ν(ν + 1)

(ν + σ)(ν + σ + 1)

)}
,

and

D2 :=
{

(ξ, η) : 0 < ξ < η < 1, 0 < ξ < 1− ε,

(2− ξ − η)1/2 ≤ 1
N(K1,K0,Kα)

(
θ − ν(ν + 1)

(ν + σ)(ν + σ + 1)

)}
.

It is possible that D1 = ∅ or D2 = ∅.
Finally, for λ > 0 we denote

Aλ :=
1

λ(λ+ 1)
max

(ξ0,η0)∈D̄(1)
0

|(2− ξ0 − η0)λ+2F (i)(ξ0, η0)| (5.3)

and

C1 = max
{
Aν+σ,

µ

ν + σ
Aµ max

D1
(2− ξ0 − η0)−µ+ν+σ

}
≤ Cµ,σ max

D̄
(1)
0

|F (i)|, (5.4)

where Cµ,σ > 0 do not depend on F (i). If D1 = ∅ we set maxD1(. . .) = 1. Now, we
are ready to prove Theorem 5.1 by induction.

(i) For m = 0:

U
(i)
n,0(ξ, η) = p

(i)
n,0(ξ, η) = q

(i)
n,0(ξ, η) ≡ 0 in D̄(1)

ε ,

E
(i)
n,0(ξ, η) = F (i)

n (ξ, η).

(ii) For m = 1:

(U (i)
n,1 − U

(i)
n,0)(ξ0, η0)

=
∫ ξ0

0

( ∫ η0

ξ0

E
(i)
n,0(ξ, η) dη

)
dξ + 2

∫ ξ0

0

( ∫ η

0

E
(i)
n,0(ξ, η) dξ

)
dη

=
∫ ξ0

0

( ∫ η0

ξ0

(2− ξ − η)−λ−2(2− ξ − η)λ+2F (i)(ξ, η) dη
)
dξ

+ 2
∫ ξ0

0

( ∫ η

0

(2− ξ − η)−λ−2(2− ξ − η)λ+2F (i)(ξ, η) dξ
)
dη.

Applying Lemma 4.1 and recalling (5.3), we obtain

|(U (i)
n,1 − U

(i)
n,0)(ξ0, η0)| ≤ Aλ(2− ξ0 − η0)−λ. (5.5)
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Likewise we have

(p(i)
n,1 − p

(i)
n,0)(ξ0, η0) =

∫ ξ0

0

F (i)(ξ, ξ0)dξ +
∫ η0

ξ0

F (i)(ξ0, η)dη

and with integration

|(p(i)
n,1 − p

(i)
n,0)(ξ0, η0)| ≤ λAλ(2− ξ0 − η0)−λ−1, (5.6)

respectively
|(q(i)n,1 − q

(i)
n,0)(ξ0, η0)| ≤ λAλ(2− ξ0 − η0)−λ−1. (5.7)

For λ = ν + σ we have

|(U (i)
n,1 − U

(i)
n,0)(ξ0, η0)| ≤ Aν+σ(2− ξ0 − η0)−ν−σ,

|(p(i)
n,1 − p

(i)
n,0)(ξ0, η0)| ≤ (ν + σ)Aν+σ(2− ξ0 − η0)−ν−σ−1,

|(q(i)n,1 − q
(i)
n,0)(ξ0, η0)| ≤ (ν + σ)Aν+σ(2− ξ0 − η0)−ν−σ−1.

(5.8)

(iii) For m = 2, 3, . . . Now with Lemma 4.2, the inequalities (5.5)–(5.7) for
λ = µ and induction, there exist sequences {U (i)

n,m}, {p(i)
n,m} and {q(i)n,m}, m ∈ N, of

continuous functions and the estimates

|(U (i)
n,m+1 − U (i)

n,m)(ξ0, η0)| ≤ Aµ(1− δν)m(2− ξ0 − η0)−µ,

|(p(i)
n,m+1 − p(i)

n,m)(ξ0, η0)| ≤ µAµ(1− δν)m(2− ξ0 − η0)−µ−1,

|(q(i)n,m+1 − q(i)n,m)(ξ0, η0)| ≤ µAµ(1− δν)m(2− ξ0 − η0)−µ−1

(5.9)

hold for m = 0, 1, 2, . . ..
For the points (ξ0, η0) ∈ D1 from (5.9) we obtain:

|(U (i)
n,m+1 − U (i)

n,m)(ξ0, η0)|
≤ Aµ(1− δν)m(2− ξ0 − η0)−ν−σ max

D̄1
(2− ξ0 − η0)−µ+ν+σ,

|(p(i)
n,m+1 − p(i)

n,m)(ξ0, η0)|

≤ (ν + σ)
µ

ν + σ
Aµ(1− δν)m(2− ξ0 − η0)−ν−σ−1 max

D̄1
(2− ξ0 − η0)−µ+ν+σ,

|(q(i)n,m+1 − q(i)n,m)(ξ0, η0)|

≤ (ν + σ)
µ

ν + σ
Aµ(1− δν)m(2− ξ0 − η0)−ν−σ−1 max

D̄1
(2− ξ0 − η0)−µ+ν+σ.

Thus using (5.2) and (5.4) in D1 for m ∈ N we obtain

|(U (i)
n,m+1 − U (i)

n,m)(ξ0, η0)| ≤ C1τ
m(2− ξ0 − η0)−ν−σ,

|(p(i)
n,m+1 − p(i)

n,m)(ξ0, η0)| ≤ (ν + σ)C1τ
m(2− ξ0 − η0)−ν−σ−1,

|(q(i)n,m+1 − q(i)n,m)(ξ0, η0)| ≤ (ν + σ)C1τ
m(2− ξ0 − η0)−ν−σ−1.

(5.10)

For (ξ0, η0) ∈ D2 we will show that such estimates hold too.
Our induction hypothesis is that for some m ∈ N is true

|(U (i)
n,m − U

(i)
n,m−1)(ξ0, η0)| ≤ C1τ

m−1(2− ξ0 − η0)−ν−σ,

|(p(i)
n,m − p

(i)
n,m−1)(ξ0, η0)| ≤ (ν + σ)C1τ

m−1(2− ξ0 − η0)−ν−σ−1,

|(q(i)n,m − q
(i)
n,m−1)(ξ0, η0)| ≤ (ν + σ)C1τ

m−1(2− ξ0 − η0)−ν−σ−1

(5.11)
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in D
(1)
ε , which for m = 1 is fulfilled according to (5.8) and C1 ≥ Aν+σ. Now, we

are trying to approve (5.10) in D(1)
ε , which is already known in D1.

By setting the inequalities (5.11) in (4.4) we derive

|(E(i)
m − E

(i)
m−1)|(ξ, η)

≤
{ ν(ν + 1)

(2− ξ − η)2
+

K1

2(2− ξ − η)
+
K0

4

}
C1τ

m−1(2− ξ − η)−ν−σ

+
(ν + 1/2)K1

2− ξ − η
C1τ

m−1(2− ξ − η)−ν−σ

+
3K1

2
(ν + σ)C1τ

m−1(2− ξ − η)−ν−σ−1

≤ C1τ
m−1

{
ν(ν + 1)(2− ξ − η)−ν−σ−2 + (5ν + 3σ + 2)K1(2− ξ − η)−ν−σ−3/2

+K0(2− ξ − η)−ν−σ−3/2
}

everywhere in D(1)
ε . Now we are ready to apply Lemma 4.1 for all the terms in the

brackets, since they are of power less than −2. We substitute the last inequality in
the formulas (4.1) and with integration and Lemma 4.1 we obtain:

|(U (i)
n,m+1 − U (i)

n,m)(ξ0, η0)|

≤ C1τ
m−1

{ ν(ν + 1)
(ν + σ)(ν + σ + 1)

(2− ξ0 − η0)−ν−σ

+
(5ν + 3σ + 2)K1 +K0

(ν + σ − 1/2)(ν + σ + 1/2)
(2− ξ0 − η0)−ν−σ+1/2

}
+Kα

∫ ξ0

0

|(U (i)
n,m − U

(i)
n,m−1)(ξ, ξ)|dξ

≤ C1τ
m−1(2− ξ0 − η0)−ν−σ

{ ν(ν + 1)
(ν + σ)(ν + σ + 1)

+ (2− ξ0 − η0)1/2N(K1,K0,Kα)
}
,

|(p(i)
n,m+1 − p(i)

n,m)(ξ0, η0)|

≤ (ν + σ)C1τ
m−1

{ ν(ν + 1)
(ν + σ)(ν + σ + 1)

(2− ξ0 − η0)−ν−σ−1

+
(5ν + 3σ + 2)K1 +K0

(ν + σ − 1/2)(ν + σ + 1/2)
(2− ξ0 − η0)−ν−σ−1/2

}
+ 2KαC1τ

m−1(2− 2ξ0)−ν−σ−1/2

≤ (ν + σ)C1τ
m−1(2− ξ0 − η0)−ν−σ−1

{ ν(ν + 1)
(ν + σ)(ν + σ + 1)

+ (2− ξ0 − η0)1/2N(K1,K0,Kα)
}
,

|(q(i)n,m+1 − q(i)n,m)(ξ0, η0)|

≤ (ν + σ)C1τ
m−1(2− ξ0 − η0)−ν−σ−1

{ ν(ν + 1)
(ν + σ)(ν + σ + 1)
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+ (2− ξ0 − η0)1/2N(K1,K0,Kα)
}

in D(1)
ε . Since

ν(ν + 1)
(ν + σ)(ν + σ + 1)

+ (2− ξ0 − η0)1/2N(K1,K0,Kα) ≤ θ ≤ τ in D2

by definition, for the points (ξ0, η0) ∈ D2 from the last three inequalities we obtain
(5.10). Then by induction we conclude that the estimates (5.10) hold in D

(1)
ε for

m = 2, 3, . . ..
The functions {U (i)

n,m, p
(i)
n,m, q

(i)
n,m}∞m=0 belong to C(D̄(1)

ε ) and we have uniform
convergence to some functions {U (i)

n , p
(i)
n , q

(i)
n } ∈ C(D̄(1)

ε ), as m→∞ and

|U (i)
n (ξ0, η0)| =

∣∣ ∞∑
m=0

(U (i)
n,m+1 − U (i)

n,m)(ξ0, η0)
∣∣

≤ C1(1− τ)−1(2− ξ0 − η0)−ν−σ,

|U (i)
n,ξ0

(ξ0, η0)| =
∣∣ ∞∑
m=0

(p(i)
n,m+1 − p(i)

n,m)(ξ0, η0)
∣∣

≤ (ν + σ)C1(1− τ)−1(2− ξ0 − η0)−ν−σ−1,

|U (i)
n,η0(ξ0, η0)| =

∣∣ ∞∑
m=0

(q(i)n,m+1 − q(i)n,m)(ξ0, η0)
∣∣

≤ (ν + σ)C1(1− τ)−1(2− ξ0 − η0)−ν−σ−1.

In view of (5.4), these estimates coincide with (5.1) with Cσ = Cµ,σ(1− τ)−1. �

Proof of Theorem 1.4. First, we note that the conditions (i) and (ii) of Theorem
4.4 are fulfilled, hence we can apply Theorem 5.1. Using the relations (2.2) and
(2.3), we make the inverse transformation from Problem Pα,2 to Problem Pα and
we see that the generalized solution u(x, t) belongs to C1(Ω̄0\O) and the estimates

|u(x, t)| ≤ Cn,σ max
Ω̄0

{|f (1)
n |+ |f (2)

n |}|x|−n−σ,∑
|β|=1

|Dβu(x, t)| ≤ nCn,σ max
Ω̄0

{|f (1)
n |+ |f (2)

n |}|x|−n−σ−1

hold, where Cn,σ > 0 depends on n, σ and all coefficients of (1.1). �

It is easy to generalize this result in the following way.

Theorem 5.2. Let the right-hand function f(%, ϕ, t) of (1.10) be a trigonometric
polynomial

f =
l∑

n=0

f (1)
n (%, t) cosnϕ+ f (2)

n (%, t) sinnϕ, l ∈ N. (5.12)

If conditions (i) and (ii) of Theorem 4.4 are fulfilled, then there exists one and
only one generalized solution u(x, t) ∈ C1(Ω̄0\O) of Problem Pα and the a priori
estimates

|u(x, t)| ≤ Cl,σ max
Ω̄0

{|f (1)
l |+ |f (2)

l |}|x|−l−σ +O(|x|−l−σ+1),
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|β|=1

|Dβu(x, t)| ≤ Cl,σ max
Ω̄0

{|f (1)
l |+ |f (2)

l |}|x|−l−σ−1 +O(|x|−l−σ)

hold.

6. On the singularity of solutions of problem Pα,2

In this section we derive some sufficient conditions on the coefficients and the
right-hand side of (1.1) for the existence of singular solutions of the problem we
treat. We follow Grammatikopoulos et al [12] (see Theorem 1.3) and making some
modifications we extend this result.

First, we represent an important lemma

Lemma 6.1 ([12]). Consider Problem Pα,2. Let F i, Ai, Bi, Ci, Di ∈ C(D̄(1)
ε ), i =

1, 2,

Ai ≥ 0, Bi ≥ 0, Ci ≥ 0, Di ≥ 0, α(1− ξ) ≥ 0 in D̄(1)
ε , i = 1, 2 (6.1)

and
F (i) ≥ 0 in D̄(1)

ε , i = 1, 2. (6.2)

Then for the solution (U (1), U (2)) of Problem Pα,2 we have

U (i)(ξ, η) ≥ 0, U (i)
η (ξ, η) ≥ 0, U

(i)
ξ (ξ, η) ≥ 0 for (ξ, η) ∈ D̄(1)

ε , i = 1, 2. (6.3)

Note that in view of D1 = −D2 (see (2.6)) for (6.1) to be fulfilled is necessary
D1 = D2 ≡ 0, so in this case we may consider the system (2.4) as two independent
single equations

Uξη −AUξ −BUη − CU = F (ξ, η) (6.4)
with boundary conditions

U(0, η) = 0, (Uη − Uξ)(ξ, ξ) + α(1− ξ)U(ξ, ξ) = 0. (6.5)

Next, we formulate the main result in this section.

Theorem 6.2. Consider the problem (6.4), (6.5). Let for the coefficients we assume
A,B,C ∈ C(D̄(1)

ε ), α(1− ξ) ∈ C1([0, 1− ε]) and

A ≥ 0, B ≥ 0, C ≥ 4n2 − 1
4(2− ξ − η)2

, α(1− ξ) ≥ 0 in D̄(1)
ε . (6.6)

Additionally, let F (ξ, η) ∈ C(D̄(1)
ε ) does not change its sign (that means either

F ≥ 0 or F ≤ 0) and F 6≡ 0 in D
(1)
0 .

Then for η ∈ (0, 1] and ε ∈ (0, εF ), where εF ∈ (0, 1) is a number depending on
F , holds

|U(1− ε, η)| ≥ C0ε
−(n− 1

2 ), C0 = const > 0. (6.7)

Proof. We will consider the case F ≥ 0. The case F ≤ 0 is obviously analogous. In
[12] was shown the existence of classical solution U(ξ, η) of the problem we treat.

We introduce a function

W (ξ, η) :=
(1− ξ)n−1/2(1− η)n−1/2

(2− ξ − η)n−1/2
.

We see that W (ξ, η) > 0 in D
(1)
ε . Next, since F 6≡ 0 in D

(1)
0 and it is continuous

in each D
(1)
ε , we conclude that there exists an open ball in D

(1)
0 where F > 0.
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Therefore, if we consider ε small enough (smaller than some εF ), we have the
inequality ∫

Dε

(FW )(ξ, η)dξdη ≥ K, K = const > 0. (6.8)

Recall that Dε = {(ξ, η) : 0 < ξ < η < 1− ε}, Dε ⊂ D
(1)
ε .

Using (6.4) we transform (6.8) in the following way:

0 < K ≤
∫
Dε

(FW )(ξ, η)dξdη

=
∫
Dε

(UξηW )(ξ, η)dξdη −
∫
Dε

[(AUξ +BUη)W ](ξ, η)dξdη

−
∫
Dε

(CUW )(ξ, η)dξdη := I1 − I2 − I3.

Since Lemma 6.1 is fulfilled (consequently, U ≥ 0, Uξ ≥ 0, Uη ≥ 0) and W ≥ 0, we
see that I2 ≥ 0 and we may neglect this term:

0 < K ≤ I1 − I3. (6.9)

Taking into account the first boundary condition from (6.5) and integrating by
parts we compute:

I1 =
∫
Dε

(UξηW )(ξ, η)dξdη

=
∫
Dε

(UWξη)(ξ, η)dξdη −
∫ 1−ε

0

(UξW + UWη)(ξ, ξ)dξ

+
∫ 1−ε

0

(UξW )(ξ, 1− ε)dξ := IDε − I∂1 + I∂2.

Next, we calculate

Wξη(ξ, η) =
4n2 − 1

4(2− ξ − η)2
W (ξ, η).

From here and (6.6) it follows that

IDε − I3 =
∫
Dε

( 4n2 − 1
4(2− ξ − η)2

− C
)
(UW )(ξ, η)dξdη ≤ 0.

Using this conclusion, from (6.9) we derive

0 < K ≤ I1 − I3 = IDε
− I∂1 + I∂2 − I3 ≤ −I∂1 + I∂2.

A calculation shows that
Wη(ξ, ξ) =

1
2
[W (ξ, ξ)]ξ. (6.10)

On the other hand, using the second boundary condition from (6.5) we compute

Uξ(ξ, ξ) =
1
2
[U(ξ, ξ)]ξ +

1
2
α(1− ξ)U(ξ, ξ). (6.11)

Then substituting (6.10) and (6.11) in the expression for I∂1 gives

I∂1 =
∫ 1−ε

0

(UξW + UWη)(ξ, ξ)dξ

=
∫ 1−ε

0

{1
2
[U(ξ, ξ)]ξW (ξ, ξ) +

1
2
α(1− ξ)U(ξ, ξ)W (ξ, ξ)
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+
1
2
U(ξ, ξ)[W (ξ, ξ)]ξ

}
dξ

=
1
2

∫ 1−ε

0

[UW (ξ, ξ)]ξdξ +
1
2

∫ 1−ε

0

α(1− ξ)(UW )(ξ, ξ)dξ

=
1
2
(UW )(1− ε, 1− ε) +

1
2

∫ 1−ε

0

α(1− ξ)(UW )(ξ, ξ)dξ ≥ 0,

where in the last inequality we use the sign of α from (6.6). Thus (6.9) becomes

0 < K ≤ I∂2. (6.12)

It is easy to check that Wξ ≤ 0 in D̄ε and we can estimate I∂2,

I∂2 =
∫ 1−ε

0

(UξW )(ξ, 1− ε)dξ

= −
∫ 1−ε

0

(UWξ)(ξ, 1− ε)dξ + (UW )(1− ε, 1− ε)

≤ U(1− ε, 1− ε)
∫ 1−ε

0

|Wξ(ξ, 1− ε)|dξ

= U(1− ε, 1− ε)W (0, 1− ε)

= U(1− ε, 1− ε)(1 + ε)−(n− 1
2 )εn−

1
2 .

We set this estimate in (6.12) and conclude that

U(1− ε, 1− ε) ≥ (1 + ε)n−
1
2Kε−(n− 1

2 ), ε ∈ (0, εF ).

Recalling once again that Lemma 6.1 implies Uη ≥ 0 in D̄(1)
ε we see that U(1−ε, η) ≥

U(1− ε, 1− ε) in D̄(1)
ε for η ∈ (0, 1].

From this fact and the last estimate immediately follows the assertion of this
theorem. �

Proof of Theorem 1.6. First, we transform Problem Pα to Problem Pα,1 and in
view of the relations

a1 = b1 cosϕ+ b2 sinϕ, a2 = %−1(b2 cosϕ− b1 sinϕ)

we see that the following relations hold

a2 ≡ 0, a1 ≥ |b|, a1 ≥ 2%c, α(%) ≥ 0 in Gε

for the coefficients of system (2.1). Next, we reduce Problem Pα,1 to Problem Pα,2
and recalling the relations

A1 = A2 =
1
4
(a1 + b), B1 = B2 =

1
4
(a1 − b),

D2 = −D1 =
1
4
na2, C1 = C2 =

1
4

{ 4n2 − 1
(2− ξ − η)2

+
a1

2− ξ − η
− c

}
,

we see that D1 = D2 ≡ 0 and the inequalities (6.6) hold. Furthermore, it is easy
to check that the remaining conditions of Theorem 6.2 are also fulfilled, hence for
η ∈ (0, 1] and ε ∈ (0, εF ) the estimate (6.7) holds. From this, making the inverse
transformation from Problem Pα,2 to Problem Pα, we obtain the estimate (1.13) in
some neighborhood of O(0, 0, 0). �
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[14] L. Hörmander; The Analysis of Linear Partial Differential Operators III. Springer-Verlag,
Berlin-Heidelberg-New York-Tokyo (1985).

[15] T. Hristov, N. Popivanov, M. Schneider; Estimates of singular solutions of Protter’s problem
for the 3-D hyperbolic equations, Commun. Appl. Anal. 10 (2006), no. 2, 97-125.

[16] T. D. Hristov, N. I. Popivanov, M. Schneider; On the uniqueness of generalized and quasi-
regular solutions for equations of mixed type in R3, Sib. Adv. Math., 4 (2011), no. 4, 262-273.

[17] S. Kharibegashvili; On the solvability of a spatial problem of Darboux type for the wave
equation, Georgian Math. J., 2 (1995), 385-394.

[18] Khe Kan Cher; On nontrivial solutions of some homogeneous boundary value problems for
the multidimensional hyperbolic Euler-Poisson-Darboux equation in an unbounded domain,
Differ. Equations, 34 (1998), 139–142.

[19] Khe Kan Cher; On the conjugate Darboux-Protter problem for the two-dimensional wave
equation in the special case. Nonclassical equations in mathematical physics (Russian)
(Novosibirsk, 1998), 17–25, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1998.

[20] D. Lupo, K. R. Payne; Critical exponents for semilinear equations of mixed elliptic-hyperbolic
and degenerate types, Comm. Pure Appl. Math., 56 (2003), 403-424.

[21] D. Lupo, K.R. Payne; Conservation laws for equations of mixed elliptic-hyperbolic type, Duke
Math. J., 127 (2005), 251-290.

[22] D. Lupo, K. R. Payne, N. Popivanov; Nonexistence of nontrivial solutions for supercritical
equations of mixed elliptic-hyperbolic type, In: Progress in Non-Linear Differential Equations
and Their Applications, 66, Birkhauser, Basel, (2006), 371-390.

[23] C. S. Morawetz; Mixed equations and transonic flow, J. Hyperbolic Differ. Equ., 1 (2004),
no. 1, 1-26.



20 A. NIKOLOV, N. POPIVANOV EJDE-2012/149

[24] A. M. Nakhushev; Criteria for continuity of the gradient of the solution to the Darboux
problem for the Gellerstedt equation, Differ. Equations, 28 (1992), 1445-1457.

[25] N. I. Popivanov, M. Schneider; The Darboux problem in R3 for a class of degenerated hyper-
bolic equations, Comptes Rend. de l’Acad. Bulg. Sci., 41, 11 (1988), 7–9.

[26] N. I. Popivanov, M. Schneider; The Darboux problems in R3 for a class of degenerated
hyperbolic equations, J. Math. Anal. Appl., 175 (1993), 537-579.

[27] N. I. Popivanov, M. Schneider; On M. H. Protter problems for the wave equation in R3, J.
Math. Anal. Appl., 194 (1995), 50-77.

[28] N. I. Popivanov, T. P. Popov; Exact behavior of the singularities for the 3-D Protter’s prob-
lem for the wave equation, Inclusion Methods for Nonlinear Problems with Applications in
Engineering, Economics and Physics, Computing, (ed. J. Herzberger), [Suppl] 16 (2002),
213–236.

[29] N. I. Popivanov, T. P. Popov; Estimates for the singular solutions of the 3-D Protter’s
problem, Annuaire de l’Universite de Sofia, 96 (2003), 117-139.

[30] N. I. Popivanov, T. P. Popov; Singular solutions of Protter’s problem for the 3+1-D wave
equation, Interal Transforms and Special Functions, 15 (2004), no. 1, 73-91.

[31] M. H. Protter; A boundary value problem for the wave equation and mean value problems,
Annals of Math. Studies, 33 (1954), 247-257.

[32] M. H. Protter; New boundary value problem for the wave equation and equations of mixed
type, J. Rat. Mech. Anal., 3 (1954), 435-446.

[33] J. M. Rassias; Mixed type partial differential equations with initial and boundary values in
fluid mechanics, Int. J. Appl. Math. Stat., 13 (2008), no. J08, 77-107.

[34] J. M. Rassias; Tricomi-Protter problem of nD mixed type equations, Int. J. Appl. Math. Stat.,
8 (2007), no. M07, 76-86.

[35] Tong Kwang-Chang; On a boundary value problem for the wave equation, Science Record,
New Series, 1 (1957), 1-3.

Aleksey Nikolov
Faculty of Mathematics and Informatics, University of Sofia, 1164 Sofia, Bulgaria

E-mail address: lio6kata@yahoo.com

Nedyu Popivanov
Faculty of Mathematics and Informatics, University of Sofia, 1164 Sofia, Bulgaria

E-mail address: nedyu@fmi.uni-sofia.bg


	1. Introduction
	Problem bold0mu mumu PPRawPPPP
	Problem bold0mu mumu PPRawPPPP
	Protter's Problems
	Open Question 1
	Open Question 2

	2. Preliminaries
	Problem bold0mu mumu P,1P,1RawP,1P,1P,1P,1
	Problem bold0mu mumu P,2P,2RawP,2P,2P,2P,2

	3. A system of integral equations for problem bold0mu mumu P,2P,2RawP,2P,2P,2P,2
	4. Solutions of the system and first upper estimates
	5. New (exact) upper estimates
	6. On the singularity of solutions of problem bold0mu mumu P,2P,2RawP,2P,2P,2P,2
	Acknowledgements

	References

