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MULTIPLE POSITIVE PERIODIC SOLUTIONS FOR A
FOOD-LIMITED TWO-SPECIES RATIO-DEPENDENT

PREDATOR-PREY PATCH SYSTEM WITH DELAY AND
HARVESTING

HUI FANG

Abstract. By using Mawhin’s coincidence degree theory, this paper estab-
lishes some sufficient conditions on the existence of four positive periodic solu-
tions for a food-limited two-species ratio-dependent predator-prey patch sys-
tem with delay and harvesting. Some novel techniques are employed to obtain
the appropriate a priori estimates. An example is given to illustrate our re-
sults.

1. Introduction

Since the exploitation of biological resources and the harvest of population
species are related to the optimal management of renewable resources (see [5]),
many researchers pay much attention to the study of population dynamics with
harvesting in mathematical bioeconomics. For example, Brauer and Soudack [1, 2]
analyzed the global behaviour of some predator-prey systems under constant rate
harvesting and/or stocking of both species. Xiao and Jennings [15] studied the
Bogdanov-Takens bifurcations in predator-prey systems with constant rate har-
vesting. But all the coefficients in the system they studied are constants. Recently,
some researchers studied the existence of multiple positive periodic solutions for
some predator-prey systems under the assumption of periodicity of the parameters
by using Mawhin’s coincidence degree theory (see [4, 7, 14, 17]). These papers only
focused on predator-prey systems without diffusion. However, due to the spatial
heterogeneity and unbalanced food resources, the migration phenomena of biologi-
cal species can often occur between heterogeneous spatial environments or patches.
On the other hand, as pointed out by Huusko and Hyvarinen in [12]: ”the dy-
namics of exploited populations are clearly affected by recruitment and harvesting,
and the changes in harvesting induced a tendency to generation cycling in the dy-
namics of a freshwater fish population”. So, it is very important to describe the
potential role of harvesting as an external factor in producing and maintaining the
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periodic fluctuation of population of species. Mathematically, this is equivalent to
the investigation of harvesting induced periodic solutions.

In this paper, we consider the following food-limited two-species ratio-dependent
predator-prey patch system with delay and harvesting:

x′1(t) =
x1(t)

k1(t) + c1(t)x1(t)

[
a1(t)− a11(t)x1(t)−

a13(t)x1(t)y(t)
m(t)y2(t) + x2

1(t)

]
+ D1(t)[x2(t)− x1(t)]−H1(t),

x′2(t) =
x2(t)

k2(t) + c2(t)x2(t)
[
a2(t)− a22(t)x2(t)

]
+ D2(t)[x1(t)− x2(t)]−H2(t),

y′(t) = y(t)
[
− a3(t) +

a31(t)x2
1(t− τ)

m(t)y2(t− τ) + x2
1(t− τ)

]
,

(1.1)
where x1 and y are the population numbers of prey species x and predator species y
in patch 1, and x2 is the population number of species x in patch 2. Prey dispersion
is included in the model to allow for prey refuge from predation. So, the predator
species y is confined to patch 1, while the prey species x can diffuse between two
patches. For biological relevance of allowing for prey refuge from predation, see
Yakubu [16]. a1(t)(a2(t)) is the natural growth rate of prey species x in patch 1
(patch 2) in the absence of predation, a3(t) is the natural death rate of predator
species y in the absence of food, a13(t) is the death rate per encounter of prey
species x due to predation, a31(t) is the efficiency of turning predated prey species
x into predator species y. ki(t) (i = 1, 2) are the population numbers of prey species
in patch 1 (patch 2) at saturation, respectively.

When ci(t) 6= 0(i = 1, 2), ai(t)
ki(t)ci(t)

(i = 1, 2) are the rate of replacement of mass
in the population at saturation (including the replacement of metabolic loss and
of dead organisms). The effect of delay τ refers to the dynamics of a predator
being related to the predation in the past. m(t) is the half capturing saturation
coefficient. aii(t) (i = 1, 2) are the density-dependent coefficients. Di(t) (i = 1, 2)
are diffusion coefficients of species x. Hi(t) (i = 1, 2) denote the harvesting rates.

a13(t)x1(t)y(t)
m(t)y2(t) + x2

1(t)
,

a31(t)x2
1(t− τ)

m(t)y2(t− τ) + x2
1(t− τ)

are ratio-dependent Holling type III functional responses. When ci(t) ≡ 0 (i = 1, 2),
Hi(t) ≡ 0 (i = 1, 2), Dong and Ge in [6] showed that (1.1) has at least one positive
periodic solution under the appropriate conditions. When ci(t) 6= 0 (i = 1, 2),
system (1.1) is a food-limited population model. For other food-limited population
models, we refer to [9, 10, 11, 13] and the references cited therein.

To our knowledge, a few papers have been published on the existence of multiple
periodic solutions for (1.1). In this paper, we study the existence of multiple positive
periodic solutions of (1.1) by using Mawhin’s coincidence degree. Since system
(1.1) involves the diffusion terms and the rates of replacement, the methods used in
[4, 7, 14, 17] are not available to system (1.1). Our method of defining the operator
N(u, λ) facilitates the computation of Brouwer degree degB(JQN(·, 0)|ker L,Ω ∩
ker L, 0).
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2. Existence of four positive periodic solutions

To give the proof of the main results, we first make the following preparations
(see [8]).

Let X, Z be normed vector spaces, L : dom L ⊂ X → Z a linear mapping, N :
X × [0, 1] → Z is a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim ker L = codim Im L < +∞ and Im L is closed in Z.
If L is a Fredholm mapping of index zero, there then exist continuous projectors
P : X → X and Q : Z → Z such that ImP = kerL, Im L = kerQ = Im(I − Q).
If we define LP : dom L ∩ ker P → Im L as the restriction L|dom L∩ker P of L to
dom L ∩ ker P , then LP is invertible. We denote the inverse of that map by KP .
If Ω is an open bounded subset of X, the mapping N will be called L-compact on
Ω̄× [0, 1] if QN(Ω̄× [0, 1]) is bounded and KP (I−Q)N : Ω̄× [0, 1] → X is compact;
i.e., continuous and such that KP (I −Q)N(Ω̄× [0, 1]) is relatively compact. Since
Im Q is isomorphic to kerL, there exists isomorphism J : Im Q → ker L.

For convenience, we introduce Mawhin’s continuation theorem [8, p.29] as fol-
lows.

Lemma 2.1. Let L be a Fredholm mapping of index zero and let N : Ω̄× [0, 1] → Z
be L-compact on Ω̄× [0, 1]. Suppose

(a) Lu 6= λN(u, λ) for every u ∈ dom L ∩ ∂Ω and every λ ∈ (0, 1);
(b) QN(u, 0) 6= 0 for every u ∈ ∂Ω ∩ ker L;
(c) Brouwer degree degB(JQN(·, 0)|ker L,Ω ∩ ker L, 0) 6= 0.

Then Lu = N(u, 1) has at least one solution in dom L ∩ Ω̄.

For the sake of convenience and simplicity, we denote

ḡ =
1
T

∫ T

0

g(t)dt, gl = min
t∈[0,T ]

g(t), gu = max
t∈[0,T ]

g(t),

where g is a nonnegative continuous T -periodic function. Set

N1 = max
{
(

a1

a11
)u, (

a2

a22
)u

}
, b1 =

(a13
k1

)u

2
√

ml
, b2 = 0.

For the rest of this article, we assume the following:
(A1) τ > 0, ki(t) (i = 1, 2), ai(t) (i = 1, 2, 3), aii(t) (i = 1, 2), a13(t), a31(t),

m(t), Di(t) (i = 1, 2), Hi(t) (i = 1, 2) are positive continuous T -periodic
functions, ci(t) (i = 1, 2) are nonnegative continuous T -periodic functions.

(A2) al
31 − ā3 > 0.

(A3) kl
i

kl
i+cu

i N1
(ai

ki
)l > Du

i + bi + 2
√

(aii

ki
)uHu

i (i = 1, 2).

(A4) H l
i > Du

i N1 (i = 1, 2).
For further convenience, we introduce the 12 positive numbers:

l±i =
(ai

ki
)u ±

√
[(ai

ki
)u]2 − 4kl

i

kl
i+cu

i N1
(aii

ki
)l(H l

i −Du
i N1)

2kl
i

kl
i+cu

i N1
(aii

ki
)l

,

u±i =
[ kl

i

kl
i+cu

i N1
(ai

ki
)l −Du

i − bi]±
√

[ kl
i

kl
i+cu

i N1
(ai

ki
)l −Du

i − bi]2 − 4(aii

ki
)uHu

i

2(aii

ki
)u

,
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x±i =
(ai

ki
)±

√
[(ai

ki
)]2 − 4(aii

ki
)H̄i

2(aii

ki
)

, i = 1, 2.

It is not difficult to show that

l−i < x−i < u−i < u+
i < x+

i < l+i (i = 1, 2) (2.1)

Now, we are ready to state the main result of this article.

Theorem 2.2. Assume that (A1)-(A4) hold, then (1.1) has at least four positive
T -periodic solutions.

Proof. Since we are concerning with positive solutions of (1.1), we make the change
of variables,

xj(t) = euj(t) (j = 1, 2), y(t) = eu3(t).

Then (1.1) is rewritten as

u′1(t) =
1

k1(t) + c1(t)eu1(t)

[
a1(t)− a11(t)eu1(t) − a13(t)eu1(t)eu3(t)

m(t)e2u3(t) + e2u1(t)

]
+ D1(t)[

eu2(t)

eu1(t)
− 1]− H1(t)

eu1(t)
,

u′2(t) =
1

k2(t) + c2(t)eu2(t)
[a2(t)− a22(t)eu2(t)] + D2(t)[

eu1(t)

eu2(t)
− 1]− H2(t)

eu2(t)
,

u′3(t) = −a3(t) +
a31(t)e2u1(t−τ)

m(t)e2u3(t−τ) + e2u1(t−τ)
.

(2.2)

Take

X = Z = {u = (u1, u2, u3)T ∈ C(R,R3) : ui(t + T ) = ui(t), i = 1, 2, 3}
and define

‖u‖ = max
t∈[0,T ]

|u1(t)|+ max
t∈[0,T ]

|u2(t)|+ max
t∈[0,T ]

|u3(t)|,

for u = (u1, u2, u3)T in X or in Z. Equipped with the above norm ‖ · ‖, it is easy
to verify that X and Z are Banach spaces.

Set

∆1(u, t, λ) =
[k1(t) + (1− λ)c1(t)eu1(t)

k1(t) + c1(t)eu1(t)

][a1(t)
k1(t)

− a11(t)eu1(t)

k1(t)

− λk1(t)−1a13(t)eu1(t)eu3(t)

m(t)e2u3(t) + e2u1(t)

]
+ λD1(t)

[eu2(t)

eu1(t)
− 1

]
− H1(t)

eu1(t)
,

∆2(u, t, λ) =
[k2(t) + (1− λ)c2(t)eu2(t)

k2(t) + c2(t)eu2(t)

][a2(t)
k2(t)

− a22(t)eu2(t)

k2(t)

]
+ λD2(t)

[eu1(t)

eu2(t)
− 1

]
− H2(t)

eu2(t)
,

∆3(u, t, λ) = −a3(t) +
a31(t)e2u1(t−τ)

m(t)e2u3(t−τ) + λe2u1(t−τ)
.

For any u ∈ X, because of the periodicity, we can easily check that ∆i(u, t, λ) ∈
C(R2, R) (i = 1, 2, 3) are T -periodic in t.

Let

L : dom L = {u ∈ X : u ∈ C(R,R3)} 3 u 7→ u′ ∈ Z,
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P : X 3 u 7→ 1
T

∫ T

0

u(t)dt ∈ X,

Q : Z 3 u 7→ 1
T

∫ T

0

u(t)dt ∈ Z,

N : X × [0, 1] 3 (u, λ) 7→ (∆1(u, t, λ),∆2(u, t, λ),∆3(u, t, λ))T ∈ Z.

Here, for any k ∈ R3, we also identify it as the constant function in X or Z with
the constant value k. It is easy to see that

ker L = R3, Im L = {u ∈ X :
∫ T

0

ui(t)dt = 0, i = 1, 2, 3}

is closed in Z, dim kerL = codim Im L = 3, and P,Q are continuous projectors such
that

ImP = kerL, Im L = kerQ = Im(I −Q).
Therefore, L is a Fredholm mapping of index zero. On the other hand, Kp : Im L 7→
dom L ∩KerP has the form

Kp(u) =
∫ t

0

u(s)ds− 1
T

∫ T

0

∫ t

0

u(s) ds dt.

Thus,

QN(u, λ) =
( 1

T

∫ T

0

∆1(u, t, λ)dt,
1
T

∫ T

0

∆2(u, t, λ)dt,
1
T

∫ T

0

∆3(u, t, λ)dt
)T

,

Kp(I −Q)N(u, λ) = (Φ1(u, t, λ),Φ2(u, t, λ), Φ3(u, t, λ))T ,

where

Φj(u, t, λ) =
∫ t

0

∆j(u, s, λ)ds− 1
T

∫ T

0

∫ t

0

∆j(u, s, λ) ds dt

− (
t

T
− 1

2
)
∫ T

0

∆j(u, s, λ)ds, j = 1, 2, 3.

Obviously, QN and Kp(I −Q)N are continuous. By the Arzela-Ascoli theorem, it
is not difficult to show that the closure of Kp(I − Q)N(Ω × [0, 1]) is compact for
any open bounded set Ω ⊂ X. Moreover, QN(Ω̄ × [0, 1]) is bounded. Thus N is
L-compact on Ω̄× [0, 1] with any open bounded set Ω ⊂ X.

To apply Lemma 2.1, we need to find at least four appropriate open, bounded
subsets Ω1,Ω2,Ω3,Ω4 in X.

Corresponding to the operator equation Lu = λN(u, λ), λ ∈ (0, 1), we have

u′1(t) = λ
[k1(t) + (1− λ)c1(t)eu1(t)

k1(t) + c1(t)eu1(t)

][a1(t)
k1(t)

− a11(t)eu1(t)

k1(t)

− λk1(t)−1a13(t)eu1(t)eu3(t)

m(t)e2u3(t) + e2u1(t)

]
+ λ2D1(t)

[eu2(t)

eu1(t)
− 1

]
− λH1(t)

eu1(t)
,

(2.3)

u′2(t) = λ
[k2(t) + (1− λ)c2(t)eu2(t)

k2(t) + c2(t)eu2(t)

][a2(t)
k2(t)

− a22(t)eu2(t)

k2(t)

]
+ λ2D2(t)

[eu1(t)

eu2(t)
− 1

]
− λH2(t)

eu2(t)
,

(2.4)

u′3(t) = λ
[
− a3(t) +

a31(t)e2u1(t−τ)

m(t)e2u3(t−τ) + λe2u1(t−τ)

]
. (2.5)
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Suppose that (u1(t), u2(t), u3(t))T is a T -periodic solution of (2.3), (2.4) and
(2.5) for some λ ∈ (0, 1). Choose tMi , tmi ∈ [0, T ], i = 1, 2, 3, such that

ui(tMi ) = max
t∈[0,T ]

ui(t), ui(tmi ) = min
t∈[0,T ]

ui(t), i = 1, 2, 3.

Then, it is clear that

u′i(t
M
i ) = 0, u′i(t

m
i ) = 0, i = 1, 2, 3.

From this and (2.3), (2.4), we obtain that

0 =
[k1(tM1 ) + (1− λ)c1(tM1 )eu1(t

M
1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

][a1(tM1 )− a11(tM1 )eu1(t
M
1 )

k1(tM1 )

− λk1(tM1 )−1a13(tM1 )eu1(t
M
1 )eu3(t

M
1 )

m(tM1 )e2u3(tM
1 ) + e2u1(tM

1 )

]
+ λD1(tM1 )

[eu2(t
M
1 )

eu1(tM
1 )

− 1
]
− H1(tM1 )

eu1(tM
1 )

,

(2.6)

0 =
[k2(tM2 ) + (1− λ)c2(tM2 )eu2(t

M
2 )

k2(tM2 ) + c2(tM2 )eu2(tM
2 )

][a2(tM2 )
k2(tM2 )

− a22(tM2 )eu2(t
M
2 )

k2(tM2 )

]
+ λD2(tM2 )

[eu1(t
M
2 )

eu2(tM
2 )

− 1
]
− H2(tM2 )

eu2(tM
2 )

,

(2.7)

0 =
[k1(tm1 ) + (1− λ)c1(tm1 )eu1(t

m
1 )

k1(tm1 ) + c1(tm1 )eu1(tm
1 )

][a1(tm1 )− a11(tm1 )eu1(t
m
1 )

k1(tm1 )

− λk1(tm1 )−1a13(tm1 )eu1(t
m
1 )eu3(t

m
1 )

m(tm1 )e2u3(tm
1 ) + e2u1(tm

1 )

]
+ λD1(tm1 )

[eu2(t
m
1 )

eu1(tm
1 )

− 1
]
− H1(tm1 )

eu1(tm
1 )

,

(2.8)

0 =
[k2(tm2 ) + (1− λ)c2(tm2 )eu2(t

m
2 )

k2(tm2 ) + c2(tm2 )eu2(tm
2 )

][a2(tm2 )
k2(tm2 )

− a22(tm2 )eu2(t
m
2 )

k2(tm2 )

]
+ λD2(tm2 )

[eu1(t
m
2 )

eu2(tm
2 )

− 1
]
− H2(tm2 )

eu2(tm
2 )

.

(2.9)

For u(tMi ) (i = 1, 2), there are two cases to consider.
Case 1. Assume that u1(tM1 ) ≥ u2(tM2 ), then u1(tM1 ) ≥ u2(tM1 ). From this and
(2.6), we have

a1(tM1 )− a11(tM1 )eu1(t
M
1 ) > 0,

which implies

eu1(t
M
1 ) <

a1(tM1 )
a11(tM1 )

≤ (
a1

a11
)u ≤ N1.

That is
u2(tM2 ) ≤ u1(tM1 ) < ln(

a1

a11
)u ≤ lnN1.

Case 2. Assume that u1(tM1 ) < u2(tM2 ), then u2(tM2 ) > u1(tM2 ). From this and
(2.7), we have

a2(tM2 )− a22(tM2 )eu2(t
M
2 ) > 0,

which implies

eu2(t
M
2 ) <

a2(tM2 )
a22(tM2 )

≤ (
a2

a22
)u ≤ N1.

That is,
u1(tM1 ) < u2(tM2 ) < ln(

a2

a22
)u ≤ lnN1.
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Therefore,
max{u1(tM1 ), u2(tM2 )} < lnN1. (2.10)

It follows from (2.6) that[k1(tM1 ) + (1− λ)c1(tM1 )eu1(t
M
1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

][a1(tM1 )
k1(tM1 )

− a11(tM1 )eu1(t
M
1 )

k1(tM1 )

]
− H1(tM1 )

eu1(tM
1 )

= λ
[k1(tM1 ) + (1− λ)c1(tM1 )eu1(t

M
1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

]k1(tM1 )−1a13(tM1 )eu1(t
M
1 )eu3(t

M
1 )

m(tM1 )e2u3(tM
1 ) + e2u1(tM

1 )

− λD1(tM1 )
eu2(t

M
1 )

eu1(tM
1 )

+ λD1(tM1 ).

Therefore,[k1(tM1 ) + (1− λ)c1(tM1 )eu1(t
M
1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

][
(
a1

k1
)l − (

a11

k1
)ueu1(t

M
1 )

]
− Hu

1

eu1(tM
1 )

<
[k1(tM1 ) + (1− λ)c1(tM1 )eu1(t

M
1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

] a13(tM1 )

2k1(tM1 )
√

m(tM1 )
+ D1(tM1 ),

which implies[k1(tM1 ) + (1− λ)c1(tM1 )eu1(t
M
1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

][
(
a1

k1
)l − (

a11

k1
)ueu1(t

M
1 )

]
− Hu

1

eu1(tM
1 )

<
[k1(tM1 ) + (1− λ)c1(tM1 )eu1(t

M
1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

] (a13
k1

)u

2
√

ml
+ Du

1 .

From this and noticing that

k1(tM1 )
k1(tM1 ) + c1(tM1 )eu1(tM

1 )
≤ k1(tM1 ) + (1− λ)c1(tM1 )eu1(t

M
1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

≤ 1,

we have
k1(tM1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

(
a1

k1
)l − (

a11

k1
)ueu1(t

M
1 ) − Hu

1

eu1(tM
1 )

<
(a13

k1
)u

2
√

ml
+ Du

1 .

Therefore, we have

kl
1

kl
1 + cu

1N1
(
a1

k1
)l − (

a11

k1
)ueu1(t

M
1 ) − Hu

1

eu1(tM
1 )

<
(a13

k1
)u

2
√

ml
+ Du

1 ;

that is,

(
a11

k1
)ue2u1(t

M
1 ) −

[ kl
1

kl
1 + cu

1N1
(
a1

k1
)l −Du

1 − b1

]
eu1(t

M
1 ) + Hu

1 > 0.

From (A3) and the above inequality, we have

u1(tM1 ) > lnu+
1 or u1(tM1 ) < lnu−1 (2.11)

Similarly, we have
u1(tm1 ) > lnu+

1 or u1(tm1 ) < lnu−1 (2.12)
By a similar argument, from (2.7), it follows that

(
a22

k2
)ue2u2(t

M
2 ) −

[ kl
2

kl
2 + cu

2N1
(
a2

k2
)l −Du

2 − b2

]
eu2(t

M
2 ) + Hu

2 > 0.
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By (A3) and the above inequality, we have

u2(tM2 ) > lnu+
2 or u2(tM2 ) < lnu−2 . (2.13)

Similarly, we have
u2(tm2 ) > lnu+

2 or u2(tm2 ) < lnu−2 . (2.14)

Again, from (2.6) it follows that[k1(tM1 ) + (1− λ)c1(tM1 )eu1(t
M
1 )

k1(tM1 ) + c1(tM1 )eu1(tM
1 )

][a1(tM1 )
k1(tM1 )

− a11(tM1 )eu1(t
M
1 )

k1(tM1 )

]
>

H1(tM1 )
eu1(tM

1 )
−D1(tM1 )

eu2(t
M
1 )

eu1(tM
1 )

.

Hence, we have

kl
1

kl
1 + cu

1N1

a11(tM1 )
k1(tM1 )

e2u1(t
M
1 ) − a1(tM1 )

k1(tM1 )
eu1(t

M
1 ) + H1(tM1 )−D1(tM1 )eu2(t

M
1 ) < 0,

which implies

kl
1

kl
1 + cu

1N1
(
a11

k1
)le2u1(t

M
1 ) − (

a1

k1
)ueu1(t

M
1 ) + H l

1 −Du
1 N1 < 0.

From (A3), (A4) and the above inequality, we have

ln l−1 < u1(tM1 ) < ln l+1 . (2.15)

Similarly, we have
ln l−1 < u1(tm1 ) < ln l+1 . (2.16)

By a similar argument, it follows from (2.7) that

kl
2

kl
2 + cu

2N1
(
a22

k2
)le2u2(t

M
2 ) − (

a2

k2
)ueu2(t

M
2 ) + H l

2 −Du
2 N1 < 0.

From (A3), (A4) and the above inequality, we have

ln l−2 < u2(tM2 ) < ln l+2 . (2.17)

Similarly, we have
ln l−2 < u2(tm2 ) < ln l+2 . (2.18)

It follows from (2.11), (2.12), (2.15), (2.16) that

u1(tM1 ) ∈ (ln l−1 , lnu−1 ) ∪ (lnu+
1 , ln l+1 ),

u1(tm1 ) ∈ (ln l−1 , lnu−1 ) ∪ (lnu+
1 , ln l+1 ).

It follows from (2.13), (2.14), (2.17), (2.18) that

u2(tM2 ) ∈ (ln l−2 , lnu−2 ) ∪ (lnu+
2 , ln l+2 ),

u2(tm2 ) ∈ (ln l−2 , lnu−2 ) ∪ (lnu+
2 , ln l+2 ).

From (2.5), we have∫ T

0

a3(t)dt =
∫ T

0

a31(t)e2u1(t−τ)

m(t)e2u3(t−τ) + λe2u1(t−τ)
dt. (2.19)
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Therefore,∫ T

0

|u′3(t)|dt <

∫ T

0

a3(t)dt +
∫ T

0

a31(t)e2u1(t−τ)

m(t)e2u3(t−τ) + λe2u1(t−τ)
dt

=
∫ T

0

a3(t)dt +
∫ T

0

a3(t)dt

< 2T ā3 := d3.

(2.20)

By (2.19), there must be η ∈ (0, T ) such that

ā3 =
a31(η)e2u1(η−τ)

m(η)e2u3(η−τ) + λe2u1(η−τ)
. (2.21)

From (2.21), we have

e2u3(η−τ) =
a31(η)− λā3

ā3m(η)
e2u1(η−τ).

Therefore,

e2u3(η−τ) <
au
31

ā3ml
N2

1 := p, (2.22)

e2u3(η−τ) >
al
31 − ā3

ā3mu
(l−1 )2 := q. (2.23)

Since u3(t) is a T -periodic function, there exists η1 ∈ [0, T ] such that

u3(η1) = u3(η − τ).

Again, it follows from (2.20), (2.22), (2.23) that for any t ∈ [0, T ], we have

u3(t) = u3(η1) +
∫ t

η1

u′3(s)ds <
1
2

ln p + d3,

u3(t) = u3(η1) +
∫ t

η1

u′3(s)ds >
1
2

ln q − d3.

Set

H = max{|1
2

ln p + d3|, |
1
2

ln q − d3|}.

Then
max

t∈[0,T ]
|u3(t)| < H. (2.24)

Clearly, l±i , u±i (i = 1, 2),H are independent of λ. Now, let us consider QN(u, 0)
with u = (u1, u2, u3)T ∈ R3. Note that

QN(u, 0) =

(a1
k1

)− (a11
k1

)eu1 − H̄1
eu1

(a2
k2

)− (a22
k2

)eu2 − H̄2
eu2

−ā3 + (a31
m ) e2u1

e2u3

 .

Letting QN(u, 0) = 0, we have

(
a1

k1
)− (

a11

k1
)eu1 − H̄1

eu1
= 0, (2.25)

(
a2

k2
)− (

a22

k2
)eu2 − H̄2

eu2
= 0, (2.26)
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−ā3 + (
a31

m
)
e2u1

e2u3
= 0. (2.27)

From (2.25), we have

(
a11

k1
)e2u1 − (

a1

k1
)eu1 + H̄1 = 0, (2.28)

which implies that (2.28) has two distinct roots lnx±1 . From (2.26), we have

(
a22

k2
)e2u2 − (

a2

k2
)eu2 + H̄2 = 0, (2.29)

which implies that (2.29) has two distinct roots lnx±2 . Again, it follows from (2.27)
that

x±3 =

√
(a31

m )
ā3

x±1 .

Therefore, QN(u, 0) = 0 has four distinct solutions.

ũ1 = (lnx+
1 , lnx+

2 , lnx+
3 )T , ũ2 = (lnx+

1 , lnx−2 , lnx+
3 )T ,

ũ3 = (lnx−1 , lnx+
2 , lnx−3 )T , ũ4 = (lnx−1 , lnx−2 , lnx−3 )T .

Choose C > 0 such that

C > max
{
| ln

√
(a31

m )
ā3

x+
1 |, | ln

√
(a31

m )
ā3

x−1 |
}

. (2.30)

Let

Ω1 =
{

u = (u1, u2, u3)T ∈ X : max
t∈[0,T ]

u1(t) ∈ (lnu+
1 , ln l+1 ),

min
t∈[0,T ]

u1(t) ∈ (lnu+
1 , ln l+1 ), max

t∈[0,T ]
u2(t) ∈ (lnu+

2 , ln l+2 ),

min
t∈[0,T ]

u2(t) ∈ (lnu+
2 , ln l+2 ), max

t∈[0,T ]
|u3(t)| < H + C

}
,

Ω2 =
{

u = (u1, u2, u3)T ∈ X : max
t∈[0,T ]

u1(t) ∈ (lnu+
1 , ln l+1 ),

min
t∈[0,T ]

u1(t) ∈ (lnu+
1 , ln l+1 ), max

t∈[0,T ]
u2(t) ∈ (ln l−2 , lnu−2 ),

min
t∈[0,T ]

u2(t) ∈ (ln l−2 , lnu−2 ), max
t∈[0,T ]

|u3(t)| < H + C
}

,

Ω3 =
{

u = (u1, u2, u3)T ∈ X : max
t∈[0,T ]

u1(t) ∈ (ln l−1 , lnu−1 ),

min
t∈[0,T ]

u1(t) ∈ (ln l−1 , lnu−1 ), max
t∈[0,T ]

u2(t) ∈ (lnu+
2 , ln l+2 ),

min
t∈[0,T ]

u2(t) ∈ (lnu+
2 , ln l+2 ), max

t∈[0,T ]
|u3(t)| < H + C

}
,

Ω4 =
{

u = (u1, u2, u3)T ∈ X : max
t∈[0,T ]

u1(t) ∈ (ln l−1 , lnu−1 ),

min
t∈[0,T ]

u1(t) ∈ (ln l−1 , lnu−1 ), max
t∈[0,T ]

u2(t) ∈ (ln l−2 , lnu−2 ),

min
t∈[0,T ]

u2(t) ∈ (ln l−2 , lnu−2 ), max
t∈[0,T ]

|u3(t)| < H + C
}

.
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Then Ω1, . . . ,Ω4 are bounded open subsets of X. It follows from (2.1) and (2.30)
that ũi ∈ Ωi (i = 1, 2, 3, 4). It is easy to see that Ω̄i ∩ Ω̄j = ∅ (i, j = 1, 2, 3, 4, i 6= j)
and Ωi satisfies (a) in Lemma 2.1 for i = 1, 2, 3, 4. Moreover, QN(u, 0) 6= 0 for
u ∈ ∂Ωi ∩ ker L.

Set
h(x) = b− ax− c

x
, x ∈ (0,+∞),

where a, b, c are positive constants. When b > 2
√

ac, it is easy to see that h(x) = 0
has exactly two positive solutions

x− =
b−

√
b2 − 4ac

2a
, x+ =

b +
√

b2 − 4ac

2a

such that h′(x−) > 0, h′(x+) < 0. From this, a direct computation gives

deg{JQN(·, 0),Ω1 ∩ ker L, 0} = −1, deg{JQN(·, 0),Ω2 ∩ ker L, 0} = 1,

deg{JQN(·, 0),Ω3 ∩ ker L, 0} = 1, deg{JQN(·, 0),Ω4 ∩ ker L, 0} = −1.

Here, J is taken as the identity mapping since Im Q = kerL. So far we have proved
that Ωi satisfies all the assumptions in Lemma 2.1. Hence, (2.2) has at least four T -
periodic solutions (ui

1(t), u
i
2(t), u

i
3(t))

T (i = 1, 2, 3, 4) and (ui
1, u

i
2, u

i
3)

T ∈ dom L∩Ω̄i.
Obviously, (ui

1, u
i
2, u

i
3)

T (i = 1, 2, 3, 4) are different. Let xi
j(t) = eui

j(t) (j = 1, 2),
yi(t) = eui

3(t) (i = 1, 2, 3, 4). Then (xi
1(t), x

i
2(t), y

i(t))T (i = 1, 2, 3, 4) are four
different positive T -periodic solutions of (1.1). The proof is complete. �

Theorem 2.3. In addition to (A1), (A2), (A4), assume further that (1.1) satisfies

(A3)* Hu
i < N1

N1+1

[ kl
i

kl
i+cu

i N1
(ai

ki
)l − (aii

ki
)u − bi

]
(i = 1, 2).

Then (1.1) has at least four positive T -periodic solutions.

Proof. It suffices to verify (A3) in Theorem 2.2. Indeed, it follows from (A3)* and
(A4) that

Du
i + bi + 2

√
(
aii

ki
)uHu

i <
H l

i

N1
+ bi + (

aii

ki
)u + Hu

i <
kl

i

kl
i + cu

i N1
(
ai

ki
)l,

for i = 1, 2. �

Finally, we describe the biological meaning of (A1)–(A4) and Theorem 2.2. In
realistic world, the environment is always varying periodically with time. This
motivates us to consider system (1.1) under the condition (A1). (A2) indicates that
the efficiency of turning predated prey species x into predator species y is higher
than the natural death rate of predator species y, which is the necessary condition
for the survival of predator species y. Note that

√
(aii

ki
)uHu

i is the geometric mean

of (aii

ki
)u and Hu

i (i = 1, 2), which describes the mean effect of the intra-species
competition and harvesting. Hence, (A3) indicates that the natural growth rate of
prey species x with a food-limited supply in patch 1 is higher than the decay rate
due to the intra-species competition, predation, dispersion and harvesting, and that
the natural growth rate of prey species x with a limited food supply in patch 2 is
higher than the decay rate due to the intra-species competition, the dispersion and
harvesting. Since N1 is the environmental carrying capacity of prey species x, (A4)
indicates that the effect of harvesting on populations is stronger than the effect of
the dispersion during each time period. From the ecological viewpoint, Theorem
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2.2 indicates that a food-limited two-species ratio-dependent predator-prey patch
systems with delay and harvesting can lead to four different periodic fluctuations
in a periodic environment if the regulated harvesting on prey populations is made
according to (A1)–(A4).

3. An Example

Take τ = 2, T = 2, k1(t) = 4 + sin(πt), k2(t) = 3 + sin(πt), ci(t) = 0.2 +
0.05 sin(πt) (i = 1, 2),

H1(t) =
1 + sin2(πt)

24
, H2(t) =

1 + sin2(πt)
10

, D1(t) = D2(t) =
1 + sin2(πt)

200
,

a1(t) = (4 + sin(πt))2, a11(t) =
(4 + sin(πt))2

4
, a13(t) =

(4 + sin(πt))2

4
,

m(t) = 1 + sin2(πt), a2(t) = (3 + sin(πt))2, a22(t) =
(3 + sin(πt))2

4
,

a31(t) = 4 + sin(πt), a3(t) = 2 + sin(πt).

Then we have kl
1 = 3, kl

2 = 2, cu
i = 0.25 (i = 1, 2),

Hu
1 =

1
12

, Hu
2 =

1
5
, H l

1 =
1
24

, H l
2 =

1
10

, Du
1 = Du

2 =
1

100
,

N1 = 4, (
a1

k1
)l = 3, (

a11

k1
)u =

5
4
, (

a13

k1
)u =

5
4
, ml = 1,

b1 =
5
8
, (

a2

k2
)l = 2, (

a22

k2
)u = 1, al

31 = 3, ā3 = 2.

It is easy to see that the conditions in Theorem 2.3 are satisfied. By Theorem 2.3,
system (1.1) has at least four positive 2-periodic solutions.
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