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FORCED OSCILLATION FOR HIGHER ORDER FUNCTIONAL
DIFFERENTIAL EQUATIONS

YUAN GONG SUN, TAHER S. HASSAN

Abstract. We establish some oscillation criteria for the solutions to forced
higher-order differential equations. We do not assume that the forcing term
is the n-th derivative of an oscillatory function, and do not assume that the
coefficients are of a definite sign. Our results are illustrated with examples.

1. Introduction

In the previous 50 years, there has been increasing interest in obtaining sufficient
conditions for the oscillation/nonoscillation of solutions of different classes of dif-
ferential equations; see for example [2, 3, 4, 5, 6, 7, 8, 11, 12, 13] and the references
cited therein. Regarding forced higher-order differential equations, one can use a
technique introduced by Kartsatos [12, 13], which assumes that the forcing term
f(t) is the n-th derivative of an oscillatory function h(t) satisfying limt→∞ h(t) = 0.
Under certain conditions, he found that the forced equation would remain oscilla-
tory if the unforced equation is oscillatory. Agarwal and Grace [1] studied the
superlinear differential equation

x(n)(t) + p(t)x(t)|α−1x(t) = f(t), t ∈ [t0,∞), (1.1)

where p(t) < 0 and α > 1, using general means without imposing the Kartsatos
condition. Ou and Wong [15] investigated the equation

x(n)(t) + p(t)g(x(t)) = f(t), t ∈ [t0,∞),

assuming that p(t) ≥ 0 (< 0) on [t0,∞), xg(x) > 0 for x 6= 0, and there exists a
constant c > 0 such that |g(x)| ≥ c|x|α, for α > 1, or |g(x)| ≤ c|x|α, for 0 < α < 1.
Sun and Wong [18] studied (1.1) when 0 < α < 1, and they do not assume that p(t)
is of definite sign. Recently, Çakmak and Tiryaki [6] established some oscillation
criteria for the forced higher-order differential equation

x(n)(t) +
n−1∑
i=1

aix
(i)(t) + q(t)f(x(g(t))) = e(t), (1.2)
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where ai are real constants, q(t), f(t), e(t) and g(t) are real continuous functions,
xf(x) > 0 whenever x 6= 0 and limt→∞ g(t) = ∞. We refer the reader for more
oscillation results to [6, 17, 20], and to [9, 14, 19] for oscillatory potentials.

The purpose of this paper is to extend the oscillation criteria to higher order
differential equations

n∑
i=1

aix
(i)(t) + Φ

(
t, x(h(t)), x(g(t)), x(l(t))

)
= f(t) (1.3)

and
n∑

i=1

aix
(i)(t)− Φ(t, x(h(t)), x(g(t)), x(l(t))) = f(t), (1.4)

where ai are real numbers with an ≡ 1, and h, g, l and f are real continuous
functions satisfying

lim
t→∞

h(t) = lim
t→∞

g(t) = lim
t→∞

l(t) = ∞ .

Here Φ : [t0,∞)×R×R×R → R is a continuous function satisfying conditions (2.1)
and (2.4) below. It is easy to see that when Φ = p(t)|x(t)|α−1x(t), Φ = p(t)g(x(t))
and Φ = q(t)f(x(g(t))), Equation (1.3) reduces to (1.1) and (1.2), respectively.

A solution is said to be oscillatory if it has arbitrarily large zeros; i.e., for any
T > 0 there exists a t ≥ T such that x(t) = 0.

To the best of our knowledge (1.3) and (1.4) have not been considered earlier.
We hope to kindle the reader’s interest in further research on the oscillation of these
equations that arise, for example, in population growth with competitive species.
Also, we want to present interesting examples that illustrate the importance of our
results.

2. Main results

In the following, we consider a nonnegative kernel H(t, s) defined on the set
D := {(t, s) : t ≥ s ≥ t0}. We shall assume that H(t, s) is sufficiently smooth in the
variable s, so that the following conditions are satisfied:

(H1) H(t, t) = 0, H(t, s) ≥ 0 for t ≥ s ≥ t0,
(H2) The partial derivatives satisfy:

Hi(t, s) = (−1)i ∂
iH

∂si
, i = 0, 1, . . . , n fort > s ≥ t0,

H3) Hi(t, t) = 0, i = 0, 1, . . . , n− 1,
(H4) H−1(t, t0)Hi(t, t0) = O(1) as t→∞ for i = 1, 2, . . . , n− 1.
Throughout the paper, for t ≥ s ≥ t0, we let

d+ := max{0, d}, d− := max{0,−d},

h(t, s) :=
n∑

i=1

ai
Hi(t, s)
H1/γ(t, s)

.

Theorem 2.1. Assume that there exists a nonnegative function G1(t, s) defined on
[t0,∞)× [t0,∞) such that

n∑
i=1

aiHi(t, s)x+H(t, s)Φ(s, y, z, w)

{
≥ G1(t, s), if x, y, z, w > 0
≤ −G1(t, s), if x, y, z, w < 0

(2.1)
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for t > s ≥ t0,

lim sup
t→∞

1
H(t, t0)

∫ t

t0

(H(t, s)f(s) +G1(t, s))ds = ∞ (2.2)

and

lim inf
t→∞

1
H(t, t0)

∫ t

t0

(H(t, s)f(s)−G1(t, s))ds = −∞. (2.3)

Then every solution of (1.3) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.3) on [t0,∞). First assume that
x(t) > 0 on some interval [T,∞), t ≥ t0. Multiplying both sides of (1.3) by H(t, s),
with t replaced by s, for t ≥ s ≥ 0 integrating with respect to s from T to t, we
have ∫ t

T

H(t, s)f(s)ds

=
∫ t

T

H(t, s)
n∑

i=1

aix
(i)(s)ds+

∫ t

T

H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))ds

=
n∑

i=1

ai

∫ t

T

H(t, s)x(i)(s)ds+
∫ t

T

H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))ds.

Integrating by parts and using (H1), (H2) and (H3). For i = 1, 2, 3, . . . , n, we obtain∫ t

T

H(t, s)x(i)(s)ds

= −H(t, T )x(i−1)(T )−
i−1∑
j=1

Hj(t, T )x(i−j−1)(T ) +
∫ t

T

Hi(t, s)x(s)ds,

where
∑0

j=1 = 0. This implies∫ t

T

H(t, s)f(s)ds

= −
n∑

i=1

ai

[
H(t, T )x(i−1)(T ) +

i−1∑
j=1

Hj(t, T )x(i−j−1)(T )
]

+
∫ t

T

[ n∑
i=1

aiHi(t, s)x(s) +H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))
]
ds.

In view of (H4), there exists a constant M such that

−
n∑

i=1

ai

[
H(t, T )x(i−1)(T ) +

i−1∑
j=1

Hj(t, T )x(i−j−1)(T )
]
≥MH(t, T ),

which implies∫ t

T

H(t, s)f(s)ds

≥MH(t, T ) +
∫ t

T

[ n∑
i=1

aiHi(t, s)x(s) +H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))
]
ds.
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Then (2.1) implies

1
H(t, T )

∫ t

T

(H(t, s)f(s)−G1(t, s))ds ≥M,

which leads to a contradiction to (2.3).
Next, we assume that x satisfies (1.3) and is eventually negative. The same

argument as above leads to a contradiction, provided

lim sup
t→∞

1
H(t, T )

∫ t

T

(H(t, s)f(s) +G1(t, s))ds = ∞,

which indeed holds due to condition (2.2). �

Theorem 2.2. Assume there exists a nonnegative function G2(t, s) defined on
[t0,∞)× [t0,∞) such that

n∑
i=1

aiHi(t, s)x−H(t, s)Φ(s, y, z, w)

{
≤ G2(t, s), if x, y, z, w > 0
≥ −G2(t, s), if x, y, z, w < 0

(2.4)

for t > s ≥ t0,

lim sup
t→∞

1
H(t, t0)

∫ t

t0

(H(t, s)f(s)−G2(t, s))ds = ∞ (2.5)

and

lim inf
t→∞

1
H(t, t0)

∫ t

t0

(H(t, s)f(s) +G2(t, s))ds = −∞. (2.6)

Then every solution of (1.4) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.4) on [t0,∞). First assume that
x(t) > 0 on some interval [T,∞), T ≥ t0. As in the proof of Theorem 2.1, we obtain∫ t

T

H(t, s)f(s)ds

= −
n∑

i=1

ai

[
H(t, T )x(i−1)(T ) +

i−1∑
j=1

Hj(t, T )x(i−j−1)(T )
]

+
∫ t

T

[ n∑
i=1

aiHi(t, s)x(s)−H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))
]
ds.

Again, by (H4), there exists a constant C such that

−
n∑

i=1

ai

[
H(t, T )x(i−1)(T ) +

i−1∑
j=1

Hj(t, T )x(i−j−1)(T )
]
≤ CH(t, T ),

which implies∫ t

T

H(t, s)f(s)ds

≤ CH(t, T ) +
∫ t

T

[ n∑
i=1

aiHi(t, s)x(s)−H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))
]
ds.
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From this inequality and (2.4) we obtain

1
H(t, T )

∫ t

T

[H(t, s)f(s)−G2(t, s)]ds ≤ C,

which leads to a contradiction to (2.5).
The proof for x(t) < 0 is similar to the first part. �

As particular cases, we present oscillation criteria for the differential equations
n∑

i=1

aix
(i)(t) + r(t)ψγ(x(h(t))) + p(t)ψα(x(g(t))) + q(t)ψβ(x(l(t))) = f(t) (2.7)

and
n∑

i=1

aix
(i)(t)− r(t)ψγ(x(h(t))) + p(t)ψα(x(g(t))) + q(t)ψβ(x(l(t))) = f(t) (2.8)

which satisfy conditions (2.1) and (2.4) respectively, where ψγ(u) := |u|γ−1u, γ > 0,
and where r and q are real continuous functions and p is a positive function. Our
interest is to establish oscillation criteria for (2.7) and (2.8) without assuming that
r, q, f are of definite sign and without assuming that f(t) is the n-th derivative of
an oscillatory function.

Corollary 2.3. Let h(t) ≡ g(t) ≡ l(t) ≡ t on [t0,∞). Assume that 0 < γ < 1 and
α > β > γ hold and

∑n
i=1 aiHi(t, s) > 0, for t ≥ s ≥ t0. If (2.2) and (2.3) are

satisfied, where

G1(t, s) := (γ − 1)γγ/(1−γ)|Q1(s)|1/(1−γ)|h(t, s)|γ/(γ−1),

Q1(s) := r−(s) + σ1p
(γ−β)/(α−β)(s)q(α−γ)/(α−β)

− (s),

σ1 := (α− β)(α− γ)(γ−α)/(α−β)(β − γ)(β−γ)/(α−β),

then every solution of (2.7) is oscillatory.

Proof. Let x be non-oscillatory solution of (2.7) on [t0,∞). First assume that
x(t) > 0 on some interval [T,∞). We claim that (2.1) is satisfied with x = x(s),
y = x(h(s)), z = x(g(s)) and w = x(l(s)). As in the proof of Theorem 2.1, we
obtain

n∑
i=1

aiHi(t, s)x(s) +H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

=
n∑

i=1

aiHi(t, s)x(s) +H(t, s)
[
r(s)xγ(s) + (p(s)xα(s) + q(s)xβ(s))

]
≥

n∑
i=1

aiHi(t, s)x(s)−H(t, s)r−(s)xγ(s) +H(t, s)xγ(s)(p(s)xα−γ(s)

− q−(s)xβ−γ(s))

For a given s, set F (x) := pxα−γ − q−xβ−γ , for x > 0 and α > β > γ > 0. Thus F
obtains its minimum at

x = (α− γ)1/(β−α)(β − γ)1/(α−β)p(γ−β)/((α−β)(α−γ))(q−)1/(α−β),

and
Fmin = −σ1p

(γ−β)/(α−β)(q−)(α−γ)/(α−β).
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Then
n∑

i=1

aiHi(t, s)x(s) +H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

≥
n∑

i=1

aiHi(t, s)x(s)−H(t, s)Q1(s)xγ(s).

Define X ≥ 0 and Y > 0 by

Xγ := HQ1x
γ , Y γ−1 := γ−1Q

−1/γ
1 h.

Then, using the inequality (see [10])

γXY γ−1 −Xγ ≥ (γ − 1))Y γ , 0 < γ < 1, (2.9)

we obtain
n∑

i=1

aiHi(t, s)x(s) +H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

≥
n∑

i=1

aiHi(t, s)x(s)−H(t, s)Q1(s)xγ(s)

≥ (γ − 1)γγ/(1−γ)Q
1/(1−γ)
1 (s)hγ/(γ−1)(t, s) = G1(t, s).

Then from Theorem 2.1, we obtain the desired result. The proof for x(t) < 0 similar
to the first part of this proof. �

Corollary 2.4. Let h(t) ≡ t and l(t) ≡ g(t) on [t0,∞). Assume that 0 < γ < 1
and α > β > 0 hold and

∑n
i=1 aiHi(t, s) > 0, for t ≥ s ≥ t0. If (2.2) and (2.3) are

satisfied, where

G1(t, s) := (γ − 1)γγ/(1−γ)r
1/(1−γ)
− (s)hγ/(γ−1)(t, s)

+ δH(t, s)pβ/(β−α)(s)qα/(α−β)
− (s),

δ := (β − α)αα/(β−α)ββ/(α−β),

then every solution of (2.7) is oscillatory.

Proof. Let x be a nonoscillatory solution of (2.7) on [t0,∞). First assume that
x(t) > 0 on some interval [T,∞). We claim that (2.1) holds for x = x(s), y =
x(h(s)), z = x(g(s)) and w = x(l(s)). As in the proof of Theorem 2.1, we obtain

n∑
i=1

aiHi(t, s)x(s) +H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

=
n∑

i=1

aiHi(t, s)x(s) +H(t, s)
[
r(s)xγ(s) + (p(s)xα(s) + q(s)xβ(s))

]
≥

n∑
i=1

aiHi(t, s)x(s)−H(t, s)r−(s)xγ(s) +H(t, s)(p(s)xα(g(s))

− q−(s)xβ(g(s)))

(2.10)

As in the proof of Corollary 2.3, we obtain

pxα − q−x
β ≥ δpβ/(β−α)q

α/(α−β)
− , (2.11)
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where δ = (β − α)αα/(β−α)ββ/(α−β) and
n∑

i=1

aiHi(t, s)x(s)−H(t, s)r−(s)xγ(s) ≥ (γ − 1)γγ/(1−γ)r
1/(1−γ)
− (s)hγ/(γ−1)(t, s).

(2.12)
Using (2.11) and (2.12) in (2.10), we have

n∑
i=1

aiHi(t, s)x(s) +H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

≥ (γ − 1)γγ/(1−γ)r
1/(1−γ)
− (s)hγ/(γ−1)(t, s) + δH(t, s)pβ/(β−α)q

α/(α−β)
−

= G1(t, s).

Then from Theorem 2.1, we obtain that every solution of equation (2.7) is oscilla-
tory. �

Example 2.5. Consider the equation
n∑

i=1

aix
(i)(t) + φ1(t)ψγ(x(t)) + t

µ
3 ψ3(x(g(t))) + t

8µ
27 cos1/9(t)ψ 8

3
(x(g(t)))

= tµ cos(s),

(2.13)

where 0 < γ < 1, φ1(t) ≥ 0, for t ≥ t0, ai ≥ 0, i = 1, 2, . . . , n − 1 and an ≡ 1.
By taking H(t, s) = (t − s)n. It is easy to see that (H1)-(H4) are satisfied and∑n

i=1 aiHi(t, s) > 0. Applying Corollary 2.4, every solution of (2.13) is oscillatory
if µ > n.

Corollary 2.6. Let q(t) is a nonnegative function and h(t) ≡ t on [t0,∞). Assume
that 0 < γ < 1 and

∑n
i=1 aiHi(t, s) > 0, for t ≥ s ≥ t0 hold. If (2.2) and (2.3) are

satisfied, where

G1(t, s) := (γ − 1)γγ/(1−γ)r
1/(1−γ)
− (s)hγ/(γ−1)(t, s)

then every solution of (2.7) is oscillatory.

Corollary 2.7. Let r(t) and q(t) be nonnegative functions on [t0,∞). Assume
that

∑n
i=1 aiHi(t, s) ≥ 0, for t ≥ s ≥ t0 holds. If (2.2) and (2.3) are satisfied, then

every solution of (2.7) is oscillatory.

Example 2.8. Consider the equation (2.7) with f(t) = tµ sin(t), where n ≥ 2, µ,
ai ≥ 0, i = 1, 2, . . . , n − 1 and an ≡ 1. Also assume r(t) and q(t) be nonnegative
functions on [t0,∞). By taking H(t, s) = (t− s)λ, λ > n− 1. It is easy to see that
H(t, s) satisfies all of (H1)–(H4) and

∑n
i=1 aiHi(t, s) ≥ 0. Then, by Corollary 2.7,

every solution of equation (2.7) is oscillatory if µ > λ.

Corollary 2.9. Let q(t) be a nonnegative function and h(t) ≡ g(t) ≡ l(t) ≡ t on
[t0,∞). Assume that γ > 1, α > γ > β > 0 and Q2(t) < 0, for t ≥ t0. If (2.5) and
(2.6) are satisfied, where

G2(t, s) := (γ − 1)γγ/(1−γ)|Q2(s)|1/(1−γ)|h(t, s)|γ/(γ−1),

Q2(s) := −r(s)− σ2p
(γ−β)/(α−β)(s)q(α−γ)/(α−β)(s),

σ2 := (α− β)(α− γ)(γ−α)/(α−β)(γ − β)(β−γ)/(α−β),

then every solution of (2.8) is oscillatory.
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Proof. Let x a non-oscillatory solution of (2.8) on [t0,∞). First assume that x(t) >
0 on some interval [T,∞). We claim that (2.4) is satisfied with x = x(s), y =
x(h(s)), z = x(g(s)) and w = x(l(s)). As in the proof of Theorem 2.2, we obtain

n∑
i=1

aiHi(t, s)x(s)−H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

=
n∑

i=1

aiHi(t, s)x(s)−H(t, s)
[
r(s)xγ(s) + (p(s)xα(s) + q(s)xβ(s))

]
≤

∣∣ n∑
i=1

aiHi(t, s)
∣∣x(s)−H(t, s)r(s)xγ(s)

−H(t, s)xγ(s)(p(s)xα−γ(s) + q(s)xβ−γ(s)).

(2.14)

For a given s, set K(x) := pxα−γ + qxβ−γ , for x > 0 and α > γ > β > 0. Thus K
obtains its minimum at

x = (α− γ)1/(β−α)(γ − β)1/(α−β)p(γ−β)/((α−β)(α−γ))q1/(α−β)

and
Kmin = σ2p

(γ−β)/(α−β)q(α−γ)/(α−β),

where σ2 = (α − β)(α − γ)(γ−α)/(α−β)(γ − β)(β−γ)/(α−β). Then, from this and
(2.14), we obtain

n∑
i=1

aiHi(t, s)x(s)−H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

≤ |
n∑

i=1

aiHi(t, s)|x(s)−H(t, s)|Q2(s)|xγ(s).

(2.15)

Define X ≥ 0 and Y ≥ 0 by

Xγ := H|Q2|xγ , Y γ−1 := γ−1|Q2|−1/γ |h|.
Then, using the inequality (see [10])

γXY γ−1 −Xγ ≤ (γ − 1)Y γ , γ > 1, (2.16)

we obtain

|
n∑

i=1

aiHi(t, s)|x(s)−H(t, s)|Q2(s)|xγ(s)

≤ (γ − 1)γγ/(1−γ)|Q2(s)|1/(1−γ)|h(t, s)|γ/(γ−1) = G2(t, s).

Then from Theorem 2.2, we obtain the desired result. The proof for x < 0 is similar
to the case above. �

Corollary 2.10. Let h(t) ≡ g(t) ≡ l(t) ≡ t on [t0,∞). Assume that γ > 1,
α > β > γ > 0 and Q3(t) < 0, for t ≥ t0. If (2.5) and (2.6) are satisfied, where

G2(t, s) := (γ − 1)γγ/(1−γ)|Q3(s)|1/(1−γ)|h(t, s)|γ/(γ−1),

Q3(s) := −r(s) + σ1p
(γ−β)/(α−β)(s)q(α−γ)/(α−β)

− (s),

σ1 := (α− β)(α− γ)(γ−α)/(α−β)(β − γ)(β−γ)/(α−β),

then every solution of (2.8) is oscillatory.
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Proof. Let x be a non-oscillatory solution of (2.8) on some interval [t0,∞). We
claim that (2.4) holds for x = x(s), y = x(h(s)), z = x(g(s)) and w = x(l(s)). As
in the proof of Theorem 2.2, we obtain

n∑
i=1

aiHi(t, s)x(s)−H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

=
n∑

i=1

aiHi(t, s)x(s)−H(t, s)
[
r(s)xγ(s) + (p(s)xα(s) + q(s)xβ(s))

]
≤ |

n∑
i=1

aiHi(t, s)|x(s)−H(t, s)r(s)xγ(s)

−H(t, s)xγ(s)(p(s)xα−γ(s)− q−(s)xβ−γ(s)).

As in the proof of Corollary 2.9, we have

pxα−γ − p−x
β−γ ≥ −σ1p

(γ−β)/(α−β)q
(α−γ)/(α−β)
− ,

which implies
n∑

i=1

aiHi(t, s)x(s)−H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s))

≤ |
n∑

i=1

aiHi(t, s)|x(s)ds−H(t, s)|Q3(s)|xγ(s).

The rest of the proof is the same as the proof of Corollary 2.9 with Q2 replaced by
Q3. �

Corollary 2.11. Let r(t) be a positive function, and h(t) ≡ t and l(t) ≡ g(t) on
[t0,∞). Assume that γ > 1 and α > β > 0. If (2.5) and (2.6) are satisfied, where

G2(t, s) := (γ − 1)γγ/(1−γ)|r(s)|1/(1−γ)|h(t, s)|γ/(γ−1)

− δH(t, s)pβ/(β−α)(s)qα/(α−β)
− (s),

δ := (β − α)αα/(β−α)ββ/(α−β),

then every solution of (2.8) is oscillatory.

Proof. Let x a nonoscillatory solution of (2.8) on some interval [t0,∞). As in the
proof of Theorem 2.2, we obtain

n∑
i=1

aiHi(t, s)x(s)−H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

=
n∑

i=1

aiHi(t, s)x(s)−H(t, s)
[
r(s)xγ(s) + (p(s)xα(s) + q(s)xβ(s))

]
≤ |

n∑
i=1

aiHi(t, s)|x(s)−H(t, s)|r(s)|xγ(s)

−H(t, s)(p(s)xα(g(s))− q−(s)xβ(g(s))).

As in the proof of Corollary 2.4, we have

pxα − q−x
β ≥ δpβ/(β−α)q

α/(α−β)
− ,
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and as in the proof of Corollary 2.9, we obtain

|
n∑

i=1

aiHi(t, s)|x(s)−H(t, s)|r(s)|xγ(s) ≤ (γ − 1)γγ/(1−γ)|r(s)|1/(1−γ)|h(t, s)|γ/γ−1.

Then
n∑

i=1

aiHi(t, s)x(s)−H(t, s)Φ(s, x(h(s)), x(g(s)), x(l(s)))

≤ (γ − 1)γγ/(1−γ)|r(s)|1/(1−γ)|h(t, s)|γ/γ−1 −H(t, s)δpβ/(β−α)q
α/(α−β)
− = G2(t, s),

which implies that every solution of (2.8) is oscillatory. �

Example 2.12. Consider the equation

x′(t) + φ2(t)ψγ(x(t))

= e
5t
3 ψ 7

3
(x(g(t))) + e

10
21 t sin

5
7 (t)ψ 2

3
(x(g(t))) + et sin(t),

(2.17)

where γ > 1 and φ2(t) < 0, for t ≥ t0. By taking H(t, s) = 1 and t > s ≥ t0, it is
easy to see that H(t, s) satisfies all of (H1)–(H4). Applying Corollary 2.11, every
solution of (2.17) is oscillatory.

Corollary 2.13. Let r(t) be a nonnegative function and h(t) ≡ t on [t0,∞). As-
sume that γ > 1 holds. If (2.5) and (2.6) are satisfied, where

G2(t, s) := (γ − 1)γγ/(1−γ)r1/(1−γ)(s)|h(t, s)|γ/γ−1,

then every solution of (2.8) is oscillatory.

Corollary 2.14. Let r(t) and q(t) be nonnegative functions , and assume that∑n
i=1 aiHi(t, s) ≤ 0, for t ≥ s ≥ t0 holds. If (2.5) and (2.6) are satisfied, then

every solution of (2.8) is oscillatory.

Example 2.15. Consider equation (2.8) with f(t) = et sin(t), where n ≥ 2, ai ≤ 0,
i = 1, 2, . . . , n − 1 and an ≡ 1. Also, we assume that r(t) and q(t) be nonnegative
functions. By taking H(t, s) = (t − s)λ and λ > n − 1, it is easy to see that
H(t, s) satisfies (H1)–(H4) and

∑n
i=1 aiHi(t, s) ≤ 0. Then, by Corollary 2.14, every

solution of (2.8) is oscillatory.

The above results are extendable to neutral equation in this from
n∑

i=1

aiy
(i)(t) + r(t)Φγ(x(h(t))) +

n∑
i=1

[
pi(t)Φαi(x(gi(t))) + qi(t)Φβi(x(li(t)))

]
+ r(t)Φγ(x(h(t))) +

m∑
j=1

[
pj(t)Φαj

(x(gj(t))) + qj(t)Φβj
(x(lj(t)))

]
= a(t)x(t) + b(t)x(t− τ) + f(t)

where y(t) := x(t) + δ(t)x(τ(t)) with Φη(u) := |u|η−1u, η > 0, and where ai are
real numbers with an ≡ 1 and r, r pi, pj , qj , qj , h, h, gi, gj , li, lj , a, b and f are
real continuous functions such that a, b, pi, pj are positive, and and limt→∞ h(t) =
limt→∞ h(t) = limt→∞ gi(t) = limt→∞ gj(t) = limt→∞ li(t) = limt→∞ lj(t) = ∞.
The details are left to the reader to check them.



EJDE-2012/151 FORCED OSCILLATION 11

References

[1] R. P. Agarwal, S. R. Grace; Forced oscillation of nth-order nonlinear differential equations,
Appl. Math. Lett. 13 (2000) 53–57.

[2] R. P. Agarwal, S. R. Grace, D. O’Regan; Oscillation Theory for Second Order Linear, Half-
Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic, Dordrecht, 2002.

[3] G. J. Butler; Oscillation theorems for a nonlinear analogue of Hill’s equation, Q. J. Math.
(Oxford) 27 (1976) 159–171.

[4] G. J. Butler; Integral averages and oscillation of second order nonlinear differential equations,
SIAM J. Math. Anal. 11 (1980) 190–200.
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[6] D. Çakmak, A. Tiryaki; Oscillation criteria for n th-order forced functional differential equa-
tions, J. Math. Anal. Appl. 278 (2003) 562–576.

[7] C. V. Coffman, J. S. W. Wong; Oscillation and nonoscillation of solutions of generalized
Emden–Fowler equations, Trans. Amer. Math. Soc. 167 (1972) 399–434.

[8] E. M. Elabbasy, T. S. Hassan, S. H. Saker; Oscillation of second-order nonlinear differential
equations with damping term, Electron. J. Differ. Eq. 2005, 76 (2005) 1–13.

[9] M. A. El-Sayed; An oscillation criterion for a forced second order linear differential equation,
Proc. Amer. Math. Soc. 118 (1993) 813–817.

[10] G. H. Hardy, J. E. Littlewood, G. Polya; Inequalities, second ed., Cambridge University Press,
Cambridge, 1988.

[11] T. S. Hassan; Interval oscillation for second order nonlinear differential equations with a
damping term, Serdica Math. J. 34 (2008) 715–732.

[12] A. G. Kartsatos; On the maintenance of oscillation of nth order equations under the effect
of a small forcing term, J. Differential Equations 10 (1971) 355–363.

[13] A. G. Kartsatos; Maintenance of oscillations under the effect of a periodic forcing term,
Proc. Amer. Math. Soc. 33 (1972) 377–383.

[14] A. H. Nasr; Sufficient conditions for the oscillation of forced super-linear second order dif-
ferential equations with oscillatory potential, Proc. Amer. Math. Soc. 126 (1998) 123–125.

[15] C. H. Ou, J. S. W. Wong; Forced oscillation of nth order functional differential equations, J.
Math. Anal. Appl. 262 (2001) 722–732.

[16] A. Skidmore, J. J. Bowers; Oscillatory behavior of solutions of y” + p(x)y = f(x), J. Math.
Anal. Appl. 49 (1975) 317–323.

[17] Y. G. Sun, A. B. Mingarelli; Oscillation of higher-order forced nonlinear differential equa-
tions, Appl. Math. Com. 190 (2007) 905–911.

[18] Y. G. Sun, J. S. Wong; Note on forced oscillation of nth-order sublinear differential equations,
J. Math. Anal. Appl. 298 (2004) 114–119.

[19] J. S. W. Wong; Oscillation criteria for forced second linear differential equations, J. Math.
Anal. Appl. 231 (1999) 235–240.

[20] X. Yang; Forced oscillation of nth-order nonlinear differential equations, Appl. Math. Com-
put. 134 (2003) 301–305.

Yuan Gong Sun
School of Mathematical Sciences, University of Jinan, Jinan 250022, China

E-mail address: sunyuangong@yahoo.cn

Taher S. Hassan
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516,
Egypt

E-mail address: tshassan@mans.edu.eg


	1. Introduction
	2. Main results
	References

