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MULTIPLE POSITIVE SOLUTIONS FOR SECOND-ORDER
THREE-POINT BOUNDARY-VALUE PROBLEMS WITH SIGN

CHANGING NONLINEARITIES

JIAN LIU, ZENGQIN ZHAO

Abstract. In this article, we study the second-order three-point boundary-
value problem

u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1,

u′(0) = 0, u(1) = αu(η),

where 0 < α, η < 1, a ∈ C([0, 1], (−∞, 0)) and f is allowed to change sign.
We show that there exist two positive solutions by using Leggett-Williams
fixed-point theorem.

1. Introduction

The study of multi-point boundary-value problems for linear second-order ordi-
nary differential equations was initiated by Kiguradze and Lomtatidze [11], Lom-
tatidze [15], Il’in and Moviseev [9, 10], Agarwal and Kiguradze [1], Lomtatidze
and Malaguti [16]. Motivated by the study of [9, 10], Gupta [6] studied certain
three-point boundary-value problems for nonlinear ordinary differential equations.
Since then, more general nonlinear multi-point boundary-value problems have been
studied by several authors. We refer the reader to Gupta [7], Li, Liu and Jia [13],
Liu [14], Ma[17, 18] for some references along this line. Using results from fixed
point theory, such as the fixed-point theorems by Banach, Krasnosel’skii, Leggett-
Williams etc., in studying second-order dynamic systems is a standard and useful
tool (see, e.g. [2, 3, 4]).

Recently, Ma [17] studied the three-point boundary-value problem (BVP)

u′′(t) + a(t)f(u) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1) = αu(η),

where 0 < η < 1, α is a positive constant, a ∈ C[0, 1], f ∈ C([0,+∞), [0,+∞))
and there exists x0 ∈ (0, 1) such that a(x0) > 0. Author got the existence and
multiplicity of positive solutions theorems under the condition that f is either
superlinear or sublinear by using Krasnoselskii’s fixed point theorem.

2000 Mathematics Subject Classification. 34B15, 34B25.
Key words and phrases. Multiple positive solutions; sign changing; fixed-point theorem.
c©2012 Texas State University - San Marcos.
Submitted March 14, 2012. Published September 7, 2012.

1



2 J. LIU, Z. ZHAO EJDE-2012/152

In 2001, Ma[18] considered m-point boundary-value problem

u′′(t) + h(t)f(u) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1) =
m−2∑
i=1

βiu(ξi),

where βi > 0 (i = 1, 2, . . . ,m − 2), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, h ∈
C([0, 1], [0,+∞)) and f ∈ C([0,+∞), [0,+∞)). Author established the existence
of positive solutions under the condition that f is either superlinear or sublinear.

In [13], the authors studied the three-point boundary-value problem

u′′(t) + a(t)u′(t) + λf(t, u) = 0, 0 ≤ t ≤ 1,

u′(0) = 0, u(1) = αu(η),

where 0 < η < 1, α is a positive constant, a ∈ C([0, 1], (−∞, 0)), f ∈ C([0, 1] ×
R+,R) and there exists M > 0 such that f(t, u) ≥ −M for (t, u) ∈ [0, 1] × R+.
They obtained the existence of one positive solution by using Krasnoselskii’s fixed
point theorem.

Motivated by the results mentioned above, in this paper, we study the existence
of positive solutions of three-point boundary-value problem

u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1,

u′(0) = 0, u(1) = αu(η),
(1.1)

where 0 < α, η < 1, a ∈ C([0, 1], (−∞, 0)) and f is allowed to change sign. We
show that there exist two positive solutions by using Leggett-Williams fixed-point
theorem. Our ideas are similar those used in [13], but a little different. By applying
Leggett-Williams fixed-point theorem, we get the new results, which are different
from the previous results and the conditions are easy to be checked. In particular,
we do not need that f be either superlinear or sublinear which was required in
[7, 13, 17, 18].

In the rest of the paper, we make the following assumptions

(H1) 0 < α, η < 1;
(H2) a ∈ C([0, 1], (−∞, 0));
(H3) f : [0, 1]×R+ → R is continuous and there exists M > 0 such that f(t, u) ≥

−M for (t, u) ∈ [0, 1]× R+.

By a positive solution of (1.1), we understand a function u which is positive on
(0, 1) and satisfies the differential equations as well as the boundary conditions in
(1.1).

2. Preliminaries

In this section, we give some definitions and lemmas.

Definition 2.1. Let E be a real Banach space. A nonempty closed set P ⊂ E is
said to be a cone provided that

(i) u ∈ P and a ≥ 0 imply au ∈ P ;
(ii) u, −u ∈ P implies u = 0;
(ii) u, v ∈ P implies u+ v ∈ P .
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Definition 2.2. Given a cone P in a real Banach space E, an operator ψ : P → P
is said to be increasing on P , provided ψ(x) ≤ ψ(y), for all x, y ∈ P with x ≤ y.

A functional α : P → [0,∞) is said to be nonnegative continuous concave on P ,
provided α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y), for all x, y ∈ P with t ∈ [0, 1].

Let a, b, r > 0 be constants with P and α as defined above, we note

Pr = {y ∈ P : ‖y‖ < r}, P{α, a, b} = {y ∈ P : α(y) ≥ a, ‖y‖ ≤ b}.
The main tool of this paper is the following well known Leggett-Williams fixed-point
theorem.

Theorem 2.3 ([8, 12]). Assume E be a real Banach space, P ⊂ E be a cone.
Let A : P c → P c be completely continuous and α be a nonnegative continuous
concave functional on P such that α(y) ≤ ‖y‖, for y ∈ P c. Suppose that there exist
0 < a < b < d ≤ c such that
(i) {y ∈ P (α, b, d)| α(y) > b} 6= ∅ and α(Ay) > b, for all y ∈ P (α, b, d);

(ii) ‖Ay‖ < a, for all ‖y‖ ≤ a;
(iii) α(Ay) > b for all y ∈ P (α, b, c) with ‖Ay‖ > d.

Then A has at least three fixed points y1, y2, y3 satisfying

‖y1‖ < a, b < α(y2), ‖y3‖ > a, α(y3) < b.

Lemma 2.4 ([13]). Assume that (H1), (H2) hold. Then for any y ∈ C[0, 1] the
BVP

u′′(t) + a(t)u′(t) + y(t) = 0, 0 ≤ t ≤ 1,

u′(0) = 0, u(1) = αu(η),
(2.1)

has unique solution

u(t) = −
∫ t

0

( 1
p(s)

∫ s

0

p(τ)y(τ)dτ
)
ds+

1
1− α

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)y(τ)dτ
)
ds

− α

1− α

∫ η

0

( 1
p(s)

∫ s

0

p(τ)y(τ)dτ
)
ds,

(2.2)

where p(t) = exp
( ∫ t

0
a(τ)dτ

)
.

Lemma 2.5 ([13]). Assume that (H1), (H2) hold. Let y ∈ C[0, 1] and y(t) ≥ 0 for
all t ∈ [0, 1], then the unique solution of (2.1) satisfies u(t) ≥ 0.

Lemma 2.6 ([13]). Let (H1), (H2) hold. If y ∈ C[0, 1] and y(t) ≥ 0 for all t ∈ [0, 1],
the unique solution of (2.1) satisfies

min
t∈[0,1]

u(t) ≥ γ‖u‖,

where γ = α(1−η)
1−αη .

Lemma 2.7 ([13]). Let ω be the unique solution of the initial-value problem

u′′(t) + a(t)u′(t) + 1 = 0, 0 ≤ t ≤ 1,

u′(0) = 0, u(1) = αu(η).
(2.3)

Then ω(t) ≤ Γγ for t ∈ [0, 1], where γ = (α(1− η))/(1− αη) and

Γ =
( ∫ η

0

(
1
p(s)

∫ s

0

p(τ)dτ)ds+
1

1− α

∫ 1

η

(
1
p(s)

∫ s

0

p(τ)dτ)ds
) 1
γ
.
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3. Main Results

For convenience, we let γ = α(1−η)
1−αη ,

l =
∫ 1

0

( 1
p(s)

∫ s

0

p(τ)dτ
)
ds, h =

1
1− α

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)dτ
)
ds.

Let E = C[0, 1], then E is Banach space, with the norm ‖u‖ = supt∈[0,1] |u(t)|. We
define a cone in E by

P = {u ∈ E : u ≥ 0, min
t∈[0,1]

u(t) ≥ γ‖u‖}.

Our main results are the following theorems.

Theorem 3.1. Suppose conditions (H1)–(H3) hold and there exist positive con-
stants e, b, c,N with MΓ < e < e+MΓγ < b < γ2c, 1

γ < N < cl
bh such that

(A1) f(t, u) < e
h −M for t ∈ [0, 1], 0 ≤ u ≤ e;

(A2) f(t, u) ≥ b
lN −M for t ∈ [0, 1], b−MΓγ ≤ u ≤ b

γ2 ;
(A3) f(t, u) ≤ c

h −M for t ∈ [0, 1], 0 ≤ u ≤ c,

where the number Γ is defined in Lemma 2.7. Then (1.1) has at least two positive
solutions.

Proof. Let ω be a solution of (2.3) and z = Mω. By Lemma 2.7 we have z(t) =
Mω(t) ≤ MΓγ < eγ. It is easy to see that (1.1) has a positive solution u if and
only if u+ z = u is a solution of the boundary-value problem

u′′(t) + a(t)u′(t) = −g(t, u− z), 0 ≤ t ≤ 1,

u′(0) = 0, u(1) = αu(η),
(3.1)

and u > z for t ∈ (0, 1), where g : [0, 1]×R→ [0,+∞) is defined by

g(t, y) =

{
f(t, y) +M, (t, y) ∈ [0, 1]× [0,+∞),
f(t, 0) +M, (t, y) ∈ [0, 1]× (−∞, 0).

For v ∈ P , define the operator

Tv(t) = −
∫ t

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

+
1

1− α

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

− α

1− α

∫ η

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds,

where p is defined in Lemma 2.4. By Lemmas 2.4, 2.5 and 2.6, we can check
T (P ) ⊆ P . It is easy to check T is completely continuous by Arzela-Ascoli theorem.

In the following, we show that all the conditions of Theorem 2.3 are satisfied.
Firstly, we define the nonnegative, continuous concave functional α : P → [0,∞)
by

α(v) = min
t∈[0,1]

v(t),

Obviously, for every v ∈ P , α(v) ≤ ‖v‖.
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We first show that T (P c) ⊆ P c. Let v ∈ P c and t ∈ [0, 1] be arbitrary. When
v(t) ≥ z(t), we have 0 ≤ v(t) − z(t) ≤ v(t) ≤ c and thus g(t, v(t) − z(t)) =
f(t, v(t)− z(t)) +M ≥ 0. By (A3) we have

g(t, v(t)− z(t)) ≤ c

h
.

When v(t) < z(t), we have v(t)−z(t) < 0 and then g(t, v(t)−z(t)) = f(t, 0)+M ≥ 0.
Again by (A3) we have

g(t, v(t)− z(t)) ≤ c

h
.

Therefore, we have proved that, if v ∈ P c, then g(t, v(t) − z(t)) ≤ c
h for t ∈ [0, 1].

Then,

‖Tv‖ = Tv(0) =
1

1− α

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

− α

1− α

∫ η

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

≤ 1
1− α

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

≤ c

h

1
1− α

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)dτ
)
ds = c.

Thus Tv ∈ P c. Therefore, we have T (P c) ⊆ P c. Especially, if v ∈ P e, then
assumption (A1) yields g(t, v(t)− z(t)) ≤ e

h for t ∈ [0, 1]. So, we have T : P e → Pe,
i.e., the assumption (ii) of Theorem 2.3 holds.

To verify condition (i) of Theorem 2.3, let v(t) = b
γ2 , then v ∈ P , α(v) = b/γ2 >

b. That is {v ∈ P (α, b, b
γ2 ) : α(v) > b} 6= ∅. Moreover, if v ∈ P (α, b, b

γ2 ), then
α(v) ≥ b, so b ≤ ‖v‖ ≤ b

γ2 . Thus, 0 < b−MΓγ ≤ v(t)− z(t) ≤ v(t) ≤ b
γ2 , t ∈ [0, 1].

From assumption (A2) we obtain g(t, v(t) − z(t)) ≥ b
lN for t ∈ [0, 1]. By the

definition of α and above-proved inclusion T (P ) ⊆ P , we have

α(Tv) = min
t∈[0,1]

Tv(t) ≥ γ‖Tv‖ = γTv(0)

= γ
( 1

1− α

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

− α

1− α

∫ η

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

)
≥ γ

( 1
1− α

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

− α

1− α

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

)
= γ

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)g(τ, v(τ)− z(τ))dτ
)
ds

≥ γ
b

l
N

∫ 1

0

( 1
p(s)

∫ s

0

p(τ)dτ
)
ds

= γNb > b.

Therefore, condition (i) of Theorem 2.3 is satisfied with d = b/γ2.
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Finally, we address condition (iii) of Theorem 2.3. For this we choose v ∈
P (α, b, c) with ‖Tv‖ > b/γ2. Then from above-proved inclusion T (P ) ⊆ P , we
have

α(Tv) = min
t∈[0,1]

Tv(t) ≥ γ‖Tv‖ ≥ b

γ
> b.

Hence, condition (iii) of Theorem 2.3 holds with ‖Tv‖ > b/γ2.
To sum up, all the hypotheses of Theorem 2.3 are satisfied. Hence T has at least

three positive fixed points v1, v2 and v3 such that

‖v1‖ < e, b < α(v2), ‖v3‖ > e, α(v3) < b.

Further, ui = vi − z (i = 1, 2, 3) are solutions of (3.1). Moreover,

v2(t) ≥ γ‖v2‖ ≥ γα(v2) > γb > γMΓ ≥ z(t), t ∈ [0, 1],

v3(t) ≥ γ‖v3‖ > γe > γMΓ ≥ z(t), t ∈ [0, 1].

So u2 = v2 − z, u3 = v3 − z are two positive solutions of (1.1). This completes the
proof. �

Theorem 3.2. Suppose (H1)–(H3) hold, and there exist positive constants ai, bi, N

with MΓ < ai < ai + MΓγ < bi < γ2ai+1, 1
γ < N < ai+1l

bih
, (i = 1, 2, . . . , n − 1)

such that
(A4) f(t, u) < ai

h −M for t ∈ [0, 1], 0 ≤ u ≤ ai (i = 1, 2, . . . , n);
(A5) f(t, u) ≥ bi

l N −M for t ∈ [0, 1], bi −MΓγ ≤ u ≤ bi

γ2 (i = 1, 2, . . . , n− 1).

Then, (1.1) has at least 2(n− 1) positive solutions.

Proof. When n = 2, the assumptions of Theorem 3.1 hold (with c = a2), so we can
get at least two positive solutions u2 and u3 such that a1 < u2 ≤ a2 and u3 ≤ a2.
Following the identical fashion, by the induction method we immediately complete
the proof. �

Our results are different from those in [13], in particular, the following condition
that was used in [13], is not needed in this article

lim
u→∞

f(t, u)
u

= +∞ uniformly on [0, 1].
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