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EXISTENCE OF MILD SOLUTIONS FOR A NEUTRAL
FRACTIONAL EQUATION WITH FRACTIONAL NONLOCAL

CONDITIONS

NASSER-EDDINE TATAR

Abstract. The existence of mild solutions in an appropriate space is estab-
lished for a second-order abstract problem of neutral type with derivatives of
non-integer order in the nonlinearity as well as in the initial conditions. We
introduce some new spaces taking into account the minimum requirements of
regularity.

1. Introduction

In this article we study the neutral second-order abstract differential problem
d

dt
[u′(t) + g(t, u(t))] = Au(t) + f(t, u(t), Dαu(t)), t ∈ I = [0, T ]

u(0) = u0 + p(u, Dβu(t)),

u′(0) = u1 + q(u, Dγu(t))

(1.1)

with 0 ≤ α, β, γ ≤ 1. Here the prime denotes time differentiation and Dκ, κ =
α, β, γ denotes fractional time differentiation (in the sense of Riemann-Liouville).
The operator A is the infinitesimal generator of a strongly continuous cosine family
C(t), t ≥ 0 of bounded linear operators in the Banach space X and f , g are nonlinear
functions from R+ × X × X to X and R+ × X to X, respectively, u0 and u1 are
given initial data in X. The functions p : [C(I;X)]2 → X, q : [C(I;X)]2 → X are
given continuous functions.

This problem has been studied in case α, β, γ are 0 or 1 (see [1, 2, 3, 4, 10,
11, 22]). Well-posedness has been established using different fixed point theorems
and the theory of strongly continuous cosine families in Banach spaces. We refer
the reader to [6, 20, 21] for a good account on the theory of cosine families. A
similar problem to this one with Caputo derivative has been studied by the present
author in [19]. Here the situation with the Riemann-Liouville fractional derivative
is completely different. The singularity at zero inherent to the Riemann-Liouville
derivative brings new challenges and difficulties. Moreover the underlying spaces
are different. Indeed, Caputo derivative needs more regularity as it uses the first
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derivative of the function in question in its definition whereas the Riemann-Liouville
does not require as much smoothness.

Problems with fractional derivatives are very convenient to model hereditary
phenomena in many fields of sciences and engineering [5, 7, 8, 9, 12, 14, 15, 16, 17].
They can be used, for instance, as damping to reduce the effect of vibrations in
mechanical structures or to reduce noise in signals.

Here we consider the neutral case (g 6 ≡0) and prove existence and uniqueness
of mild solutions under different conditions on the different data. Even in the case
g ≡ 0 (and p = q = 0) these conditions are different from the ones assumed in [18].
In particular, this work may be viewed as an extension of the works in [10, 11] to
the fractional order case and of (18) to the neutral case.

The next section of this paper contains some notation and preliminary results
needed in our proofs. Section 3 treats the existence of a mild solution in an appro-
priate “fractional” space.

2. Preliminaries

In this section we present some notation, assumptions and results needed in our
proofs later.

Definition 2.1. The integral

(Iκ
a+h)(x) =

1
Γ(α)

∫ x

a

h(t)dt

(x− t)1−κ
, x > a

is called the Riemann-Liouville fractional integral of h of order κ > 0 when the
right side exists.

Here Γ is the usual Gamma function

Γ(z) :=
∫ ∞

0

e−ssz−1ds, z > 0.

Definition 2.2. The (left hand) Riemann-Liouville fractional derivative of h of
order κ > 0 is defined by

(Dκ
ah)(x) =

1
Γ(n− κ)

(
d

dx
)n

∫ x

a

h(t)dt

(x− t)κ−n+1
, x > a, n = [κ] + 1

whenever the right side is pointwise defined. In particular

(Dκ
ah)(x) =

1
Γ(1− κ)

d

dx

∫ x

a

h(t)dt

(x− t)κ
, x > a, 0 < κ < 1

and

(Dκ
ah)(x) =

1
Γ(2− κ)

(
d

dx
)2

∫ x

a

h(t)dt

(x− t)κ−1
, x > a, 1 < κ < 2.

Lemma 2.3. Let 0 < α, β < 0 and ϕ ∈ L1(a, b) be such that

In−αϕ ∈ ACn([a, b]) :=
{
φ : [a, b] → R and (Dn−1φ)(x) ∈ AC[a, b]

}
.

Then

Iα
a+Iβ

a+ϕ = Iα+β
a+ ϕ−

n−1∑
k=0

ϕ
(n−k−1)
n+β (a)
Γ(α− k)

(x− a)α−k−1

where ϕn+β(x) = In+β
a+ ϕ(x) and n = [−β] + 1.
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If 0 < κ < 1, n = 1 and γ ≤ κ then

Iκ−γ
a+ Dκ

a+ϕ = Dγ
a+ϕ− ϕ1−κ(a)

Γ(κ− γ)
(x− a)κ−γ−1.

See [12, 13, 14, 16, 17] for more on fractional derivatives and fractional integrals.
We will also need the following lemmas. The first one can be found in [17].

Lemma 2.4. If h(x) ∈ ACn[a, b], α > 0 and n = [α] + 1, then

(Dα
a h)(x) =

n−1∑
k=0

h(k)(a)
Γ(1 + k − α)

(x− a)k−α +
1

Γ(n− α)

∫ x

a

h(n)(t)dt

(x− t)α−n+1

=:
n−1∑
k=0

h(k)(a)
Γ(1 + k − α)

(x− a)k−α + (CDα
a h)(x), x > a.

The expression (CDα
a h)(x) is known as the fractional derivative of h of order α

in the sense of Caputo.
We will assume the following condition.
(H1) A is the infinitesimal generator of a strongly continuous cosine family C(t),

t ∈ R, of bounded linear operators in the Banach space X.
The associated sine family S(t), t ∈ R is defined by

S(t)x :=
∫ t

0

C(s)x ds, t ∈ R, x ∈ X.

It is known (see [20, 21, 22]) that there exist constants M ≥ 1 and ω ≥ 0 such that

|C(t)| ≤ Meω|t|, t ∈ R and |S(t)− S(t0)| ≤ M |
∫ t

t0

eω|s|ds|, t, t0 ∈ R.

For simplicity we will write |C(t)| ≤ M̃ and |S(t)| ≤ Ñ on I = [0, T ] (of course
M̃ ≥ 1 and Ñ ≥ 1 depend on T ).

Let us define

E := {x ∈ X : C(t)x is once continuously differentiable on R}.

Lemma 2.5 ([20, 21, 22]). Assume (H1) is satisfied. Then
(i) S(t)X ⊂ E, t ∈ R,
(ii) S(t)E ⊂ D(A), t ∈ R,
(iii) d

dtC(t)x = AS(t)x, x ∈ E, t ∈ R,
(iv) d2

dt2 C(t)x = AC(t)x = C(t)Ax, x ∈ D(A), t ∈ R.

Lemma 2.6 ([20, 21, 22]). Suppose that (H1) holds, v : R → X is a continuously
differentiable function, and q(t) =

∫ t

0
S(t − s)v(s) ds. Then, q(t) ∈ D(A), q′(t) =∫ t

0
C(t− s)v(s) ds and q′′(t) =

∫ t

0
C(t− s)v′(s) ds + C(t)v(0) = Aq(t) + v(t).

Now we make clear what we mean by a mild solution of (1.1).

Definition 2.7. A continuous function u, such that Dηu (η = max{α, β, γ}) exists
and is continuous on I, satisfying the integro-differential equation

u(t) = C(t)[u0 + p(u, Dβu(t))]

+ S(t)[u1 + q(u, Dγu(t))− g(0, u0 + p(u, Dβu(t)))]
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−
∫ t

0

C(t− s)g(s, u(s))ds +
∫ t

0

S(t− s)f(s, u(s), Dαu(s)) ds, t ∈ I

is called a mild solution of problem (1.1).

3. Existence of mild solutions

In this section we prove the existence and uniqueness of a mild solution in the
space

CRL
η ([0, T ]) := {v ∈ C([0, T ]) : Dηv ∈ C([0, T ])} (3.1)

equipped with the norm ‖v‖η := ‖v‖C + ‖Dηv‖C where ‖.‖C is the sup norm in
C([0, T ]) and η = max{α, β, γ}. For the initial data we define

Eη := {x ∈ X : DηC(t)x is continuous on R+}. (3.2)

Lemma 3.1. If R(t) is a linear operator such that I1−νR(t)x ∈ C1([0, T ]), T > 0,
then, for 0 < ν < 1, we have

Dν

∫ t

0

R(t− s)x ds =
∫ t

0

DνR(t− s)x ds + lim
t→0+

I1−νR(t)x, x ∈ X, t ∈ [0, T ].

Proof. By Definition 2.2 and Fubini’s theorem we have

Dν

∫ t

0

R(t− s)x ds

=
1

Γ(1− ν)
d

dt

∫ t

0

dτ

(t− τ)ν

∫ τ

0

R(τ − s)x ds

=
1

Γ(1− ν)
d

dt

∫ t

0

ds

∫ t

s

R(τ − s)x
(t− τ)ν

dτ

=
1

Γ(1− ν)

∫ t

0

ds
∂

∂t

∫ t

s

R(τ − s)x
(t− τ)ν

dτ +
1

Γ(1− ν)
lim

s→t−

∫ t

s

R(τ − s)x
(t− τ)ν

dτ.

These steps are justified by the assumption I1−νR(t)x ∈ C1([0, T ]). Moreover, a
change of variable σ = τ − s leads to

Dν

∫ t

0

R(t− s)x ds

=
1

Γ(1− ν)

∫ t

0

ds
∂

∂t

∫ t−s

0

R(σ)x
(t− s− σ)ν

dσ +
1

Γ(1− ν)
lim

t→0+

∫ t

0

R(σ)x
(t− σ)ν

dσ.

This is exactly the formula stated in the lemma. �

Lemma 3.2. If g is a continuous function such that I1−νg(t) ∈ C1([0, T ]), T > 0
and R(t) is continuous, then, for 0 < ν < 1, we have

Dν

∫ t

0

R(t− s)g(s) ds =
∫ t

0

R(t− s)Dνg(s) ds, t ∈ [0, T ].

Proof. By Definition 2.2, we have

Dν

∫ t

0

R(t− s)g(s) ds =
d

dt
I1−ν

∫ t

0

R(t− s)g(s) ds

=
d

dt
I1−ν

∫ t

0

R(s)g(t− s) ds
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=
1

Γ(1− ν)
d

dt

∫ t

0

dτ

(t− τ)ν

∫ τ

0

R(s)g(τ − s) ds.

Then, Fubini’s theorem and the continuity of g allow us to write

Dν

∫ t

0

R(t− s)g(s) ds =
1

Γ(1− ν)
d

dt

∫ t

0

R(s)
∫ t

s

g(τ − s)
(t− τ)ν

dτds

=
1

Γ(1− ν)
d

dt

∫ t

0

R(s)
∫ t−s

0

g(σ)
(t− s− σ)ν

dσds

=
∫ t

0

R(s)
d

dt
I1−νg(t− s) ds

=
∫ t

0

R(s)Dνg(t− s) ds

which is the desired relation. Note that we have used the continuity of g to deduce
that the value (or the limit) of the inner integral in the second line of the relation
is zero at s = t. �

Corollary 3.3. For the sine family S(t) associated with the cosine family C(t),
x ∈ X, t ∈ [0, T ] and 0 < ν < 1, we have

Dν

∫ t

0

S(t− s)x ds =
∫ t

0

DνS(t− s)x ds =
∫ t

0

I1−νC(t− s)x ds.

Proof. First, from Lemma 2.4 as S(t)x is absolutely continuous on [0, T ], we have

d

dt
I1−νS(t)x = DνS(t)x =

1
Γ(1− ν)

[S(0)x
tν

+
∫ t

0

(t− s)−ν dS(s)
ds

x ds
]

=
1

Γ(1− ν)

∫ t

0

(t− s)−νC(s)x ds

= I1−νC(t)x.

Now from the continuity of C(t) it is clear that I1−νC(t)x is continuous on [0, T ]
and therefore I1−νS(t)x ∈ C1([0, T ]). We can therefore apply Lemma 2.6 to obtain

Dν

∫ t

0

S(t− s)x ds =
∫ t

0

DνS(t− s)x ds + lim
t→0+

I1−νS(t)x, x ∈ X, t ∈ [0, T ].

Next, we claim that limt→0+ I1−νS(t)x = 0. This follows easily from

|I1−νS(t)x| ≤ 1
Γ(1− ν)

∫ t

0

(t− s)−ν |S(s)x|ds ≤ t1−ν

Γ(2− ν)
sup

0≤t≤T
|S(t)x|.

�

On the functins f, g, p and q we assume the following conditions.
(H2) (i) f(t, ., .) : X ×X → X is continuous for a.e. t ∈ I.

(ii) For every (x, y) ∈ X × X, the function f(., x, y) : I → X is strongly
measurable.

(iii) There exists a nonnegative continuous function Kf (t) and a continuous
nondecreasing positive function Ωf such that

‖f(t, x, y)‖ ≤ Kf (t)Ωf (‖x‖+ ‖y‖)
for (t, x, y) ∈ I ×X ×X.
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(iv) For each r > 0, the set f(I ×Br(0, X2)) is relatively compact in X.
(H3 (i) g ∈ CRL

η ([0, T ]).
(ii) There exist a nonnegative continuous function Kg(t) and a continuous

nondecreasing positive function Ωg such that

‖g(t, x)‖η ≤ Kg(t)Ωg(‖x‖)

for (t, x) ∈ I ×X.
(iii) The family of functions {t → g(t, u) u ∈ Br(0, C(I;X))} is equicontin-

uous on I.
(iv) For each r > 0, the set g(I ×Br(0, X)) is relatively compact in X.

(H4) u0 + p : [C(I;X)]2 → Eη (takes its values in Eη, see (3.2)) and q :
[C(I;X)]2 → X are completely continuous.

The positive constants Np, Nq, Ñp and Ng will denote bounds for ‖u0 + p(u, v)‖,
‖q(u, v)‖, ‖DηC(t)[u0 + p(u, I1−βv(t))]‖ and the term ‖g(0, u0 + p(u, Iη−βv(t)))‖,
respectively. Note that ‖DηC(t)[u0 + p(u, I1−βv(t))]‖ is finite by the assumption
in the next theorem. By Br(x,X) we will denote the closed ball in X centered at
x and of radius r. Let also

C1 := M̃Np +
(
Ñ +

M̃T 1−η

Γ(2− η)

)
Nq +

(
Ñ +

M̃T 1−η

Γ(2− η)

)
(‖u1‖+ Ng) + Ñp (3.3)

C3 := max
{

1,
T η−α

Γ(η − α + 1)

}
, C2 := C1C3 (3.4)

H(t) := 2M̃Kg(t) + ÑKf (t) + M̃(I1−ηKf )(t). (3.5)

We are now ready to state and prove our main result.

Theorem 3.4. Assume that (H1)–(H4) hold. If 0 < η < 1 and∫ t

0

H(s) ds <
1
C3

∫ ∞

C2

ds

Ωf (s) + Ωg(s)

then problem (1.1) admits a mild solution u ∈ CRL
η ([0, T ]).

Proof. Note that by our assumptions and for u ∈ CRL
η ([0, T ]) (see (3.1)), the maps

Φ(u, v)(t) := C(t)[u0 + p(u, Iη−βv(t))]

+ S(t)[u1 + q(u, Iη−γv(t))− g(0, u0 + p(u, Iη−βv(t)))]

−
∫ t

0

C(t− s)g(s, u(s))ds +
∫ t

0

S(t− s)f(s, u(s), Iη−αv(s)) ds,

(3.6)

for t ∈ I, and

Ψ(u, v)(t) := DηC(t)[u0 + p(u, Iη−βv(t))]

+ DηS(t)[u1 + q(u, Iη−γv(t))− g(0, u0 + p(u, Iη−βv(t)))]

−
∫ t

0

C(t− s)Dηg(s, u(s)) ds

+
∫ t

0

I1−ηC(t− s)f(s, u(s), Iη−αv(s)) ds, t ∈ I

(3.7)

are well-defined, and map [C([0, T ])]2 into C([0, T ]). We obtained these mappings
from the definition of a mild solution taking into account Lemma 3.2 (note that
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I1−ηg ∈ C1([0, T ]) by our assumption (H3)(i)) and Corollary 3.3. In addition to
that we passed from Dκu, κ = α, β, γ to Dηu =: v through the formula

Dκ
a+u(t) = Iη−κ

a+ Dη
a+u(t)(t) +

u1−η(0)
Γ(η − κ)

tη−κ−1

and noticing that u1−η(0) = 0.
We would like to apply the Leray-Schauder Alternative (which states that either

the set of solutions (below) is unbounded or we have a fixed point in D (containing
zero) a convex subset of X provided that the mappings Φ and Ψ are completely
continuous). To this end we first prove that the set of solutions (uλ, vλ) of

(uλ, vλ) = λ(Φ(uλ, vλ),Ψ(uλ, vλ)), 0 < λ < 1 (3.8)

is bounded. Then, we prove that this map is completely continuous. Therefore
there remains the alternative which is the existence of a fixed point. We observe
first from (3.6) that

‖uλ(t)‖ ≤ M̃Np + Ñ(‖u1‖+ Nq + Ng) + M̃

∫ t

0

Kg(s)Ωg(‖uλ(s)‖) ds

+ Ñ

∫ t

0

Kf (s)Ωf (‖uλ(s)‖+
sη−α

Γ(η − α + 1)
sup

0≤τ≤s
‖vλ(τ)‖) ds

and from (3.7),

‖vλ(t)‖

≤ Ñp +
M̃t1−η

Γ(2− η)
[‖u1‖+ Nq + Ng] + M̃

∫ t

0

Kg(s)Ωg(‖uλ(s)‖) ds

+ M̃

∫ t

0

(I1−ηKf )(s)Ωf

(
sup

0≤τ≤s
‖uλ(τ)‖+

sη−α

Γ(η − α + 1)
sup

0≤τ≤s
‖vλ(τ)‖

)
ds

where Ñp and Ng are bounds for the expressions DηC(t)[u0 + p(u, Iη−βv(t))] and
g(0, u0 + p(u, Iη−βv(t))), respectively. Clearly

‖uλ(t)‖+ ‖vλ(t)‖

≤ C1 + 2M̃

∫ t

0

Kg(s)Ωg(‖uλ(s)‖) ds +
∫ t

0

(ÑKf (s) + M̃(I1−ηKf )(s))

× Ωf

(
sup

0≤τ≤s
‖uλ(τ)‖+

sη−α

Γ(η − α + 1)
sup

0≤τ≤s
‖vλ(τ)‖

)
ds

(3.9)

where C1 is given in (3.3). If we put

Θλ(t) = max{1, T η−α/Γ(η − α + 1)} sup
0≤τ≤t

(‖uλ(τ)‖+ ‖vλ(τ)‖),
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then (3.9) yields

Θλ(t) ≤ max{1, T η−α/Γ(η − α + 1)}
{

C1 + 2M̃

∫ t

0

Kg(s)Ωg(Θλ(s)) ds

+
∫ t

0

(
ÑKf (s) + M̃(I1−ηKf )(s)

)
Ωf (Θλ(s)) ds

}
≤ max

{
1,

T η−α

Γ(η − α + 1)
}{

C1 +
∫ t

0

H(s)[Ωg(Θλ(s)) + Ωf (Θλ(s))]ds
}

≤ C2 + C3

∫ t

0

H(s)[Ωg(Θλ(s)) + Ωf (Θλ(s))]ds

(3.10)
where H(s), C2 and C3 are as in the paragraph preceding the statement of the
theorem (see (3.4) and (3.5)). Let us denote by ϕλ(t) the right hand side of (3.10).
Then ϕλ(0) = C2, Θλ(t) ≤ ϕλ(t) and

ϕ′λ(t) ≤ C3H(t)[Ωg(ϕλ(t)) + Ωf (ϕλ(t))], t ∈ I.

We infer that ∫ ϕλ(t)

C2

ds

Ωf (s) + Ωg(s)
≤ C3

∫ t

0

H(s) ds. (3.11)

This relation, together with our hypotheses, shows that Θλ(t) and thereafter the
set of solutions of (3.8) is bounded in [C(I;X)]2.

It remains to show that the maps Φ and Ψ are completely continuous. From our
hypotheses it is immediate that

Φ1(u, v)(t) := C(t)[u0 + p(u, Iη−βv(t))]

+ S(t)[u1 + q(u, Iη−γv(t))− g(0, u0 + p(u, Iη−βv(t)))]

is completely continuous. To apply Ascoli-Arzela Theorem we need to check that

(Φ− Φ1)(B2
r ) := {(Φ− Φ1)(u, v) : (u, v) ∈ B2

r}

is equicontinuous on I. Let us observe that

‖(Φ− Φ1)(u, v)(t + h)− (Φ− Φ1)(u, v)(t)‖

≤
∫ t

0

‖(C(t + h− s)− C(t− s))g(s, u(s))‖ds

+
∫ t+h

t

‖C(t + h− s)g(s, u(s))‖ds

+
∫ t

0

‖(S(t + h− s)− S(t− s))f(s, u(s), Iη−αv(s))‖ds

+
∫ t+h

t

‖S(t + h− s)f(s, u(s), Iη−αv(s))‖ds.

By (H1) and (H3), for t ∈ I and ε > 0 given, there exists δ > 0 such that

‖(C(s + h)− C(s))g(t− s, u(t− s))‖ < ε

for s ∈ [0, t] and u ∈ Br, when |h| < δ. This together with (H2), (H3) and the fact
that S(t) is Lipschitzian imply that

‖(Φ− Φ1)(u, v)(t + h)− (Φ− Φ1)(u, v)(t)‖
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≤ εt + M̃Ωg(r)
∫ t+h

t

Kg(s) ds

+ N1hΩf

(
r +

T η−αr

Γ(η − α + 1)

) ∫ t

0

Kf (s) ds

+ ÑΩf

(
r +

T η−αr

Γ(η − α + 1)

) ∫ t+h

t

Kf (s) ds

for some positive constant N1. The equicontinuity is therefore established.
On the other hand, for t ∈ I, as (s, ξ) → C(t − s)ξ is continuous from [0, t] ×

g(I ×X) to X and [0, t]× g(I ×X) is relatively compact in X. The set{
Φ2u(t) :=

∫ t

0

C(t− s)g(s, u(s)) ds, u ∈ Br(0, X)
}

is relatively compact in X as well. We infer that Φ2 is completely continuous. As
for Φ3 := Φ− Φ1 + Φ2 we decompose it as follows

Φ3(u, v)(t) =
k−1∑
i=1

∫ si+1

si

(S(s)− S(si))f(t− s, u(t− s), Iη−αv(t− s)) ds

+
k−1∑
i=1

∫ si+1

si

S(si)f(t− s, u(t− s), Iη−αv(t− s)) ds

and select the partition {si}k
i=1 of [0, t] in such a manner that, for a given ε > 0

‖(S(s)− S(s′))f(t− s, u(t− s), Iη−αv(t− s))‖ < ε,

for (u, v) ∈ B2
r (0, X), when s, s′ ∈ [si, si+1] for some i = 1, . . . , k − 1. This is

possible in as much as

{f(t− s, u(t− s), Iη−αv(t− s)), s ∈ [0, t], (u, v) ∈ B2
r (0, X)}

is bounded (by (H2) (iii)) and the operator S is uniformly Lipschitz on I. This
leads to

Φ3(u, v)(t) ∈ εBT (0, X) +
k−1∑
i=1

(si+1 − si)co(U(t, si, r))

where

U(t, si, r)

:=
{
S(si)f(t− s, u(t− s), Iη−αv(t− s)), s ∈ [0, t], (u, v) ∈ B2

r (0, X)
}

and co U(t, si, r)) designates its convex hull. Therefore Φ3(B2
r )(t) is relatively com-

pact in X. By Ascoli-Arzela Theorem, Φ3(B2
r ) is relatively compact in C(I;X)

and consequently Φ3 is completely continuous. Similarly we may prove that Ψ is
completely continuous.

We conclude that (Φ,Ψ) admits a fixed point in [C([0, T ])]2. �

Remark 3.5. In the same way we may treat the more general case
d

dt
[u′(t) + g(t, u(t))] = Au(t) + f(t, u(t), Dα1u(t), . . . , Dαnu(t)),

u(0) = u0 + p(u, Dβ1u(t), . . . , Dβmu(t)),

u′(0) = u1 + q(u, Dγ1u(t), . . . , Dγru(t))



10 N.-E. TATAR EJDE-2012/153

where 0 ≤ αi, βj , γk ≤ 1, i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , r.

Example. Consider the problem

∂

∂t
[ut(t, x) + G(t, x, u(t, x))]

= uxx(t, x) + F (t, x, u(t, x), Dαu(t, x)), t ∈ I = [0, T ], x ∈ [a, b]

u(t, a) = u(t, b) = 0, t ∈ I

u(0, x) = u0(x) +
∫ T

0

P (u(s), Dβu(s))(x) ds, x ∈ [a, b]

u′(0) = u1(x) +
∫ T

0

Q(u(s), Dγu(s))(x) ds, x ∈ [a, b]

(3.12)

in the space X = L2([0, π]). This problem can be reformulated in the abstract
setting (1.1). To this end we define the operator Ay = y′′ with domain

D(A) := {y ∈ H2([0, π]) : y(0) = y(π) = 0}.

The operator A has a discrete spectrum with −n2, n = 1, 2, . . . . as eigenvalues and
zn(s) =

√
2/π sin(ns), n = 1, 2, . . . , as their corresponding normalized eigenvectors.

So we may write

Ay = −
∞∑

n=1

n2(y, zn)zn, y ∈ D(A).

Since −A is positive and self-adjoint in L2([0, π]), the operator A is the infinitesimal
generator of of a strongly continuous cosine family C(t), t ∈ R which has the form

C(t)y =
∞∑

n=1

cos(nt)(y, zn)zn, y ∈ X.

The associated sine family is

C(t)y =
∞∑

n=1

sin(nt)
n

(y, zn)zn, y ∈ X.

One can also consider more general non-local conditions by allowing the Lebesgue
measure ds to be of the form dµ(s) and dη(s) for non-decreasing functions µ and η
(or even more general: µ and η of bounded variation); that is,

u(0, x) = u0(x) +
∫ T

0

P (u(s), Dβu(s))(x)dµ(s),

ut(0, x) = u1(x) +
∫ T

0

Q(u(s), Dγu(s))(x)dη(s).

These (continuous) non-local conditions cover, of course, the discrete cases

u(0, x) = u0(x) +
n∑

i=1

αiu(ti, x) +
m∑

i=1

βiD
βu(ti, x),

ut(0, x) = u1(x) +
r∑

i=1

γiu(ti, x) +
k∑

i=1

λiD
γu(ti, x)

which have been extensively studied by several authors in the integer order case.
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For u, v ∈ C([0, T ];X) and x ∈ [a, b], defining the operators

p(u, v)(x) :=
∫ T

0

P (u(s), v(s))(x) ds,

q(u, v)(x) :=
∫ T

0

Q(u(s), v(s))(x) ds,

g(t, u)(x) := G(t, x, u(t, x)),

f(t, u, v)(x) := F (t, x, u(t, x), v(t, x)),

allows us to write (3.12) abstractly as

d

dt
[u′(t) + g(t, u(t), u′(t))] = Au(t) + f(t, u(t), Dαu(t)),

u(0) = u0 + p(u, Dβu(t)),

u′(0) = u1 + q(u, Dγu(t)).

Under appropriate conditions on F , G, P and Q which make (H2)–(H4) hold for
the corresponding functions f , g, p and q, Theorem 3.4 ensures the existence of a
mild solution to problem (3.12).

Some special cases of this problem may be found in models of some phenomena
with hereditary properties (see [5, 7, 8, 9, 15]).
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