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STABILITY OF PEAK SOLUTIONS OF A NON-LINEAR
TRANSPORT EQUATION ON THE CIRCLE

EDITH GEIGANT, MICHAEL STOLL

Abstract. We study solutions of a transport-diffusion equation on the circle.
The velocity of turning is given by a non-local term that models attraction
and repulsion between elongated particles. Having mentioned basics like in-
variances, instability criteria and non-existence of time-periodic solutions, we
prove that the constant steady state is stable at large diffusion. We show that
without diffusion localized initial distributions and attraction lead to forma-
tion of several peaks. For peak-like steady states two kinds of peak stability
are analyzed: first spatially discretized with respect to the relative position
of the peaks, then stability with respect to non-localized perturbations. We
prove that more than two peaks may be stable up to translation and slight
rearrangements of the peaks. Our fast numerical scheme which is based on
the Fourier-transformed system allows to study the long-time behaviour of the
equation. Numerical examples show backward bifurcation, mixed-mode so-
lutions, peaks with unequal distances, coexistence of one-peak and two-peak
solutions and peak formation in a case of purely repulsive interaction.

1. Introduction

In this article we analyze pattern forming ability and pattern stability for a
one-dimensional non-linear transport-diffusion equation on the circle. The distin-
guishing feature of this equation is the non-local turning velocity that is determined
by interactions between particles in various orientations: velocity is given by a con-
volution term of an interaction rate V with the distribution function. In its general
form, the equation also includes a diffusion term.

Our interest in this equation is three-fold: It has been used to model the for-
mation of F-actin bundles and networks of the cytosceleton [14], [15]. Secondly,
this partial differential equation can be derived formally from a general integro-
differential equation on the circle, [16]. This integro-differential equation has also
been used to model F-actin aggregation [6]. Finally, the corresponding equation on
the real line is interesting both mathematically and from the modelling viewpoint,
see e.g. [2] or [4] for references and applications.
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Consequently, several facts and analytical methods for the equation on the circle
have been established: Primi et al. [16] prove existence of solutions and find con-
ditions on V such that non-constant stationary solutions of the transport-diffusion
equation exist for small enough diffusion. Mogilner et al. [15] analyze stability of a
single peak in a discrete setting without diffusion. Chayes and Panferov [3] analyze
existence and bifurcations of non-trivial stationary solutions on d-dimensional tori
by minimizing an appropriate ‘free energy’ functional.

The starting points of our interest were the claim — between the lines — of Primi
et al. [16] that a certain integral condition allows to decide wether one or two peaks
will form and the question what ‘mass selection’ means. In Section 6, Example
6.3 we show that single and double peaks may exist simultaneously. Example 6.1
shows a mixed mode solution (and a nice backward bifurcation), i.e. there is no
mass selection at higher diffusion. The mixed mode solution seems to converge to
two peaks of equal height with decreasing diffusion, but the time that is needed for
convergence to two peaks increases rapidly.

However, our main interest concerns the stability of several peaks. The method
used by Primi et al. [16] of constructing peak-like solutions gives no information
on their stability, neither does the bifucation argument of Chayes and Panferov
[3] away from the first bifurcation. Fellner’s and Raoul’s integration method [4] is
not applicable to equations on the circle. At least Mogilner’s et al. ‘peak ansatz’
can be generalized to n peaks, see Section 5.1. The underlying notion of stability
here is important: In the ‘peak ansatz’ only peak-like perturbations are considered;
nothing can be said about perturbations with distributed masses.

For a related integro-differential equation on the circle Geigant [8] proves stabil-
ity of a single peak with respect to perturbations that are measures with compact
support. She linearizes the integro-differential equation near the peak and calcu-
lates the solution of the linearized equation and its limit explicitly. In section 5.2
we also linearize the transport equation near peak solutions but then we use a
different method: calculating the moments of the linearized equation yields that
the perturbation converges to 0 in the case of two opposite peaks as well as in the
case that the two peaks have the critical distance θ0 where V (θ0) = 0. For more
than two peaks we can show with similar arguments that the number of peaks is
stable but not their relative position, i.e., after a perturbation the relative distances
(in general) are no longer equal. A technical difficulty is that solutions are invari-
ant with respect to translations: therefore, ‘stabilty’ always means stability up to
translation.

The outline of the paper is as follows:
In Section 2 we establish some basic facts on the transport-diffusion equation,

like conservation of mass and symmetries, non-existence of time-periodic solutions,
correspondence between solutions of higher periodicity for V and general solutions
for its ‘rolled-up’ version Vn. Linearization near the constant stationary state pro-
vides conditions on the interaction rate V and on the smallness of the diffusion
coefficient such that non-constant stationary states exist. We also discuss the cor-
responding equation on the real line and its relation with the equation on the circle.
This leads on to statements about invariance of local supports, local masses and
local barycenters for the eqation on the circle. Note that there is no reasonable
global notion of first moment or barycenter; later on we present Example 5.2 that
demonstrates this.
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Method
Steady state spectral local, linear local, non-linear global

constant ev (2.3) [3] Th. 3.2
D large D large

single peak ev (5.6), Th. 5.3 Th. 5.6 Th. 4.2
V ′(0) > 0 V |(0, 1

2 ) > 0 cs

two peaks ev (5.6), Th. 5.3 Th. 5.8, Cor. 5.9 Th. 4.7

V ′( 1
2 ) > 0 Ṽ four zeros V |(0,θ1) > 0, V |(θ2, 1

2 ) < 0, cs

n ≥ 3 peaks ev (5.6), Th. 5.3 Cor. 5.7, Th. 5.10 Cor. 4.4, Cor. 4.5
V ′( k

n ) > 0 ∀k Vn|(0, 1
n

) > 0 V |(0,θ1) > 0, cs

pert. n-per. or V |[θ1, 1
2 ] = 0

Table 1. List of stability results, methods and assumptions.
(where ev = eigenvalues, cs = sufficiently small compact support,
pert = perturbation, per = periodic)

In Section 3 we show that the constant stationary solution is globally stable if
diffusion is large enough compared to the transport term.

In Sections 4 and 5 diffusion is zero.
In Section 4 we establish convergence to peak solutions for initial functions with

sufficiently small (disjoint) support(s).
Section 5 is dedicated to the stability results for peak solutions already discussed

above: namely first the peak ansatz in Section 5.1 which yields instablity condi-
tions for peak solutions. Secondly, in Section 5.2 stability of peaks with respect to
perturbations by differentiable measures is explored.

Section 6 contains two numerical algorithms and several instructive examples.
A fast method to calculate solutions of the partial differential equation is based on
the Fourier representation of (2.1), see section 6.1. The advantage in speed of that
numerical method over methods based on discretization of space has been already
used by Geigant and Stoll [9] for the integro-differential equation on the circle. In
Section 6.2 we implement the method of Primi et al. [16] to construct stationary
solutions, which is an iteration scheme. Interestingly, there are several examples
where the scheme does not converge1; so that method is not always applicable to
construct stationary solutions.

The first of our examples in Section 6.3 shows the simultaneous bifurcation of
first and second mode. The second example shows a stable two-peaks like solution
where the two peaks are not opposite. In the third example stable one-peak and
two-peaks like solutions coexist at the same parameter values. In the last example
we show that pattern formation may occur even if V is nowhere attracting.

In the discussion in Section 7 we detail similarities and differences between the
transport-diffusion equation and a related integro-differential equation on the circle.

Table 1 lists steady states and methods to analyze stability. Skip the table on
first reading and return to it as a reference list! To help remember the assumptions
only keywords are given.

2. The non-linear transport equation with diffusion

Let S1 = R/Z be a circle of length 1. If we denote by p : R → S1 = R/Z
the canonical projection, then we have associated maps p∗ from functions on S1 to

1Of course these are examples where the assumptions of Primi et al. do not hold.
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functions on R, where p∗(f) = f ◦ p is the associated 1-periodic function on R, and
p∗ from (sufficiently fast decaying) functions on R to functions on S1, where

p∗(g)(θ) =
∑

x∈R,p(x)=θ

g(x) .

Definition 2.1. A closed interval I on S1 is a closed connected subset that is
not all of S1. Then I = p(I ′) for some closed interval I ′ = [a, b] ⊂ R (such that
b − a < 1), and we write I = [p(a), p(b)] and call α = p(a) the lower end and
β = p(b) the upper end of I. If h is a function on S1, we write∫ b

a

h(θ) dθ =
∫ β

α

h(θ) dθ =
∫

[α,β]

h(θ) dθ =
∫ b

a

p∗(h)(x) dx.

If θ, ψ ∈ I, we write θ − ψ ∈ R for the difference θ′ − ψ′ where θ′, ψ′ ∈ I ′ are such
that p(θ′) = θ, p(ψ′) = ψ.

If V : S1 → R is a function and I = (a, b) ⊂ R is an interval such that p(I) 6= S1,
we will (for simplicity) say that ‘V > 0 on (a, b)’ if V > 0 on p(I) (equivalently,
p∗(V ) > 0 on I); similarly for half-open or closed intervals. In the same way, we
write V (a) for V (p(a)) if a ∈ R.

2.1. The equation on the circle. We want to model a process that describes the
change of orientation of filaments over time. The orientation is given by an ‘angle’
θ ∈ S1. The density of filaments at time t ≥ 0 with orientation θ ∈ S1 is given
by f(t, θ). The filaments turn continuously; the velocity of turning is determined
by interactions with other filaments on the circle. At the same time there is ran-
dom reorientation. This kind of dynamics is described by the following transport
equation with diffusion, which is also known as the McKean-Vlasov Equation:

∂f

∂t
(t, θ) = D

∂2f

∂θ2
(t, θ) +

∂

∂θ

(
(V ∗ f(t, ·)) · f(t, ·)

)
(θ), (2.1)

where D ≥ 0 is the diffusion coefficient and (V ∗ f)(θ) =
∫
S1 V (θ − ψ)f(ψ) dψ is

the convolution of V with f and gives the negative velocity of turning of filaments
with orientation θ.

We assume that the interaction function V : S1 → R is odd, because interactions
with filaments on opposite sides of θ must have similar consequences. In particu-
lar, V (0) = 0, i.e., there is no repulsion or attraction of filaments with the same
orientation, and V ( 1

2 ) = 0; i.e., there is no interaction with filaments of opposite
orientation. The sign of V (θ) is important. If V (θ) > 0 for some interaction angle
0 < θ < 1

2 then the two filaments move towards each other, we call this ‘attracting’;
if on the other hand V (θ) < 0 for some 0 < θ < 1

2 then the distance between the
filaments becomes greater, they are ‘repelling each other’. For odd V ∈ C∞(S1)
Primi et al. [16] prove a-priori estimates by which unique existence of smooth solu-
tions of equation (2.1) can be shown. In Carrillo et al. [1] a well-posedness theory
for weak measure solutions is developed.

The following easy statement will be useful.

Lemma 2.2. Let V, f ∈ C(S1) with V odd. Then∫
S1

(V ∗ f)(θ)f(θ) dθ = 0.
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Proof. We have∫
S1

(V ∗ f)(θ)f(θ) dθ =
∫
S1

∫
S1
V (θ − ψ)f(ψ) dψ f(θ) dθ

=
∫
S1

∫
S1
V (θ − ψ)f(ψ)f(θ) dψ dθ.

If we swap ψ and θ in the last integral, it changes sign (since V is odd); therefore
it must be zero. �

The following proposition states some basic facts on equation (2.1).

Proposition 2.3. Equation (2.1) preserves mass, non-negativity, axial symmetry
with respect to any axis and periodicity of initial functions. Moreover, the solution
space is invariant under the group O(2) of translations and reflections on S1.

Proof. Preservation of mass and positivity are shown by Primi et al. [16]. The
remaining statements follow from the observation that the operator on the right
hand side of equation (2.1) is O(2)-equivariant (for the reflections in O(2), this uses
that V is odd). �

Since the partial differential equation (2.1) lives on S1, the equation turns into
a discrete system of ODEs when it is Fourier transformed. We denote by

fk =
∫
S1
f(θ)e−2πikθ dθ for k ∈ Z

the k-th Fourier coefficient of f : S1 → R. Since f is real, fk = f̄−k; if f is even
or odd, then fk ∈ R or fk ∈ iR, respectively. For differentiable functions one
has (f ′)k = 2πikfk, the Fourier coefficients of a convolution are (V ∗ f)k = Vkfk,
and the Fourier transform of a product is the convolution of the Fourier series,
(f · g)k =

∑
l∈Z flgk−l.

Hence the Fourier transform of the transport-diffusion equation (2.1) is

ḟk(t) = −(2πk)2Dfk + 2πik
∑
l∈Z

Vlflfk−l

= ck fk + 4πk
∑

l∈Z\{0,k}

vlflfk−l for k ∈ Z,
(2.2)

where the eigenvalues ck ∈ R of the system and the vk ∈ R are defined as

ck = −(2πk)2D + 4πkf0vk and vk =
∫ 1/2

0

V (θ) sin(2πkθ) dθ =
i

2
Vk. (2.3)

Mass conservation is reflected by the equation ḟ0 = 0. Using f−k = f̄k, the equa-
tions with k < 0 are redundant. We have ck = c−k = c̄k ∈ R because vk = −v−k.
By scaling D and V one may assume that the mass is 1, which we will do from now
on:

f0 =
∫
S1
f(t, θ) dθ = 1 for all t ≥ 0.
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2.2. No time-periodic solutions and bounds for stationary solutions.
Chayes and Panferov [3] (see also the literature cited there) proved that there are
no time-periodic solutions.2 We subsume their results and arguments here for the
1-dimenional case. They define

W (θ) =
∫ θ

0

V (ψ) dψ ;

this makes sense as a function on S1, since
∫
S1 V (ψ) dψ = 0. Note that W is an

even function.
The ‘free energy’ functional of (2.1) is defined as

E(f) := D

∫
S1
f(θ) ln(f(θ)) dθ +

1
2

∫
S1

∫
S1
W (θ − ψ)f(θ)f(ψ) dψ dθ.

Proposition 2.4. Let D > 0 and f(t, θ) > 0 be a solution of equation (2.1). Then
dE(f(t,.))

dt ≤ 0, with equality if and only if f is a stationary solution. Any time-
periodic solution f(t, θ) > 0 of (2.1) is in fact a stationary solution. If D = 0 it is
sufficient to assume f ≥ 0 in both statements.

Proof. Chayes and Panferov show that d
dtE(f(t, .)) ≤ 0 and that dE(f(t,.))

dt (t0) = 0
holds for non-negative f if and only if Df ′(t, ·) + (V ∗ f(t0, ·))f(t0, ·) = 0. These
two facts imply that any time-periodic solution is indeed stationary. �

The following proposition collects some results on stationary solutions. The
following ordinary differential equation and bounds for stationary solutions for the
McKean-Vlasov equation on tori in dimension d ≥ 1 have already been found by
Chayes and Panferov [3]. We omit a proof which can be based on integration and
estimation of the ODE.

Proposition 2.5 (Estimates for stationary solutions). Assume that f ≥ 0 is a
stationary solution of (2.1) with mass 1 and D > 0. Then f satisfies the following
ordinary differential equation on S1:

D
df

dθ
= −(V ∗ f) · f. (2.4)

For θ1, θ2 ∈ S1 we have

e−C|θ1−θ2| ≤ f(θ2)
f(θ1)

≤ eC|θ1−θ2| where C := maxV/D.

In particular, max f
min f ≤ e

C/2 and therefore

max f ≤ eC/2 min f ≤ eC/2 and min f ≥ e−C/2 max f ≥ e−C/2.
In any maximum θmax of a stationary solution f we have

d2f

dθ2
(θmax) ≥ −

maxV ′

D
f(θmax);

in any minimum θmin of a stationary solution f we have

d2f

dθ2
(θmin) ≤ −minV ′

D
f(θmin).

2Chayes and Panferov [3] assume throughout their paper that the interaction potential W is of
finite range. However, for their statements which we cite here and in the following this assumption
is not used in the proofs.
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Remarks. (i) Primi et al. [16] use the ODE (2.4) to set up an iterative procedure
for approximating stationary solutions. See Section 6.2 below.

(ii) If the diffusion coefficient D is large compared to V , then any stationary
solution is near the constant solution (or only the constant solution exists).

(iii) The inequalities for max f have a large right hand side when D becomes
small. That leads us to expect that with decreasing D solutions may become large
and maxima may be sharp peaks (the curvature is large).

(iv) If the minimum of f is small, then it is wide (the curvature is small).
(v) If D = 0 in equation (2.1), then f is a stationary solution if and only if

(V ∗ f) · f = 0.
We state another simple consequence of equation (2.4).

Proposition 2.6. Assume D > 0 in equation (2.1). If V is 1
n -periodic and odd,

then any stationary solution of (2.1) must also be 1
n -periodic.

Proof. V (θ + 1
n ) = V (θ) for all θ ∈ S1 implies

(V ∗ f)(θ + 1
n ) =

∫
S1
V (θ + 1

n − ψ)f(ψ) dψ =
∫
S1
V (θ − ψ)f(ψ) dψ = (V ∗ f)(θ)

for functions f on S1. If f is a stationary solution of (2.1), then it is a solution of
the ODE (2.4). Since D > 0, it follows that f ′/f = − 1

D (V ∗ f) is 1
n -periodic. This

implies that f(θ + 1
n ) = γf(θ) with some constant γ, and since f > 0, we must

have γ > 0. Since obviously γn = 1, we have γ = 1, and f is 1
n -periodic. �

2.3. Solutions with higher periodicity. Let n ≥ 1 and V : S1 → R be odd
and continuous. We are interested in 1

n -periodic solutions of equation (2.1). To
understand these, the following functions Vn and Ṽn will be useful.

Vn(θ) =
n−1∑
j=0

V
(
θ − j

n

)
, Ṽn(θ) =

n−1∑
j=0

V
(θ − j

n

)
.

Vn and Ṽn are continuous and odd; Vn is 1
n -periodic. In particular,

Vn

( k

2n

)
= 0 for 0 ≤ k < 2n.

The following result shows that instead of considering 1
n -periodic solutions of

equation (2.1), we can consider solutions of (2.1) without higher periodicity, when
we modify the parameters D and V accordingly.

Proposition 2.7. Let n ≥ 1 and V be odd. Then there is a 1-to-1 correspondence
between 1

n -periodic solutions f of equation (2.1) and solutions f̃ of

∂f̃

∂t
(t, θ) = n2D

∂2f̃

∂θ2
(t, θ) +

∂

∂θ

(
(Ṽn ∗ f̃(t, ·))f̃(t, ·)

)
(θ), (2.5)

namely via f̃(t, nθ) = f(t, θ).

Proof. Let f(t, ·) be a 1
n -periodic solution of (2.1). Define f̃(t, θ) = f(t, θn ). Then

f̃ has mass 1, and we have

(V ∗ f(t, ·))
( θ
n

)
=
n−1∑
j=0

∫ j+1
n

j/n

V
( θ
n
− ψ

)
f(t, ψ) dψ
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=
n−1∑
j=0

∫ 1
n

0

V
( θ
n
−

(
ψ +

j

n

))
f
(
t, ψ +

j

n

)
dψ

=
∫ 1

n

0

Vn

( θ
n
− ψ

)
f(t, ψ) dψ =

1
n

∫ 1

0

Vn

(θ − ψ
n

)
f
(
t,
ψ

n

)
dψ

=
1
n

(
Ṽn ∗ f̃(t, ·)

)
(θ).

Also, ∂f̃∂θ (t, θ) = 1
n
∂f
∂θ (t, θn ). Therefore,

∂f̃

∂t
(t, θ) =

∂f

∂t

(
t,
θ

n

)
= D

∂2f

∂θ2

(
t,
θ

n

)
+

∂

∂θ

(
V ∗ f(t, ·)f(t, ·)

)( θ
n

)
= n2D

∂2f̃

∂θ2
(t, θ) + n

∂

∂θ

( 1
n

(Ṽn ∗ f̃(t, ·))f̃(t, ·)
)
(θ)

= n2D
∂2f̃

∂θ2
(t, θ) +

∂

∂θ

(
(Ṽn ∗ f̃(t, ·))f̃(t, ·)

)
(θ).

The converse can be shown in the same way. �

This shows in particular that diffusion acts more strongly on solutions of higher
periodicity. In fact, we have max Ṽn ≤ nmaxV , so the quotient C = maxV/D in
inequality 2.5 will be multiplied by a number ≤ 1

n .
In terms of the Fourier transformed system (2.2), we have fk = 0 for n - k,

f̃k = fnk, and (Ṽn)k = nVnk. So we only look at the equations with k a multiple
of n and replace nk by k to obtain the system corresponding to equation (2.5).

2.4. The equation on the real line. A similar PDE can also be considered with
R instead of S1 as the spatial domain,

∂g

∂t
(t, x) = D

∂2g

∂x2
(t, x) +

∂

∂x

(
(W ∗ g(t, ·)) · g(t, ·)

)
(x) . (2.6)

Here W : R → R is odd and g(t, ·) is assumed to decay sufficiently fast, so that
the convolution W ∗ g(t, ·) is defined. Note that the convolution is here given by
an integral over all of R. There is the following relation between equations (2.1)
and (2.6).

Proposition 2.8. Let V : S1 → R be odd and define W = p∗(V ) (which is just V
considered as a 1-periodic function on R). Let g : [0, T ) × R → R be a solution of
equation (2.6). Then (t, θ) 7→ f(t, θ) = p∗(g(t, ·))(θ) is a solution of equation (2.1).

Proof. We have
∂f

∂t
(t, θ) =

∑
x:p(x)=θ

∂g

∂t
(t, x)

=
∑

x:p(x)=θ

(
D
∂2g

∂x2
(t, x) +

∂

∂x

(
(W ∗ g(t, ·))(x) · g(t, x)

))
= D

∂2f

∂θ2
(t, θ) +

∂

∂θ

( ∑
x:p(x)=θ

∫ ∞

−∞
W (x− y)g(t, y) dy · g(t, x)

)
= D

∂2f

∂θ2
(t, θ) +

∂

∂θ

(∫
S1
V (θ − ψ)f(t, ψ) dψ ·

∑
x:p(x)=θ

g(t, x)
)
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= D
∂2f

∂θ2
(t, θ) +

∂

∂θ

(
(V ∗ f(t, ·))f(t, ·)

)
(θ) .

Here we use that∫ ∞

−∞
p∗(V )(x− y)h(y) dy =

∫
S1
V (p(x)− ψ)p∗(h)(ψ) dψ . �

The advantage of equation (2.6) over (2.1) is that it is easily shown to not only
preserve mass, but also the first moment (or, equivalently, the barycenter) of g(t, ·),
whereas the notion of ‘first moment’ usually does not even make sense on S1. (The
following statements are surely not new, see e.g. Carrillo et al. [2] or Raoul [17] if
D = 0 on Rn.)

Proposition 2.9. Let g be a solution of (2.6).
(1) For any a ∈ R, (t, x) 7→ g(t, x− a) is again a solution of (2.6).
(2) (t, x) 7→ g(t,−x) is again a solution of (2.6).
(3)

∫∞
−∞ g(t, x) dx is constant.

(4)
∫∞
−∞ xg(t, x) dx is constant.

Proof. The first statement is clear (the operator on the right hand side is equivariant
with respect to translations). Since W is assumed to be odd, the right hand side is
also equivariant with respect to x 7→ −x, which implies the second statement. For
the third statement, we compute

d

dt

∫ ∞

−∞
g(t, x) dx =

∫ ∞

−∞

∂

∂x

(
D
∂g

∂x
(t, x) + (W ∗ g(t, ·))(x)g(t, x)

)
dx = 0 ,

using the decay properties of g. For the last statement, we have
d

dt

∫ ∞

−∞
xg(t, x) dx =

∫ ∞

−∞
x
∂

∂x

(
D
∂g

∂x
(t, x) + (W ∗ g(t, ·))(x)g(t, x)

)
dx

= −
∫ ∞

−∞

(
D
∂g

∂x
(t, x) + (W ∗ g(t, ·))(x)g(t, x)

)
dx

= −
∫ ∞

−∞

∫ ∞

−∞
W (x− y)g(t, y)g(t, x) dy dx = 0 ,

since W is odd, compare Lemma 2.2. �

Later, we will consider the case without diffusion (so with D = 0) in particular.
In this situation, compact support is preserved, see Carrillo et al. [2] for the nonlocal
transport equation on Rn. We prove this result here for completeness and with a
different method.

Lemma 2.10. Assume that W is bounded and that D = 0 in (2.6). Let g ≥ 0
be a solution. If g(0, ·) has support contained in [a, b], then the support of g(t, ·) is
contained in [a− Ct, b+ Ct] for all t > 0, where C = ‖W‖∞‖g(0, ·)‖1.

Proof. Let g+(t, x) = g(t, x+ b+ Ct). We show that supp g+(t, ·) ⊂ (−∞, 0]. This
implies that supp g(t, ·) ⊂ (−∞, b + Ct]. The argument for the lower bound is
similar.

We have
∂g+
∂t

(t, x) = ∂tg(t, x+ b+ Ct) + C∂xg(t, x+ b+ Ct)

= ∂x
(
(W ∗ g(t, ·) + C) · g(t, ·)

)
(x+ b+ Ct)
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= ∂x
(
(W + ‖W‖∞) ∗ g(t, ·) · g(t, ·)

)
(x+ b+ Ct)

= ∂x
(
(W + ‖W‖∞) ∗ g+(t, ·) · g+(t, ·)

)
(x)

Now
d

dt

∫ ∞

0

g+(t, x) dx =
∫ ∞

0

∂x
(
(W + ‖W‖∞) ∗ g+(t, ·) · g+(t, ·)

)
(x) dx

= −
(
(W + ‖W‖∞) ∗ g+(t, ·) · g+(t, ·)

)
(0)

= −
∫ ∞

−∞
(W (−y) + ‖W‖∞)g+(t, y) dy · g+(t, 0) ≤ 0 ,

since g+ ≥ 0 and W + ‖W‖∞ ≥ 0. On the other hand,∫ ∞

0

g+(0, x) dx = 0 and
∫ ∞

0

g+(t, x) dx ≥ 0 ,

so we must have
∫∞
0
g+(t, x) dx = 0 for all t. �

If W (x) is positive for positive x, then the solution converges to a single delta-
peak. See also Fellner and Raoul [4, 5] and Raoul [17] for stationary solutions of
the nonlocal transport equation on Rn and for their stability (and references given
there). Fellner and Raoul transform the transport equation by considering the
pseudo-inverse of the solution (so their method is completely different from ours).

Proposition 2.11. Assume that W is continuously differentiable with W ′(0) > 0,
that W (x) > 0 for x > 0 and that D = 0 in (2.6). Let g ≥ 0 be a solution such that
supp g(0, ·) ⊂ [a, b]. Then g(t, ·) has support contained in [a, b] for all t > 0, and it
converges to a delta distribution mδc with m = ‖g(0, ·)‖1 and mc =

∫
xg(0, x) dx,

in the sense that

lim
t→∞

∫ ∞

−∞
h(x)g(t, x) dx = mh(c)

for all twice continuously differentiable functions h : R→ R.

Proof. Without loss of generality, m = 1 and c = 0 (since g may be scaled and
translated). We first prove the statement on the support of g(t, ·). In a similar way
as above in the proof of Lemma 2.10, we see that
d

dt

∫ ∞

b

g(t, x) dx =
∫ ∞

b

∂x
(
(W ∗ g(t, ·)) · g(t, ·)

)
(x) dx = −(W ∗ f(t, ·))(b)g(t, b).

So if g(t, x) > 0 for some t > 0 and x > b, we must have g(τ, b) > 0 and (W ∗
g(τ, ·))(b) < 0 for some 0 < τ < t. Let t0 be the infimum of τ > 0 such that
g(τ, b) > 0. Then g(t0, x) = 0 for x ≥ b, and it follows that (W ∗ g(t0, ·))(b) > 0.
By continuity, we will have (W ∗ g(τ, ·))(b) > 0 and g(τ, b) > 0 for all sufficiently
small τ > t0, so that the derivative above cannot be positive. So g(t, x) > 0 for
some t > 0 and x > b is not possible. This shows that supp g(t, ·) ⊂ (−∞, b] for all
t > 0. The argument for the lower bound is similar.

We now consider the second momentM(t) =
∫∞
−∞ x2g(t, x) dx w.r.t. the barycen-

ter c = 0. There is µ > 0 such that xW (x) ≥ µx2 for all |x| ≤ b− a. Then

d

dt
M(t) =

∫ ∞

−∞
x2∂x

(
(W ∗ g(t, ·)) · g(t, ·)

)
(x) dx

= −2
∫ ∞

−∞
x (W ∗ g(t, ·))(x)g(t, x) dx
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= −2
∫ ∞

−∞

∫ ∞

−∞
xW (x− y)g(t, y)g(t, x) dy dx

= −
∫ ∞

−∞

∫ ∞

−∞
(x− y)W (x− y)g(t, y)g(t, x) dy dx

≤ −µ
∫ b

a

∫ b

a

(x− y)2g(t, y)g(t, x) dy dx

= −2µ
∫ b

a

x2g(t, x) dx = −2µM(t) .

This implies that M(t) ≤ e−2µM(0); in particular, M(t)→ 0 as t→∞.
Now let h ∈ C2(R). We can write h(x) = h(0) + h′(0)x + h2(x) where h2(0) =

h′2(0) = 0. This implies that there is some C > 0 such that |h2(x)| ≤ Cx2 for
x ∈ [a, b]. We then have∣∣∣∫ ∞

−∞
h(x)g(t, x) dx− h(0)

∣∣∣ =
∣∣∣∫ ∞

−∞
(h(0) + h′(0)x+ h2(x))g(t, x) dx− h(0)

∣∣∣
=

∣∣∣∫ b

a

h2(x)g(t, x) dx
∣∣∣

≤
∫ b

a

|h2(x)|g(t, x) dx ≤ CM(t) ,

and this tends to zero as t→∞. �

2.5. Local masses and barycenters. For equation (2.1), the mass
∫
S1 f(t, θ) dθ

is still an invariant, but there is no reasonable definition of a ‘first moment’. (For
this, one would need a function F : S1 → R that satisfies F (θ + a) = F (θ) + a for
all θ ∈ S1 and a ∈ R. Such a function obviously does not exist.) However, we can
define a localized version of a first moment.

Definition 2.12. Let f : S1 → R be continuous and nonnegative, and let I ⊂ S1

be a closed interval. Let I ′ = [a, b] ⊂ R be an interval such that p(I ′) = I. We
define the local mass

m(I, f) =
∫
I

f(θ) dθ =
∫ b

a

p∗(f)(x) dx ∈ R

and, if m(I, f) > 0, the local barycenter

M(I, f) = p
( 1
m(I, f)

∫ b

a

xp∗(f)(x) dx
)
∈ I .

The local barycenter does not depend on the choice of I ′: Any other choice has
the form I ′ + k with k ∈ Z, and then we find that∫ b+k

a+k

xp∗(f)(x) dx =
∫ b

a

(x+ k)p∗(f)(x) dx =
∫ b

a

xp∗(f)(x) dx+ km(I, f) ,

so that the expression under p(·) changes by an integer, and the result is unchanged.

Lemma 2.13. Let f ≥ 0 be a solution of equation (2.1), and let I ⊂ S1 be a closed
interval. Then the local mass m(I, f(t, ·)) is time-invariant, provided there is no
flow across the boundary of I: if α, β ∈ S1 are the endpoints of I, then we require

(V ∗ f(t, ·))(α)f(t, α) = (V ∗ f(t, ·))(β)f(t, β) = 0



12 E. GEIGANT, M. STOLL EJDE-2012/157

for all t > 0.
If in addition, there is no interaction with parts of f outside of I, meaning that

V (θ − ψ)f(t, θ)f(t, ψ) = 0 if θ ∈ I and ψ /∈ I,
then the local barycenter M(I, f(t, ·)) is also time-invariant.

Proof. We have
d

dt
m(I, f(t, ·)) =

∫
I

∂θ
(
(V ∗ f(t, ·))f(t, ·)

)
(θ) dθ

= (V ∗ f(t, ·))(β)f(t, β)− (V ∗ f(t, ·))(α)f(t, α) = 0

and

m(I, f(t, ·)) d
dt
M(I, f(t, ·))

=
∫ b

a

x∂x
(
(V ∗ f(t, ·))f(t, ·)

)
(x) dx

= b(V ∗ f(t, ·))(b)f(t, b)− a(V ∗ f(t, ·))(a)f(t, a)−
∫ b

a

(V ∗ f(t, ·))(x)f(t, x) dx

= −
∫
I

∫
S1
V (θ − ψ)f(t, ψ)f(t, θ) dψ dθ

= −
∫
I

∫
I

V (θ − ψ)f(t, ψ)f(t, θ) dψ dθ

= 0 ,

because V is odd, compare Lemma 2.2. �

2.6. Invariance of support. We consider equation (2.1) without diffusion on the
circle (but what we say here is also valid for the equation on the real line).

Lemma 2.14. Let A = I1 ∪ . . . ∪ In ⊂ S1 be a disjoint union of closed intervals
in S1; write Ij = [αj , βj ]. Assume that for every continuous function h : S1 → R+,
we have the implication

h|A = 0 =⇒ (V ∗ h)(αj) > 0 and (V ∗ h)(βj) < 0 for all 1 ≤ j ≤ n.
Let f : [0,∞) × S1 → R+ be a solution of equation (2.1) with D = 0 such that
f(0, ·)|A = 0. Then f(t, ·)|A = 0 for all t ≥ 0.

Equivalently, if supp f(0, ·) ⊂ S1 \A, then supp f(t, ·) ⊂ S1 \A for all t ≥ 0.

Proof. For the given solution f , let Φ : [0,∞)× S1 → S1 be the flow associated to
−(V ∗ f),

Φ(0, θ) = θ and
∂Φ
∂t

(t, θ) = −(V ∗ f(t, ·))(Φ(t, θ)) .

Then it is readily checked that for all α, β ∈ S1, the integral

M(α, β) =
∫ Φ(t,β)

Φ(t,α)

f(t, θ) dθ

is independent of t. Write αj(t) = Φ(t, αj), βj(t) = Φ(t, βj) and

A(t) =
n⋃
j=1

[αj(t), βj(t)] ,
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then we have ∫
A(t)

f(t, θ) dθ = 0

for all t ≥ 0. Now assume that f(t, ·)|A is not identically zero for some t > 0.
Then we must have that A 6⊂ A(t). Let t0 be the infimum of all t > 0 such that
A 6⊂ A(t). Then for some 1 ≤ j ≤ n, we must have αj(t0) = αj and dαj

dt (t0) ≥ 0, or
βj(t0) = βj and dβj

dt (t0) ≤ 0. But in the first case

dαj
dt

(t0) =
∂Φ
∂t

(t0, αj) = −(V ∗ f(t0, ·))(Φ(t0, αj)) = −(V ∗ f(t0, ·))(αj) < 0 ,

since f(t0, ·)|A = 0, and similarly in the second case dβj

dt (t0) > 0, leading to a
contradiction. �

3. Stability of the constant solution

The constant function f(θ) = 1 is a stationary solution of equation (2.1). The
eigenvalues of the linearization around f are

ck = 4πk(−πDk + vk) for k ∈ Z,

where vk =
∫ 1/2

0
V (θ) sin(2πkθ) dθ (see (2.2) and (2.3)). Hence, the constant sta-

tionary solution is locally stable if ck < 0 for all k > 0.

Remark 3.1. (i) Instability of the first mode: If V is positive on (0, 1
2 ), i.e. all

filaments attract each other, then the first mode is unstable for sufficiently small
diffusion coefficient D: c1 > 0 for D � 1. (This statement follows from v1 > 0 and
c1 = 4π(v1 − πD).)

(ii) Instability of the second mode: Assume that there exists θ0 ∈ (0, 1
2 ) such

that V (θ) > 0 on (0, θ0), V (θ0) = 0 and V (θ) < 0 on (θ0, 1
2 ). Moreover let (*)

V (θ) ≥ V ( 1
2 − θ) for θ ∈ (min(θ0, 1

2 − θ0),
1
4 ). Then the second mode is unstable for

sufficiently small diffusion coefficient D, i.e. c2 > 0 for D � 1. (This follows from
Proposition 2.7 and (i) because Ṽ2 > 0 on (0, 1

2 ).)
Using exactly these assumptions on V , it has been shown by Primi et al. [16]

that equation (2.1) has a 1
2 -periodic stationary solution with two equally large and

very high maxima if the diffusion coefficient D is small enough. Statement (ii) can
be interpreted in the following way: If there are already two peaks forming then
attraction towards the nearer peak must be stronger than towards the second peak.

(iii) If V is sufficiently regular (e.g. twice differentiable), then k2vk is bounded
and ck will be negative for k � 0. Therefore, higher modes tend to be linearly
stable. Because periodicity is preserved and because there are no time-periodic
solutions or chaos (see Proposition 2.4), instability of the k-th mode, i.e., ck > 0,
implies that there exist non-constant 1

k -periodic stationary solutions.
(iv) Chayes and Panferov [3] proved (on tori) that under the regularity assump-

tion
∑
k |vk| < ∞ local linear stability implies that there is a non-trivial basin of

attraction for 1.

Moreover, Chayes and Panferov show that for small enough interaction (i.e. small
parameter in [3]) the constant is the only minimizer of the ‘free energy’ functional.
We prove now the dynamical fact that all solutions converge to the constant 1 if
the interaction V (represented by vk) is small compared to D.
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Theorem 3.2 (Global stability of the constant solution). Let D ≥ 0. Assume
that

ρ2 =
∑
k>0

k(k2 − 1)
6

v2
k <∞

(this is the case when V is twice continuously differentiable, for example). If

vk < πD k − ρ

k
for all k ≥ 1,

then every nonnegative initial function f(0, ·) ∈ C(S1) of mass 1 converges to the
constant function 1 — there is some c > 0 such that∥∥∂nθ (f(t, ·)− 1)

∥∥
∞ = On

(
e−ct

)
for all n ≥ 0.

Proof. Recall that we assume f0 = 1. We scale time by a factor 4π and set δ = πD
in the Fourier transformed system (2.2) to get

ḟk = k
(
(−δk + vk)fk +

∑
l∈Z\{0,k}

vlflfk−l

)
. (3.1)

Because f−k = f̄k (f is real) and v−k = −vk ∈ R, we see that

1
2
d

dt

∑
k≥1

1
k
|fk|2 =

∑
k≥1

1
k

Re(f̄kḟk)

=
∑
k≥1

(vk − kδ)|fk|2 + Re
(∑
k≥1

∑
l>k

vlflf̄kf̄l−k

)
+ Re

(∑
k≥1

∑
1≤l<k

vlflf̄kfk−l −
∑
k≥1

∑
l≥1

vlf̄lf̄kfk+l

)
=

∑
k≥1

(vk − kδ)|fk|2 + Re
( ∑
k,m≥1

vk+mfk+mf̄kf̄m

)
To justify the last equality, note that, setting k ← k + l, we have

Re
(∑
k≥1

∑
1≤l<k

vlflf̄kfk−l

)
= Re

( ∑
k,l≥1

vlflfkf̄k+l

)
= Re

( ∑
k,l≥1

vlf̄lf̄kfk+l

)
,

In the remaining sum, we have set l← k +m. We can estimate it as follows.∣∣∣Re
( ∑
k,m≥1

vk+mfk+mf̄kf̄m

)∣∣∣2
≤

∣∣∣ ∑
k,m≥1

vk+mfk+mf̄kf̄m

∣∣∣2
=

∣∣∣ ∑
k,m≥1

√
km(k +m)vk+m

fk+m√
k +m

f̄k√
k

f̄m√
m

∣∣∣2
≤

(∑
k≥1

1
k
|fk|2

)(∑
k≥1

∣∣∣∑
m≥1

√
km(k +m)vk+m

fk+m√
k +m

f̄m√
m

∣∣∣2)
≤

(∑
k≥1

1
k
|fk|2

)(∑
k≥1

(∑
m≥1

1
m
|fm|2

)(∑
m≥1

km(k +m)v2
k+m

1
k +m

|fk+m|2
))



EJDE-2012/157 STABILITY OF PEAK SOLUTIONS 15

=
(∑
k≥1

1
k
|fk|2

)2(∑
l≥1

( l∑
k=0

k(l − k)
)
lv2
l

1
l
|fl|2

)
≤

(∑
k≥1

1
k
|fk|2

)2(∑
l≥1

l2(l2 − 1)
6

v2
l

1
l
|fl|2

)
.

The above inequality implies

1
2
d

dt
‖f‖2 ≤

(( ∑
l≥1

l2(l2 − 1)
6

v2
l

1
l
|fl|2

)1/2

+ max
k≥1

k(vk − kδ)
)
‖f‖2

≤
(
ρ+ max

k≥1
k(vk − kδ)

)
‖f‖2.

(3.2)

(with ‖f‖2 =
∑
k≥1

1
k |fk|

2 as before and using |fl| ≤ 1).
Set

c = −
(
max
k≥1

k(vk − kδ) + ρ) > 0.

It follows that
‖f(t)‖2 ≤ ‖f(0, ·)‖2e−2ct

for t ≥ 0. Since 1
k |fk|

2 ≤ ‖f‖2, this implies that

|fk(t)| ≤
√
k‖f(0, ·)‖e−ct for k ≥ 1 and t ≥ 0.

We need a lemma.

Lemma 3.3. Assume that |fk(t)| ≤ Ckαe−ct for all k ≥ 1 and all t ≥ 0, where
C > 0 and α ≤ 1

2 are constants. Then for any t0 > 0, there is a constant C ′ > 0
(depending on t0) such that |fk(t)| ≤ C ′kα−2e−ct for all k ≥ 1 and all t ≥ t0.

Proof. The quadratic part of the right hand side of the differential equation (3.1)
for fk is

Rk =
∑

0<l<k

vlflfk−l +
∑
l>k

vlflf̄l−k −
∑
l>0

vlf̄lfk+l

We estimate Rk:

|Rk(t)| ≤ C2e−2ct
( ∑
l>0,l 6=k

|vl| lα |l − k|α +
∑
l>0

|vl| lα |l + k|α
)

≤ C2kαe−2ct
∑
l>0

C1l|vl| ≤ C2k
αe−2ct ≤ C2k

αe−ct.

Here we use that
∑
l>0 l|vl| <∞ and that lα|l± k|α ≤ C1k

αl for some constant C1

only depending on α. Write c′k = k(vk − kδ) = ck/(4π) < 0. Then we have

ḟk − c′kfk = Rk

and therefore

fk(t) = ec
′
ktfk(0) +

∫ t

0

ec
′
k(t−τ)Rk(τ) dτ.

The integral is bounded by

C2k
α
∣∣∣e−ct − ec′kt

c+ c′k

∣∣∣ ≤ C3k
α−2e−ct



16 E. GEIGANT, M. STOLL EJDE-2012/157

for some constant C3 (note that −c′k � k2 and that |c+c′k| = |c′k|−c > ρ‖f(0, ·)‖2 >
0). This gives

|fk(t)| ≤
(
k2−αe(c

′
k+c)t|fk(0)|+ C3

)
kα−2e−ct.

Since c′k + c ≤ − const. k2, the first summand in brackets is bounded uniformly
in k > 0 for t ≥ t0 > 0. This finishes the proof of the lemma. �

Repeated application of the lemma then shows that, given N > 0 and t0 > 0,
there is a constant CN > 0 such that

|fk(t)| ≤ CNk−Ne−ct for all k ≥ 1 and all t ≥ t0.

This implies
‖f(·, t)− 1‖∞ ≤ 2

∑
k≥1

|fk(t)| = O
(
e−ct

)
.

Similarly, for any n ≥ 1, we obtain

‖∂nθ f(·, t)‖∞ ≤ 2(2π)n
∑
k≥1

kn|fk(t)| = O
(
e−ct

)
. �

4. Convergence to peak solutions in case of small initial support
and no diffusion

In this section we assume that there is no random turning; i.e., D = 0 in (2.1).
Then sums of delta peaks can be stationary solutions. To make this precise, we
have to define the right hand side of equation (2.1) for suitable distributions on the
circle. Compare also Carrillo et al. [1] for definition and existence of weak solutions
on Rn.

The kind of distribution we are mostly interested in are (positive) measures, but
it turns out that it is advantageous to use differentiable measures instead. The
main reason for this is that the map S1 → D0(S1), ψ 7→ δψ, is continuous, but
not differentiable (since the derivative at zero would have to be −δ′0). As a map to
D1(S1), it becomes differentiable, though.

Let k ≥ 0. The space Dk(S1) is the dual space of the space Ck(S1) of k times
continuously differentiable functions on the circle S1. The elements of D0(S1)
are called measures, and the elements of D1(S1) are called differentiable measures
on S1. By standard theory (see for example [11]), Dk(S1) can be identified with
the subspace of D(S1) (which is the dual of C∞(S1)) consisting of distributions of
order ≤ k, i.e. f ∈ Dk(S1) if and only if

there is C > 0 such that
∣∣〈f, h〉∣∣ ≤ C k∑

j=0

‖h(j)‖∞ for all h ∈ C∞(S1).

In particular, we can consider D0(S1) as a subspace of D1(S1). D(S1) can be
identified with the space of 1-periodic distributions on R, compare [11].

A distribution f ∈ Dk(S1) is non-negative if 〈f, h〉 ≥ 0 for every non-negative
function h ∈ Ck(S1). We write Dk+(S1) for the set of non-negative distributions
in Dk(S1). Note that for f ∈ Dk+(S1) and test functions h1 ≤ h2 we have 〈f, h1〉 ≤
〈f, h2〉.

The support supp f of f ∈ Dk(S1) is the smallest closed subset of S1 outside of
which f = 0.
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Let ψ ∈ S1. The delta distribution δψ ∈ D0
+(S1) is defined by 〈δψ, h〉 = h(ψ)

where h is a test function.
The mass of a distribution f ∈ D(S1) is defined as

∫
S1 f(θ) dθ = 〈f, 1〉. We still

assume that the mass of solutions is 1 (sometimes we mention it again to clarify
statements).

The convolution of a distribution f ∈ Dk(S1) with a function V ∈ Cl(S1) with
l ≥ k is defined as

(V ∗ f)(θ) = 〈f, V (· − ψ)〉
for θ ∈ S1. It is known that V ∗f ∈ Cl−k(S1) (see [11]). For example, (V ∗δψ)(θ) =
V (θ − ψ) for θ, ψ ∈ S1.

Convergence fn
D→ f in Dk(S1) as n→∞ means that 〈fn, h〉 → 〈f, h〉 as n→∞

for all test functions h ∈ Ck(S1).
Now, based on these considerations we define the transport term of (2.1) as〈 ∂

∂θ
((V ∗ f) f) , h

〉
= −〈f, (V ∗ f)h′〉. (4.1)

Proposition 4.1. Let V ∈ C2(S1) be odd and consider equation (2.1) with D = 0.
(i) A single peak f = δψ ∈ D1

+(S1) with ψ ∈ S1 is a stationary solution of (2.1)
with mass 1.

(ii) Let V (θ0) = 0 for fixed 0 < θ0 ≤ 1
2 . Two peaks with arbitrary masses and

distance θ0 are a stationary solution, i.e. f = m1δψ + m2δψ+θ0 ∈ D1
+(S1) is a

stationary solution of (2.1) for any ψ ∈ S1 and m1,m2 > 0. If m1 +m2 = 1 then
f has mass 1.

(iii) n ≥ 3 peaks with equal masses and equal distances are a stationary solution:
For 1 ≤ j ≤ n let ψj ∈ S1 with ψj+1 − ψj = 1

n (where ψn+1 = ψ1). Then
f = 1

n

∑n
j=1 δψj ∈ D1

+(S1) is a stationary solution of (2.1) with mass 1.

Note that n ≥ 3 peaks with different masses are in general no stationary solution
contrary to the “degenerate” case n = 2 (where V ( 1

2 ) = 0 holds always). However,
the situation changes if V has suitably spaced zeros, e.g. if V ( 1

4 ) = 0. Then
stationary solutions consisting of four peaks with distance 1

4 and possibly different
masses occur.

Proof. Let h ∈ C1(S1) be a test function.
(i) Using (4.1) and V (0) = 0, we get 〈δψ, (V ∗ δψ)h′〉 = V (0)h′(ψ) = 0.
(ii) Let ψ2 = ψ + θ0. Using (4.1) and V (0) = V (θ0) = V (−θ0) = 0, we get

〈m1δψ +m2δψ2 , (V ∗ (m1δψ +m2δψ2))h
′〉

= m1〈δψ, (V ∗ (m1δψ +m2δψ2))h
′〉+m2〈δψ2 , (V ∗ (m1δψ +m2δψ2))h

′〉
= m1(m1V (0) +m2V (−θ0))h′(ψ) +m2(m1V (θ0) +m2V (0))h′(ψ2) = 0.

(iii) This follows immediately from statement (i) and Proposition 2.7. �

In the following theorems and corollaries we show that solutions converge to sums
of peaks if the support of the initial function is either sufficiently small (in the case of
a single peak) or such that particles in different intervals do not interact. Fellner and
Raoul [5] show similar results for the transport equation on R by linearization. Since
they transform the PDE to an integro-differential equation by using the ‘pseudo-
inverse’ of the solution we think that their methods do not apply to the equation
on S1.
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Theorem 4.2 (Small initial support and single peak). Let V ∈ C2(S1) be odd with
V ′(0) > 0 and V > 0 on (0, θv), where 0 < θv ≤ 1

2 . Assume that f ≥ 0 is a solution
of (2.1) with D = 0 such that supp f(0, ·) ⊂ I where I ⊂ S1 is a closed interval
with Vol(I) < θv and such that m(I, f(0, ·)) = 1.

Then supp f(t, ·) ⊂ I for all t ≥ 0, and f(t, ·) converges to the delta distribution
δM , where M = M(I, f(0, ·)) is the local barycenter of f(0, ·) on I.

Proof. We lift I to an interval I ′ = [a, b] ⊂ R and let ` = b − a < θv. Then
f(0, ·) = p∗(g0) for a function g0 : R→ R with supp g0 ⊂ I ′.

We consider equation (2.6), where we take W = p∗(V ) on [−`, `] and extend it
to all of R in such a way that it is odd and satisfies W (x) > 0 for x > 0 (which
is possible since p∗(V ) > 0 on (0, `]). Let g be the solution of equation (2.6) with
D = 0 such that g(0, ·) = g0. By Proposition 2.11, supp g(t, ·) ⊂ I ′ for all t ≥ 0. So
the function (W ∗ g(t, ·))g(t, ·) appearing on the right hand side of equation (2.6)
will always be equal to (p∗(V ) ∗ g(t, ·))g(t, ·) (since W (x− y) = p∗(V )(x− y) when
x, y ∈ I ′). This means that g will also be the solution of equation (2.6), if we use
p∗(V ) instead of W . By Proposition 2.8, we then have f(t, ·) = p∗(g(t, ·)) for all
t ≥ 0. In particular, supp f(t, ·) ⊂ p(supp g(t, ·)) ⊂ p(I ′) = I. By Proposition 2.11,
we also know that g(t, ·) converges to δM ′ , where M ′ =

∫
R xg(0, x) dx, so f(t, ·) =

p∗(g(t, ·)) will converge to δM , since M = p(M ′). �

Example 4.3. Initial growth of an already sharp peak may be also seen if 0 <
D � 1 even if no single peak solution is expected, see Figure 1. In Figure 1 the
interaction function is 1

2 -periodic, namely V (θ) = sin(4πθ). By Proposition 2.6
any stationary solution must be 1

2 -periodic (and such stationary solutions exist and
are expected to be stable). Therefore, with positive diffusion D > 0 a single peak
solution is not expected for (2.1), but as shown in the figure a sharp peak grows
initially. Indeed, we did not see the development of a second peak although we had
the program run up to times larger than 140.

Therefore, the behavior observed here must be an artifact of the numerics. We
think that the explanation is that the time scale for the transition from one peak
to two peaks should be roughly of the order of e1/D, so the rate of change would
be of order e−1/D, which is numerically zero if D is as small as in the example.

The next corollary follows directly from Theorem 4.2 and Proposition 2.7. The
assumptions on Vn imply also that the n-th eigenvalue is positive (Corollary 3.1).

Corollary 4.4. Let n ≥ 1, 0 < θv <
1
2n , and let V ∈ C2(S1) be odd and such that

V ′n(0) > 0 and Vn > 0 on (0, θv). Let f ≥ 0 be a solution of (2.1) with D = 0
such that f(0, ·) is 1

n -periodic, and assume that there exists an interval I ⊂ S1 with
Vol(I) < θv such that supp f(0, ·) ⊂

⋃n−1
j=0 (I + j

n ).
Then the solution f converges to n peaks of equal masses at equal distances:

f(t, ·) D→ 1
n

n−1∑
j=0

δ
M+

j
n

as t→∞, where M = M(I, f(0, ·)).

The following corollary states that several peaks at random distances may form
if V is zero in a neighborhood of 1

2 . There is, however, a minimal distance between
them. This result may be of interest in relation to results of Chayes and Panferov [3]
since these authors assume interaction potentials with non-trivial compact support.
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V=sin(4*pi*theta)
  D=0.005
  

t=0

t=25

Figure 1. V (θ) = sin(4πθ), D = 0.005, and f(0, ·) is the station-
ary solution of (2.1) for V (θ) = sin(2πθ), D = 0.005. The numeri-
cal algorithm is described in Section 6 (Fourier based method with
61 Fourier coefficients). (The horizontal lines are 0 and 1.)

Corollary 4.5. Let V ∈ C2(S1) be odd and 0 < θv <
1
2 such that V > 0 on (0, θv)

and V (θ) = 0 for θv ≤ |θ| ≤ 1
2 . Let n ≥ 1 and f(0, ·) ∈ C+(S1), supp f(0, ·) ⊂⋃n

j=1 Ij where Vol(Ij) < θv and dist(Ij , Ik) > θv for all 1 ≤ j 6= k ≤ n. Define
mj(t) = m(Ij , f(t, ·)) and Mj(t) = M(Ij , f(t, ·)). Then supp(f(t, ·)) ⊂

⋃
j Ij for

all t ≥ 0 and the masses mj as well as the barycenters Mj are constant in t. The
solution f converges to a sum of delta peaks:

f(t, ·) D→
n∑
j=1

mj δMj
as t→∞.

Proof. As long as the support of f(t, ·) stays contained in the union of the Ij , the
evolution of f on each of the Ij proceeds independently, since the part of f contained
in the other intervals does not contribute to the right hand side of equation (2.1).
But then Theorem 4.2 shows that the part that starts in Ij stays in Ij and converges
to a delta peak as stated. �

In the following theorem we are interested in convergence to two peaks, but
Proposition 2.7 cannot be used since f(0, ·) is not necessarily 1

2 -periodic. Neither
is V 1

2 -periodic in general.
We first prove a lemma that allows us to show convergence to the delta-distri-

bution if mass is constant and second moments converge to zero.

Lemma 4.6. Let I ⊂ S1 be a closed interval. Let fn ∈ D1
+(S1) with supp fn ⊂ I

and 〈fn, 1〉 = 1 for all n ≥ 1. Let M ∈ I, and let qM : S1 → R be a C∞ function
satisfying qM (θ) = (θ − M)2 for all θ ∈ I. If 〈fn, qM 〉 → 0 as n → ∞, then
fn

D→ δM as n→∞.

Note that the same conclusion is valid when we only assume that qM (θ) ≥
c(θ −M)2 for all θ ∈ I with some c > 0.

Proof. Let `M : S1 → R be a C∞ function such that `M (θ) = θ−M for θ ∈ I, and
define an = 〈fn, `M 〉 and bn = 〈fn, qM 〉 Then by the Cauchy-Schwarz inequality
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(applied to the inner product (g, h) 7→ 〈fn, gh〉 for functions g, h : I → R, concretely
with g = 1 and h = `M ) we have a2

n ≤ bn. Since bn → 0, we must have an → 0 as
well. Let h ∈ C1(S1) be a test function. We can write

h(θ) = h(M) + h′(M)`M (θ) + r(θ)qM (θ)

for θ ∈ I, with |r(θ)| ≤ C = 1
2 maxI |h′′|. We then have∣∣〈fn − δM , h〉∣∣ =
∣∣〈fn, h(M) + h′(M)`M + rqM 〉 − h(M)

∣∣
=

∣∣h′(M)〈fn(x), `M 〉+ 〈fn(x), rqM 〉
∣∣

≤ |h′(M)|an + Cbn → 0 as n→∞. �

The final positions M̄0 and M̄1 of the two peaks in the theorem below are ob-
tained from the special case when V (p(x)) = cx with c > 0 in an interval around
zero and V is 1

2 -periodic. In this case one gets equations dMj

dt (t) = −cMj(t) (with
Mj(t) defined as in the proof below), so that Mj(t)→ 0, justifying the choice of M̄j .

Theorem 4.7 (Small initial supports and two peaks). Let V ∈ C2(S1) be odd with
V ′(0) > 0 and V ′( 1

2 ) > 0, and assume that there exist 0 < θ1 ≤ θ2 <
1
2 such that

V > 0 on (0, θ1) and V < 0 on (θ2, 1
2 ).

Let f ≥ 0 be a solution of equation (2.1) with D = 0 such that f(0, ·) ∈ C+(S1)
with

∫
S1 f(0, θ) dθ = 1 and supp f(0, ·) ⊂ I0 ∪ I1 where I0 ⊂ S1 is a closed interval

such that Vol(I0) < min{θ1, 1
2 − θ2} and I1 = I0 + 1

2 . Then supp f(t, ·) ⊂ I0 ∪ I1
for all t ≥ 0.

Let I be a closed interval in S1 containing I0 ∪ I1. Define the local masses
mj(t) = m(Ij , f(t, ·)), and let M(t) = M(I, f(t, ·)) be the local barycenter on I.
Then m0(t), m1(t) and M(t) are constant in time; we write m0, m1 and M for
their values. Define

M̄0 = M + 1
2m1 and M̄1 = M − 1

2m0 = M̄0 − 1
2 .

Then f(t, ·) converges to a sum of two opposite peaks:

f(t, ·)→ m0δM̄0
+m1δM̄1

as t→∞.

Proof. We first show that supp f(t, ·) ⊂ I0 ∪ I1 for all t ≥ 0. Let I0 = [α, β], then
I1 = [α′, β′] = [α + 1

2 , β + 1
2 ]; let ε = Vol(I0) = β − α < min{θ1, 1

2 − θ2}. Let
h : S1 → R+ with supph ⊂ I0 ∪ I1. Because V > 0 on (0, θ1) ∪ ( 1

2 , 1− θ2), we see
that

(V ∗ h)(β) =
∫ β

α

V (β − ψ︸ ︷︷ ︸
0<•<θ1

)h(ψ) dψ +
∫ β′

α′
V ( β − ψ︸ ︷︷ ︸

1/2<•<1−θ2

)h(ψ) dψ > 0.

Similarly,

(V ∗ h)(α) =
∫ β

α

V ( α− ψ︸ ︷︷ ︸
−θ1<•<0

)h(ψ) dψ +
∫ β′

α′
V ( α− ψ︸ ︷︷ ︸

θ2<•< 1
2

)h(ψ) dψ < 0,

because V is negative on both intervals. In the same way, we get (V ∗ h)(α′) > 0
and (V ∗ h)(β′) < 0. By Lemma 2.14 it follows that supp f(t, ·) ⊂ I0 ∪ I1 for all
t ≥ 0.
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By Lemma 2.13, the local masses mj(t) are then constant, and the same is true
for M(t) (since f(t, ·) = 0 on S1 \ I for all t ≥ 0). We now define local first and
second moments by

Mj(t) =
∫
Ij

(θ − M̄j)f(t, θ) dθ, m2,j(t) =
∫
Ij

(θ − M̄j)2f(t, θ) dθ for j ∈ {0, 1}.

Note that the expression θ− M̄j makes sense on Ij (even on I: we lift to a suitable
interval in R and compute the difference there). The definitions imply that M0(t)+
M1(t) = M −m0M̄0 −m1M̄1 = 0 for all t ≥ 0. Let m2(t) = m2,0(t) +m2,1(t). We
will show that m2(t)→ 0 as t→∞. The time derivative of m2 is (after integration
by parts)

dm2

dt
(t) = −2

(∫
I0

∫
I0

+
∫
I0

∫
I1

)
V (θ − ψ)(θ − M̄0)f(t, ψ)f(t, θ) dψ dθ

− 2
(∫

I1

∫
I0

+
∫
I1

∫
I1

)
V (θ − ψ)(θ − M̄1)f(t, ψ)f(t, θ) dψ dθ.

To estimate this, we observe that there is b > 0 such that

V (φ)φ ≥ bφ2 and V (φ+ 1
2 )φ ≥ bφ2 for all φ ∈ [−ε, ε].

This is because V > 0 on (0, ε] and on ( 1
2 ,

1
2 + ε] and because V (0) = V ( 1

2 ) = 0,
V ′(0) > 0 and V ′( 1

2 ) > 0. We now bound the various integrals from below. For the
first, we find

2
∫
I0

∫
I0

V (θ − ψ)(θ − M̄0)f(t, ψ)f(t, θ) dψ dθ

=
∫
I0

∫
I0

V (θ − ψ)(θ − M̄0)f(t, ψ)f(t, θ) dψ dθ

+
∫
I0

∫
I0

V (ψ − θ)(ψ − M̄0)f(t, ψ)f(t, θ) dψ dθ

=
∫
I0

∫
I0

V (θ − ψ)(θ − ψ)f(t, ψ)f(t, θ) dψ dθ

≥ b
∫
I0

∫
I0

(θ − ψ)2f(t, ψ)f(t, θ) dψ dθ

= b

∫
I0

∫
I0

(
(θ − M̄0)− (ψ − M̄0)

)2
f(t, ψ)f(t, θ) dψ dθ

= 2b
(
m2,0(t)m0 −M0(t)2

)
.

In the same way, we find for the fourth integral that∫
I1

∫
I1

V (θ − ψ)(θ − M̄1)f(t, ψ)f(t, θ) dψ dθ ≥ b
(
m2,1(t)m1 −M1(t)2

)
.

The remaining two integrals are estimated together, as follows.∫
I0

∫
I1

V (θ − ψ)(θ − M̄0)f(t, ψ)f(t, θ) dψ dθ

+
∫
I1

∫
I0

V (θ − ψ)(θ − M̄1)f(t, ψ)f(t, θ) dψ dθ

=
∫
I0

∫
I1

V (θ − ψ)
(
(θ − M̄0)− (ψ − M̄1)

)
f(t, ψ)f(t, θ) dψ dθ
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≥ b
∫
I0

∫
I1

(
(θ − M̄0)− (ψ − M̄1)

)2
f(t, ψ)f(t, θ) dψ dθ

= b
(
m2,0(t)m1 − 2M0(t)M1(t) +m2,1(t)m0

)
.

Adding up, we find that (recalling that M0(t) +M1(t) = 0)

dm2

dt
(t) ≤ −2b

(
(m2,0(t) +m2,1(t))(m0 +m1)−M0(t)2 − 2M0(t)M1(t)−M1(t)2

)
= −2bm2(t).

This shows that m2(t) ≤ e−2btm2(0), and since m2(t) ≥ 0, this implies m2(t) → 0
as t → ∞. So the local second moments m2,0(t) and m2,1(t) tend to zero as well.
Using Lemma 4.6 on the intervals I0, I1 separately, it follows that for t → ∞ the
solution converges to two peaks,

f(t, ·) D→ m0δM̄0
+m1δM̄1

,

where the distance between the peaks is M̄0 − M̄1 = 1
2 . �

5. Linear stability of peaks

5.1. Instability conditions. We start this section by following the ‘peak ansatz’
of Mogilner et al. [15]. The initial distribution is a sum of n ≥ 2 peaks at positions
θj(0) ∈ S1 and with masses mj > 0 where

∑n
j=1mj = 1 (different masses are a

generalization of [15]). The solution keeps this form, f(t, θ) =
∑n
j=1mjδθj(t)(θ),

and the positions θj(t) satisfy the following system of ordinary differential equations.

dθj
dt

(t) = −
n−1∑
k=0

mkV
(
θj(t)− θk(t)

)
for j = 0, . . . , n− 1. (5.1)

To see this, we write δθj
= δ0(.−θj) = δ(.−θj) and plug f(t, ·) =

∑
jmjδ(.−θj(t))

into the transport equation ∂tf = ∂θ((V ∗ f)f). For the left hand side we get

∂f

∂t
(t, ·) =

n−1∑
j=0

mj

(
− dθj

dt
(t)

)
δ′(.− θj(t)) , (5.2)

and for the right hand side

∂θ

(
(V ∗ f(t, ·))f(t, ·)

)
= ∂θ

( n−1∑
j=0

n−1∑
k=0

mjmkV
(
θj(t)− θk(t)

)
δ(.− θj(t))

)

=
n−1∑
j=0

n−1∑
k=0

mjmkV
(
θj(t)− θk(t)

)
δ′(.− θj(t)).

(5.3)

Comparing (5.2) and (5.3) we deduce (5.1).
The case n = 2 is interesting. Since V (0) = 0 and V is odd, the system is

θ̇0 = −m0V (θ0 − θ1)

θ̇1 = −m1V (θ1 − θ0) = m1V (θ0 − θ1)

hence (recall that m0 +m1 = 1)

d

dt
(θ0 − θ1) = −V (θ0 − θ1). (5.4)
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Because θj(t)→ θ̄j implies δθj(t)
D→ δθ̄j

, we may conclude the following.

Example 5.1. Let 0 ≤ θv ≤ 1
2 and V ∈ C1(S1) odd with V > 0 on (0, θv) and

V < 0 on (θv, 1
2 ). If dist(θ0(0), θ1(0)) < θv, then θ0(t) − θ1(t) → 0 for t → ∞,

i.e., the solution of (5.1) converges to a single peak; if dist(θ0(0), θ1(0)) > θv, then
dist(θ0(t), θ1(t))→ 1

2 , hence the solution of (5.1) converges to two opposite peaks.
dist(θ0, θ1) = θv is an unstable stationary solution.

We are now in a good position to show that one gets into trouble when defining
a ‘first moment’ in the ‘obvious’ naive way by

∫ 1/2

−1/2
p∗(f)(t, x)x dx. The point is

that this is (in general) not time-invariant.

Example 5.2. Let 0 < ε < 1
8 , V odd with V (θ) = θ on [0, 4ε] and

f(0, ·) = 1
2δθ0(0) + 1

2δθ1(0) where θ0(0) = p(− 1
2 + ε) and θ1(0) = p( 1

2 − 3ε).

Then

f(t, ·)→ 1
2

(
δ(.− (− 1

2 − ε)) + δ(.− ( 1
2 − ε))

) S1

= δ(.− ( 1
2 − ε)) as t→∞.

To see this, note that
(i) dθ0

dt (0) = − 1
2V (θ0(0) − θ1(0)) = − 1

2V (4ε) < 0 and dθ1
dt (0) > 0; hence,

dist(θ0(t), θ1(t)) is decreasing in t = 0;

(ii) d
dt (1 + θ0(t) − θ1(t))

(5.4)
= −V (1 + θ0(t) − θ1(t)) = −(1 + θ0(t) − θ1(t)) as

long as dist(θ0(t), θ1(t)) ≤ 4ε. Since dist(θ0(0), θ1(0)) = 4ε, (i) and (ii) imply that
dist(θ0(t), θ1(t)) = 1 + θ0(t)− θ1(t)→ 0 as t→∞;

(iii) d
dt (θ0(t) + θ1(t))

(5.1)
= 0, therefore, θ0(t) + θ1(t) = −2ε (mod 1) for all t ≥ 0.

These facts imply that θ0(t)→ − 1
2 − ε and θ1(t)→ 1

2 − ε.
The ‘first moment’ of the initial distribution is

∫ 1/2

−1/2
p∗(f)(0, x)x dx = −ε. The

‘first moment’ of the limit is
∫ 1/2

−1/2
δ(x− ( 1

2 − ε))x dx = 1
2 − ε. Therefore, this ‘first

moment’ is not invariant. (In fact, it jumps by 1
2 when one of the two peaks moves

through the point p( 1
2 ) ∈ S1.)

We will now analyze the linear stability w.r.t. the peak ansatz of two selected
stationary solutions, namely peaks in one place, i.e., θj = θ0 for all 0 ≤ j < n, and
peaks with equal masses at equal distances, i.e., mj = 1

n and θ0 ∈ S1, θj = θj−1 + 1
n

for 1 ≤ j < n. Obviously, both are stationary solutions of equation (5.1). The
matrix of the linearization is

A =

0BBBBBBBBBBB@

−
n−1P

k=0,k 6=0
mkV

′(θ0 − θk) m1V
′(θ0 − θ1) . . . mnV

′(θ0 − θn−1)

m0V
′(θ1 − θ0) −

n−1P
k=0,k 6=1

mkV
′(θ1 − θk) . . . mn−1V

′(θ1 − θn−1)

.

.

.
. . .

m0V
′(θn−1 − θ0) m1V

′(θn−1 − θ1) . . . −
n−1P

k=0,k 6=n−1
mkV

′(θn−1 − θk)

1CCCCCCCCCCCA
.

(5.5)

In both cases A has a clear structure such that the eigenvalues can be calculated
explicitly (remember

∑
mk = 1 for the first case; if θj − θj+1 = 1

n and mj = 1
n ,
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then A is a symmetric and cyclic matrix, because V ′ is even). The eigenvalues are

λj =



0 if j = 0
−V ′(0) if 1 ≤ j < n, assuming that

θk = θ0 for all k
1
n

∑n−1
k=1 V

′( kn )(−1 + cos(2π jkn )) if 1 ≤ j < n, assuming that
θk = θ0 + k

n for all k

(5.6)

One eigenvalue is zero, because of the translational invariance of the system. Note
that λj = λn−j .

Obviously, if for all 1 ≤ j ≤ n− 1 the eigenvalues λj are negative, then a single
peak is, resp. n peaks with equal masses and distances are stable w.r.t. the peak
ansatz. For a single peak a necessary and sufficient condition for this stability is
V ′(0) > 0. However, it is also clear that V ′(0) > 0 alone is not sufficient for a single
peak to be stable e.g. with respect to continuous perturbations (recall the example
V = sin(4πθ) and propositon 2.6). Therefore, the following instability conditions
are perhaps more interesting than the stability conditions. We tackle the question
of stability with respect to non-peak like perturbations in the next section.

Theorem 5.3 (Instability conditions). (i) A single peak is unstable if V ′(0) is
negative.

(ii) Let n ≥ 2; n peaks with equal masses and distances are unstable if there
exists 1 ≤ j ≤ n− 1 such that

∑n−1
k=1 V

′( kn )(−1 + cos(2π jkn )) > 0 (∗).
For n ∈ {2, 3, 4} a sufficient condition for (∗) to hold is V ′( 1

n ) < 0 and for
n = 2, 3 this is also necessary.

Proof. If V ′(0) < 0 or (∗) holds for some j, respectively, then at least one eigen-
value is positive; this implies instability with respect to the peak ansatz. However,
for stability in any reasonable sense stability with respect to the peak ansatz is
necessary.

If n = 2, then λ1 = 1
2V

′( 1
2 )(−1 + cos(π)) = −V ′( 1

2 ).
If n = 3, then λ2 = λ1 = 1

3 (V ′( 1
3 )(−1 + cos( 2π

3 )) + V ′( 2
3 )(−1 + cos( 4π

3 )) =
2
3V

′( 1
3 )(−1 + cos( 2π

3 )).
Similarly, for n = 4 we have λ2 = −4V ′( 1

4 ). Thus, for n ∈ {2, 3, 4} there exists
λj > 0 if V ′( 1

n ) < 0 and for n = 2, 3 this condition is also necessary. �

Example 5.4. Primi et al. [16] consider examples with V (θ) = sign(α) sin(2πθ +
α sin(2πθ)) and find that four-peak like solutions are not stable if α = ±1.2. For
D = 0 this is explained by Theorem 5.3, because for all 0 < |α| < π

V ′( 1
4 ) = sign(α) cos(2π 1

4 + α sin(2π 1
4 ))(2π + α2π cos(2π 1

4 ))

= −2π sign(α) sin(α) < 0.

5.2. Stability in the space of differentiable measures. We consider the linear
stability of the stationary solution f(t, ·) = δ in the space of differentiable measures
on S1, D1(S1). Recall that this is the dual space of C1(S1) and can be identified
with the subspace of distributions in D(S1) of order at most 1. Note that δθ is
close to δ in D1(S1) when θ is small (since 〈δθ − δ, h〉 = θh′(θ̃) for some θ̃ between
0 and θ, so that ‖δθ − δ‖D1 ≤ |θ|).

We formulate a lemma that we will need later.
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Lemma 5.5. Let L be a (time-independent) differential operator on S1, and let L̂
be another differential operator on S1 such that

〈Lf, h〉 = 〈f, L̂h〉

for f ∈ D(S1) and h ∈ C∞(S1). Let f(t, ·) ∈ D(S1) be a solution of the PDE
∂tf = Lf . Let H(t, ·) ∈ C∞(S1) be the solution of the PDE ∂tH = L̂H such that
H(0, ·) = h. Then 〈f(t, ·),H(−t, ·)〉 is constant. In particular,

〈f(t, ·), h〉 = 〈f(0, ·),H(t, ·)〉.

Proof. We have

d

dt
〈f(t, ·),H(−t, ·)〉 = 〈∂tf(t, ·),H(−t, ·)〉+ 〈f(t, ·),−(∂tH)(−t, ·)〉

= 〈Lf(t, ·),H(−t, ·)〉+ 〈f(t, ·),−L̂H(−t, ·)〉

= 〈f(t, ·), L̂H(−t, ·)− L̂H(−t, ·)〉 = 0.

Applying this with h̃ = H(t, ·) instead of h to obtain H̃, we have H̃(−t, ·) = h and

〈f(t, ·), h〉 = 〈f(t, ·), H̃(−t, ·)〉 = 〈f(0, ·), H̃(0, ·)〉 = 〈f(0, ·),H(t, ·)〉. �

Since the solution space of our equation is invariant with respect to translations,
no stationary solution can be absolutely linearly stable. In order to deal with this
technical problem, we will consider perturbations that do not change the barycenter.

If we set f(t, ·) = δ+ f̃(t, ·) and linearize in equation (2.1) with D = 0, we obtain
the linear PDE

∂f̃

∂t
(t, θ) =

∂

∂θ

(
V f̃(t, ·) + (V ∗ f̃(t, ·))δ

)
(θ) . (5.7)

A similar linearized equation has been used by Fellner and Raoul for the transport
equation on R. However, the proof of Theorem 5.6 below is completely different
from the proof of their Theorem 3.1, since they work on disjoint intervals, which
reduces the PDE to a finite-dimensional problem.

Theorem 5.6 (Linear stability of a single peak w.r.t. differentiable measures).
Let V ∈ C2(S1) be odd and such that V > 0 on (0, 1

2 ) and V ′(0) > 0. Assume that
f̃(t, ·) ∈ D1(S1) is a solution of equation (5.7) such that supp f̃(0, ·) ⊂ I with a
closed interval 0 ∈ I ⊂ S1 with p( 1

2 ) /∈ I. We can lift I uniquely to an interval
I ′ ⊂ R with 0 ∈ I ′ and p(I ′) = I. We assume that 〈f̃(0, ·), 1〉 = 〈f̃(0, ·), `〉 = 0
where ` is a function on S1 that satisfies `(p(x)) = x for x ∈ I ′. Then f̃(t, ·)
converges to zero as t→∞ in D1(S1).

It is perhaps interesting to compare Theorem 4.2 with Theorem 5.6. The former
shows that an initial distribution that is contained in an interval covering less than
half of the circle will converge to a delta peak under equation (2.1) without diffusion.
The latter shows that this peak is stable with respect to small perturbations that
avoid an arbitrarily small neighborhood of the point opposite to the location of the
peak.

Proof. Let h ∈ C1(S1). We have to show that 〈f̃(t, ·), h〉 → 0 as t→∞. We have

d

dt
〈f̃(t, ·), h〉 =

〈∂f̃
∂t

(t, ·), h
〉
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=
〈 ∂

∂θ

(
V f̃(t, ·) + (V ∗ f̃(t, ·))δ

)
, h

〉
= 〈V f̃(t, ·) + (V ∗ f̃(t, ·))δ,−h′〉

= −〈f̃(t, ·), V h′〉 − (V ∗ f̃(t, ·))(0)h′(0)

= 〈f̃(t, ·),−V (h′ − h′(0))〉 .

(The last equality uses that V is odd.) We note that if h is constant, then 〈f̃(t, ·), h〉
is constant in time and that if h = c` on I, then the same is true. Since 〈f̃(0, ·), 1〉 =
〈f̃(0, ·), `〉 = 0, 〈f̃(t, ·), h〉 = 0 for such h. We can therefore restrict to functions h
satisfying h(0) = h′(0) = 0. Let H(t, ·) denote the (unique) solution of the initial
value problem

∂H

∂t
= −V ∂H

∂θ
, H(0, ·) = h .

Then we see by Lemma 5.5 that 〈f̃(t, ·), h〉 = 〈f̃(0, ·),H(t, ·)〉. (In particular, this
shows that equation (5.7) has a unique solution in D1(S1) under the given assump-
tions.) Let Φ : R× S1 → S1 denote the flow associated to V , i.e.,

∂Φ
∂t

(t, θ) = V
(
Φ(t, θ)

)
, Φ(0, θ) = θ .

Then H(t,Φ(t, θ)) = h(θ), as can be readily checked. Equivalently, H(t, θ) =
h(Φ(−t, θ)). Now we claim that H(t, ·)|I converges to zero in C1(I). For this,
note first that for θ ∈ I, we have Φ(−t, θ) → 0 as t → ∞ uniformly in θ (this is
because p( 1

2 ) is the unique attracting and p(0) the unique repelling fixed point of
the flow Φ). So ‖H(t, ·)|I‖∞ → |h(0)| = 0. Next, we observe that
∂

∂t

∂

∂θ
Φ(−t, θ) = − ∂

∂θ

∂Φ
∂t

(−t, θ) = − ∂

∂θ
V

(
Φ(−t, θ)

)
= −V ′

(
Φ(−t, θ)

) ∂
∂θ

Φ(−t, θ) .

For large t, Φ(−t, θ) will be uniformly close to zero, so −V ′
(
Φ(−t, θ)

)
will be

uniformly negative (recall that V ′(0) > 0). This shows that ∂
∂θΦ(−t, θ) tends to

zero as t→∞, uniformly for θ ∈ I. This in turn implies that∣∣∣∂H
∂θ

(t, θ)
∣∣∣ =

∣∣∣h′(Φ(−t, θ)
) ∂
∂θ

Φ(−t, θ)
∣∣∣

also tends to zero uniformly on I as t→∞. So

〈f̃(t, ·), h〉 = 〈f̃(0, ·),H(t, ·)〉 → 0 as t→∞,

and this means that f̃(t, ·)→ 0 in D1(S1). More precisely, supp f̃(t, ·) ⊂ Φ(−t, I),
so that the support is contracted to {0}, whereas mass and first moment are always
zero. �

It is certainly natural to consider perturbations that do not change the total
mass (thinking of redistributing the mass on the circle). What about perturbations
that do not preserve the barycenter? Consider a small perturbation g in D1(S1)
with mass zero and 〈g, `〉 = M with |M | � 1. Then δ+ g = δM +(δ− δM + g), and
δ−δM+g is still a small perturbation, but now of δM . Assuming that p( 1

2 ) /∈ I−M ,
the theorem above then predicts convergence to the shifted peak δM .

In a way, we can see this from the proof. If we do not assume that M =
〈f̃(0, ·), `〉 = 0, then (using test functions h with h(0) = 0, but not assuming
h′(0) = 0) we find that

f̃(t, ·) D→ −Mδ′.
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This is in accordance with δM − δ ≈ −Mδ′.
Proposition 2.7 yields the following generalization for n equally distanced peaks

with equal masses.

Corollary 5.7 (Stability of n peaks with respect to 1
n -periodic perturbations).

Let n ≥ 1, let V ∈ C2(S1) be odd and such that Vn > 0 on (0, 1
2n ) and V ′n(0) > 0.

Assume that f̃(t, ·) ∈ D1(S1) is an 1
n -periodic solution of equation (5.7) such that

supp f̃(0, ·) ⊂
⋃n−1
j=0 (I + j

n ) with a closed interval 0 ∈ I ⊂ S1 with p(± 1
2n ) /∈ I. We

can lift I uniquely to an interval I ′ ⊂ R with 0 ∈ I ′ and p(I ′) = I. We assume that
〈f̃(0, ·), 1〉 = 〈f̃(0, ·), `〉 = 0 where ` is a function on S1 that satisfies `(p(x)) = x

for x ∈ I ′ and `(θ) = 0 for θ ∈
⋃n−1
j=1 (I + j

n ). Then f̃(t, ·) converges to zero as
t→∞ in D1(S1).

We now want to derive a result similar to Theorem 5.6, but for two opposite
peaks of not necessarily equal mass. We take this stationary solution to be f0 =
m−δ−1/4 +m+δ1/4. If we set f = f0 + f̃ in equation (2.1) with D = 0 and linearize,
we obtain

∂f̃

∂t
(t, θ) =

∂

∂θ

(
(m−V (θ + 1

4 ) +m+V (θ − 1
4 ))f̃(t, θ)

+m−(V ∗ f̃(t, ·))(− 1
4 )δ−1/4(θ) +m+(V ∗ f̃(t, ·))( 1

4 )δ1/4(θ)
)
.

(5.8)

We will define
Ṽ (θ) = m−V (θ + 1

4 ) +m+V (θ − 1
4 ).

Theorem 5.8 (Linear stability of two peaks w.r.t. differentiable measures).
Let V ∈ C2(S1) be odd and such that V ′(0) > 0 and V ′( 1

2 ) > 0. With the notations
m−, m+ and Ṽ from above, suppose that Ṽ has exactly four zeros on S1, namely
− 1

4 , θ0, 1
4 and θ1 (in counter-clockwise order). Assume that f̃(t, ·) ∈ D1(S1) is

a solution of equation (5.8) such that supp f̃(0, ·) ⊂ I− ∪ I+ with closed intervals
± 1

4 ∈ I± ⊂ S1 such that I− ⊂ p ((θ1 − 1, θ0)) and I+ ⊂ p ((θ0, θ1)). Let ` ∈
C∞(S1) be such that `(θ) = θ − (± 1

4 ) for θ ∈ I±. We assume that m(I+, f̃(0, ·)) =
m(I−, f̃(0, ·)) = 〈f̃(0, ·), `〉 = 0. Then f̃(t, ·) converges to zero as t→∞ in D1(S1).

Note that Ṽ has to have at least four zeros, since Ṽ ′ is positive at the two zeros
at ± 1

4 .
Note also that because of the translational invariance, any two peaks with dis-

tance 1
2 are stable under the assumptions of Theorem 5.8.

Proof. We proceed in a similar way as in the proof of Theorem 5.6. We find that
∂

∂t
〈f̃(t, ·), h〉 = −

〈
f̃(t, ·),m−V (·+ 1

4 )(h′ − h′(− 1
4 )) +m+V (· − 1

4 )(h′ − h′( 1
4 ))

〉
.

So we let H(t, θ) be the solution of
∂H

∂t
(t, θ)

= −m−V (θ + 1
4 )

(∂H
∂θ

(t, θ)− ∂H

∂θ
(t,− 1

4 )
)
−m+V (θ − 1

4 )
(∂H
∂θ

(t, θ)− ∂H

∂θ
(t, 1

4 )
)

with H(0, ·) = h; then 〈f̃(t, ·), h〉 = 〈f̃(0, ·),H(t, ·)〉 by Lemma 5.5, and we have to
figure out the long-term behavior of H. We see that a function h that is constant
separately on I− and on I+ is a stationary solution on I−∪ I+ and that the same is
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true when h is a multiple of `. So we can assume that h( 1
4 ) = h(− 1

4 ) = m+h
′( 1

4 ) +
m−h

′(− 1
4 ) = 0. We write H ′ for ∂H

∂θ . Then we have that

d

dt
H ′(t, 1

4 ) = −m−V
′( 1

2 )
(
H ′(t, 1

4 )−H ′(t,− 1
4 )

)
,

d

dt
H ′(t,− 1

4 ) = −m+V
′( 1

2 )
(
H ′(t,− 1

4 )−H ′(t, 1
4 )

)
.

This shows that m+H
′(t, 1

4 ) + m−H
′(t,− 1

4 ) = 0 for all t and that H ′(t, 1
4 ) −

H ′(t,− 1
4 )→ 0 as t→∞ (recall that V ′( 1

2 ) > 0). So H ′(t, 1
4 )→ 0 and H ′(t,− 1

4 )→
0. By arguments similar to those in the proof of Theorem 5.6 (note that in the
present situation, the flow associated to Ṽ moves the values of h away from 1

4

and − 1
4 and toward θ0 and θ1), we then see that H(t, ·) → 0 in C1(I− ∪ I+) and

therefore 〈f̃(t, ·), h〉 → 0 as t→∞. For a general test function h, we then find that

H(t, ·)→ h( 1
4 )χ+ + h(− 1

4 )χ− + (m+h
′( 1

4 ) +m−h
′(− 1

4 ))` on I− ∪ I+,

where χ± is a function in C∞(S1) that takes the value 1 on I± and the value 0
on I∓. This translates into

f̃(t, ·) D→ m(I+, f̃(0, ·))δ1/4 +m(I−, f̃(0, ·))δ−1/4 − 〈f̃(0, ·), `〉(m+δ
′
1/4 +m−δ

′
−1/4)

= 0. �

The need for the three assumptionsm(I+, f̃(0, ·)) = m(I−, f̃(0, ·)) = 〈f̃(0, ·), `〉 =
0 arises because two opposite peaks of arbitrary masses and arbitrary orientation
form a stationary solution. If we have a perturbation that violates these assump-
tions (but does not change the total mass), say

m(I+, f̃(0, ·)) = µ, m(I−, f̃(0, ·)) = −µ and 〈f̃(0, ·), `〉 = M,

then we can proceed as in the one-peak case. We adjust masses and orientation to
obtain

(m+ + µ)δ1/4+M + (m− − µ)δ−1/4+M

as a stationary solution such that the resulting perturbation of this solution satisfies
the assumptions.

If there is some 0 < θv <
1
2 such that V (θv) = 0 and V ′(θv) > 0 (and V ′(0) > 0,

of course), then we expect two peaks at a distance of θv also to be a stable stationary
solution, up to a redistribution of mass between the two peaks and reorientation
that preserves the distance. This is indeed the case.

Corollary 5.9. Let V ∈ C2(S1) be odd and such that V ′(0) > 0, and assume that
there is 0 < θv < 1

2 such that V (θv) = 0 and V ′(θv) > 0. Let m± > 0 with
m+ + m− = 1, and consider the stationary solution f0 = m+δθv/2 + m−δ−θv/2

of equation (2.1) with D = 0. Let Ṽ (θ) = m−V (θ + θv

2 ) + m+V (θ − θv

2 ) and
suppose that Ṽ has exactly four zeros on S1, namely − θv

2 , θ0, θv

2 and θ1 (in counter-
clockwise order). Then f0 is linearly stable with respect to perturbations satisfying
the conditions in Theorem 5.8 (with ± 1

4 replaced by ± θv

2 ).

Proof. The proof is virtually identical to the proof of Theorem 5.8, after replacing
± 1

4 by ± θv

2 . �
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We saw that single peaks are stable up to reorientation if V ′(0) > 0. Two
opposite peaks are stable up to redistribution of mass and reorientation preserving
the distance under the assumptions of Theorem 5.8, which include V ′(0) > 0 and
V ′( 1

2 ) > 0. Now we prove that n ≥ 3 equal peaks at equal distances are stable if
V ′( jn ) > 0 for 0 ≤ j ≤ n− 1, up to ? — we shall see.

Theorem 5.10. Let n ≥ 3. Let V ∈ C2(S1) be odd and such that V ′( jn ) > 0 for
all 0 ≤ j < n and Vn > 0 on (0, 1

2n ). Let, for 0 ≤ j < n, Ij be a closed interval
in S1 contained in ( jn −

1
2n ,

j
n + 1

2n ), and let ` ∈ C∞(S1) be such that `(θ) = θ − j
n

for θ ∈ Ij, for all j. Then

the stationary solution f0 =
1
n

n−1∑
j=0

δj/n of equation (2.1) with D = 0

is linearly stable with respect to perturbations f̃ ∈ D1(S1) such that

supp f̃ ⊂
n−1⋃
j=0

Ij , m(Ij , f̃) = 0 for all 0 ≤ j < n, and 〈f̃ , `〉 = 0.

Proof. The proof proceeds in a way analogous to the proofs of Theorems 5.6 and 5.8.
The equation governing the development of H(t, ·) is (writing again H ′ for ∂H

∂θ )

∂H

∂t
(t, θ) = − 1

n

n−1∑
j=0

V (θ − j
n )

(
H ′(t, θ)−H ′(t, jn )

)
. (5.9)

The flow associated to Vn =
∑
j V (·− j

n ) moves away from the points j
n toward the

points j
n ±

1
2n . So for any test function h satisfying h( jn ) = h′( jn ) = 0 for all j, we

find that 〈f̃(t, ·), h〉 → 0 as t → ∞ in the same way as before. For the derivatives
H ′(t, jn ) we obtain the equation (using Vn( jn ) = 0)

d

dt
H ′

(
t,
j

n

)
= − 1

n

n−1∑
k=0

V ′
(j − k

n

)(
H ′

(
t,
j

n

)
−H ′

(
t,
k

n

))
.

This leads to

d

dt

n−1∑
j=0

H ′
(
t,
j

n

)2

= − 1
2n

n−1∑
j,k=0

V ′
(j − k

n

)(
H ′

(
t,
j

n

)
−H ′

(
t,
k

n

))2

≤ 0,

with equality only if all H ′(t, jn ) are equal. On the other hand, one sees easily that∑
j H

′(t, jn ) is constant. Together, this implies that all H ′(t, jn ) converge to the
same value as t → ∞. Since functions that are constant on each Ij and also ` are
stationary under equation (5.9), we get that

H(t, ·)→
n−1∑
j=0

h
( j
n

)
χj +

1
n

n−1∑
j=0

h′
( j
n

)
` on

n−1⋃
j=0

Ij ,

where χj ∈ C∞(S1) is a function that takes the value 1 on Ij and the value 0 on
all Ik with k 6= j. In terms of f̃ , this reads

f̃(t, ·) D→
n−1∑
j=0

m(Ij , f̃(0, ·))δj/n − 〈f̃(0, ·), `〉 1
n

n−1∑
j=0

δ′j/n = 0. �
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As before, if M = 〈f̃ , `〉 6= 0, then we expect a reorientation by M in the
positive direction. It is less clear what happens when mass is redistributed between
the domains of attraction of the various peaks. The proof above would suggest
that we simply end up with equidistant peaks of different masses, but this will in
general no longer be a stationary solution. If we consider the system of ODEs (5.1)
for moving peaks, then we see by the theorem on implicit functions that there is
a unique stationary solution up to translation near f0 with peaks of prescribed
slightly different masses if the matrix in (5.5) with θj = j

n and mj = 1
n only has

one vanishing eigenvalue — it is the matrix obtained as the Jacobian with respect
to the θj of the map

(m0, . . . ,mn−1; θ0, . . . , θn−1) 7−→
(
−
n−1∑
k=0

mkV (θj − θk)
)

0≤j<n
,

and the zero eigenvalue corresponds to an overall translation. This condition will
be satisfied when the positions of n equidistant peaks of the same mass are stable
up to translation, since then all the relevant eigenvalues are negative. Note that
the condition on V in Theorem 5.10 is sufficient to ensure this is the case, compare
the eigenvalues in equation (5.6) before Theorem 5.3.

In the special case that we have V ( jn ) = 0 for all 0 ≤ j < n the stationary
solution of the system (5.1) will consist of equidistant peaks even when the masses
are not equal. In this case, one can formulate a variant of Theorem 5.10 in analogy
to Theorem 5.8 that shows that n equidistant peaks with different masses are
linearly stable with respect to perturbations respecting the mass distribution and
the overall orientation.

6. Numerical algorithms and simulations

6.1. Solving the transport-diffusion equation via the Fourier transformed
system. In Section 6.3 we will calculate numerically solutions of the transport-
diffusion equation (2.1) for randomly chosen as well as pre-structured initial distri-
butions.

By using the Fourier transform we convert the partial differential equation into an
infinite (but discrete) system of ordinary differential equations; since large Fourier
coefficients of a smooth function are small, we can then restrict to a finite system,
which can be solved very efficiently.

In Section 2.1 we found that the Fourier transform of the transport-diffusion
equation (2.1) is given by (compare (2.2))

ḟk = −(2π)2k2Dfk + 2πik
∑
l∈Z

Vlflfk−l

= ckfk + 4πk
∑

l∈Z,l 6=0,k

vlflfk−l for k ∈ Z>0,
(6.1)

where the eigenvalues ck of the system (see (2.3)) and vk ∈ R are

ck = −(2π)2k2D + 4πkvk and vk =
∫ 1/2

0

V (θ) sin(2πkθ) dθ.

Mass conservation is reflected by ḟ0 = 0; we put f0 = 1. Note that the number of
positive eigenvalues is usually small (see remarks 3.1).
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To avoid the necessity to use very small time steps (k2 is large for higher modes)
we multiply (6.1) by exp(−ckt) and define gk(t) = fk(t) exp(−ckt). Then we get

ġk(t) = (ḟk(t)− ckfk(t))e−ckt = 4πke−ckt
∑
l 6=0,k

vlfl(t)fk−l(t), (6.2)

which we solve by a second-order scheme.
The number n of equations is adapted dynamically, in the following way. We

start with n Fourier coefficients of f , assuming that higher modes are zero; we
calculate the right hand side of (6.2) for 1 ≤ k ≤ 2n and accept for 1 ≤ k ≤ n the
resulting fk(t + ∆t) as the new value for fk. If for some k̃ > n the slope of fk̃ is
larger than some (small) error bound, then the number n of equations is increased
to k̃ + 1. The additionally needed Fourier coefficients fk with n < k ≤ k̃ + 1 are
initialized as zero.

A further advantage of this scheme is that higher periodicity of an initial function
is preserved.

6.2. Solving the stationary equation via iteration. We also programmed the
iteration scheme which Primi et al. [16] used to prove existence of peak-like solu-
tions.

We start with an arbitrary function f (0) on S1 with given mass (usually 1). E.g.,
f (0) may be the solution of D df(0)

dθ (θ) = −V (θ)f (0)(θ), which is expected to lie near
the one-peak solution, if it exists (see Primi et al. [16]; V = V ∗ δ ≈ V ∗ f if f is
one-peak like).

Then we iterate

D
df (n+1)

dθ
(θ) = −(V ∗ f (n))(θ) f (n+1)(θ)

and require ∫
S1
f (n+1)(θ) dθ =

∫
S1
f (0)(θ) dθ,

so that f (n+1) is a function on S1 with the same mass as f (0).
If this sequence converges, then the limit is obviously a solution of (2.4), i.e., it

is a stationary solution of (2.1). Primi et al. [16] give criteria for convergence; e.g.,
the assumptions V ′(0) > 0 and

∫ θ
0
V (ψ) dψ > 0 for θ ∈ (0, 1

2 ] imply the existence
of one-peak like solutions if D is small.

Our iteration program reliably finds stationary solutions with 1
n -periodicity if

no stationary solutions with lower periodicity are present. Otherwise, it is better
to use Ṽn and n2D instead of V and D, compare Proposition 2.7. (Unfortunately,
in our program numerical instabilities accumulate, so that 1

n -periodicity of f (0) for
n > 1 is not preserved numerically, in contrast to the theoretical prediction.)

6.3. Examples. In the following examples the stationary solutions were calculated
with both algorithms (exceptions will be mentioned); their stability was checked
with the Fourier based system. (An upper horizontal line in the figures is the
homogeneous solution 1.)

The first example is interesting because it shows a backward bifurcation and
mixed mode solutions.

Example 6.1. Let D > 0, γ ≥ 0 and define

V (θ) = sin(2πθ) + γ sin(4πθ).
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We use formula (2.3) for the eigenvalues and get

c1 = −4π2D + 4π
∫ 1/2

0

(sin2(2πθ) + γ sin(4πθ) sin(2πθ)) dθ = π (−4πD + 1) > 0

if and only if D < 1
4π , and

c2 = −16π2D + 8π
∫ 1/2

0

(sin(2πθ) sin(4πθ) + γ sin2(4πθ)) dθ = 2π(−8πD + γ) > 0

if and only if D < γ
8π . For (D, γ) ∈ R+ × R+ all four combinations of c1 <> 0,

c2 <> 0 are possible, see Figure 2. All other eigenvalues are negative.

-D

6
γ

γ = 1
2 , V

′( 1
2 ) = 0

�
�

�
�

�
�

�
�

�
�

��

1/(4π)

c2 = 0

c1 = 0

γ = 2

c1 < 0
c2 < 0

c1 > 0
c2 < 0

c1 > 0
c2 > 0

c1 < 0
c2 > 0

V has single zero
V > 0

Figure 2. Regions of in/stability of first and second eigenvalue

For all parameter values we have V ′(0) > 0 and
∫ θ
0
V (ψ) dψ > 0 for 0 < θ < 1

2 ;
therefore for very small diffusion coefficient one-peak like solutions exist (Primi et
al. [16]) and at least for D = 0 they are stable by Theorem 5.6. We find that
V2(θ) = γ sin(4πθ), therefore V ′2(0) > 0 and

∫ θ
0
V2(ψ)dψ > 0 on (0, 1

4 ), thus two-
peaks like solutions exist for small enough diffusion (Primi et al. [16]). For γ < 1

2 we
have V ′(0) > 0 and V ′( 1

2 ) < 0, therefore two peaks are not stable, see Theorem 5.3;
two-peaks like solutions are only stable within the space of 1

2 -periodic solutions
(if D is sufficiently small), see Proposition 2.7 and Theorem 5.6 for D = 0; note
that c2 > 0. For γ > 1

2 , V has a single simple zero and V ′( 1
2 ) > 0, so for D = 0

two-peaks solutions are stable by Theorem 5.8.
For D = 1

4π ≈ 0.0796 and γ = 2, first and second eigenvalue of (2.1) are zero
simultaneously. Therefore stationary solutions with two maxima of different height
can be expected to exist, so-called ‘mixed mode solutions’ (Golubitsky and Scha-
effer [10]); Figure 3 (top left figure) shows such solutions. Near that parameter
combination there exist backward bifurcations which are (to our experience) un-
usual for the differential equation (2.1) on S1. Interestingly, Chayes and Panferov
[3] proved that on tori in dimension d ≥ 2 only backward bifurcations are possible.

Figure 3 shows typical stationary solutions and their stability for γ = 2 and
γ = 4. The 1

2 -periodic stationary solutions are unstable (γ = 2), or they become
unstable with decreasing D (γ = 4). This suggests that in general, the stability
result for two peaks at D = 0 cannot be carried over to (very small) D > 0.
However, solutions need much longer times at smaller D to move beyond states
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with two peaks of different height. E.g., for D of size of the order of 0.05, γ = 2,
and starting with a small perturbation of f = 1, we get two peaks of different
heights in the first two time units, while convergence to the mixed-mode solution
needs about 30 time units; for D ≈ 0.01 and γ = 2 as well as γ = 4, these time
scales change to one unit for initial pattern formation and several hundred units
for convergence to one peak.

In Figure 3 the stationary solutions were generated with the iteration method,
and their stability was tested with the Fourier algorithm. The unstable 1

2 -periodic
steady states in Figure 3 are stable in the space of 1

2 -periodic functions; they are
also found with the Fourier-based algorithm if the simulation is started with a
1
2 -periodic function.

The second example shows non-trivial solutions when V ′(0) and V ′( 1
2 ) are neg-

ative, and hence for zero diffusion coefficient neither one peak nor two peaks at
distance 1

2 are stable by Theorem 5.3.

Example 6.2. Let
V (θ) = sin(2πθ)− sin(4πθ).

Only the first eigenvalue is positive for small enough diffusion coefficient. Figure 4
shows how the stationary solution is approached. As one expects according to
Corollary 5.9 (which holds for D = 0), for small diffusion coefficient it consists of
two peaks with distance θv (where V (θv) = 0). We checked numerically that indeed
Ṽ ′(0) = 1

2 (V ′(0) + V ′(θv)) > 0.
This solution could be calculated only with the Fourier transformed system, since

the iteration method does not converge: it runs into a two-cycle.

The next example shows that one-peak and two-peaks like solutions are possible
in the same model at the same parameter values. It is interesting that there exists
a one-peak like solution although the first eigenvalue (of the linearization near the
homogeneous solution) is negative for all parameter values.

Example 6.3. Let
V (θ) = sin(4πθ) + γ sin(6πθ).

For − 2
3 < γ < 2

3 the turning rate V has a single zero on (0, 1
2 ), V ′(0) > 0 and

V ′( 1
2 ) > 0; also, V ′( 1

3 ) > 0 for γ > 1
3 . If γ > 0, then for all δ > 0 there is an ε > 0

such that
∫ θ
0
V (ψ) dψ > ε for δ < θ ≤ 1

2 . Theorem 7.3. in Primi et al. [16] shows
that a one-peak like solution exists for small enough D. The second eigenvalue c2
is positive for D < 1

8π , the third eigenvalue c3 is positive for D < γ
12π , which is

≈ 0.013 for γ = 0.5.
Figure 5 shows stationary solutions (left side; calculated with the iteration

scheme) and how they are approached in time (right side; Fourier based program).
We see that one-peak and two-peaks like solutions are locally stable for small enough
D and γ = 0.5. The one-peak like solution develops when the initial distribution
is sufficiently centered (compare Theorem 4.2), but in the simulations f(0, ·) did
not have compact support. The three-peaks solution is stable in the subspace of
1
3 -periodic functions; it is unstable for D = 0.01 (data not shown); For D = 0.001 a
solution with three peaks of different height, of which only two had distance 1

3 , de-
veloped when the simulation was started with a perturbed three-peaks like function.
Note that V(3) actually satisfies the 3-peaks stability conditions of Theorem 5.10.
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 6.80   D=0.07  (c1= 0.4, c2= 1.5) stable


 5.64  D=0.08  (c1=-0.02, c2=-0.07) stable


 3.98  D=0.09  (c1=-0.4, c2=-1.6) stable


 0.12

 0.24

 0.47


1/2-periodic
  
  
  

2.24  D=0.07  unstable


7.4  D=0.1 (c1=-0.8, c2=9.3)  stable


0.63  


1/2-periodic


3.6  D=0.1 (c1=-0.8 , c2= 9.3) unstable


1.8  D=0.15  (c1=-2.8 , c2= 1.4) stable


Figure 3. Stationary solutions for V (θ) = sin(2πθ) + γ sin(4πθ),
γ = 2 (top) and γ = 4 (bottom) (V ′(0) > 0, V ′( 1

2 ) > 0, V (0.29) = 0
and V (0.27) = 0, respectively).
(top left) Stable mixed mode solutions; the distance between the
maxima is 1

2 . Note the backward bifurcation: there is a stable
stationary solution even though both eigenvalues c1 and c2 are
negative! For D ≥ 0.093 and γ = 2 we found no non-constant
stationary solution.
(top right) A 1

2 -periodic stationary solution; it is unstable, but sta-
ble in the space of 1

2 -periodic solutions. For D ≥ 1
4π there are no

non-trivial 1
2 -periodic stationary solutions.

(bottom left) Mixed mode solution with distance 1
2 between the

two maxima; for D = 0.15 we found no stationary mixed mode
solution.
(bottom right) 1

2 -periodic solutions. In mixed mode solutions the
larger maximum grows with decreasing D while the second max-
imum vanishes. In 1

2 -periodic solutions the maxima grow with
decreasing D. In all cases the peaks become narrower.

With small diffusion coefficient the ‘typical’ outcome of a simulation that is
started with small deviations from f = 1 are one large and one small peak that are
opposite. We suppose that for D > 0 these become equally high for large times;
the smaller D is, the more time will be needed for that.

Caption for Figure 5. Top row (left): These stationary solutions for various
D-values were calculated with the iteration algorithm; for D >≈ 0.02 the solutions
look 1

2 -periodic; (right): A one-peak like solution with a small second maximum
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D=0.0001
  

t = 0.3

t = 0.4

t = 1.0

t = 6.0, peak distance = 0.17

Figure 4. Development of the stationary solution for V (θ) =
sin(2πθ)− sin(4πθ) started with f(θ, 0) = 1 + 0.8 cos(2πθ).
θv = 0.17 is the only non-trivial zero of V . The numerical compu-
tation started with 20 Fourier coefficients and ended with 140.

develops fast when the simulation is started with a centered distribution; here we
started with the stationary solution for V (θ) = sin(2πθ), D = 0.03.
Second row (left): These 1

2 -periodic stationary solutions for various D-values were
calculated with the iteration algorithm with forced 1

2 -periodicity. (right) Approx-
imation in time of a 1

2 -periodic stationary solution. The simulation was started
with f(0, θ) = φ sin(2πθ), φ = 0.1 (start not shown). Until t ≈ 8 the distribution
converges towards the homogeneous distribution (this is what it has to do: any
initial distribution that is orthogonal to the modes occurring in V dies out), then
triggered by some numerical noise, instability of the constant solution takes over,
and the second mode begins to grow.
Third row (left): 1

3 -periodic solutions were calculated with the iteration scheme
with forced 1

3 -periodicity. (right) The simulation was started with a small pertur-
bation (Re f1(0) = 0.01, Re f2(0) = 0.005) of the 1

3 -periodic solution for D = 0.01.
A distribution with three slightly different peaks develops very fast, where the dis-
tances between first/second and first/third peak are not 1

3 ; then no further changes
are discernible.
Bottom row: ‘Typical’ result of a simulation, here started with the 1

3 -periodic solu-
tion for D = 0.01 which was perturbed by Re f1(0) = −0.01, Re f2(0) = −0.005. A
distribution with two different maxima at distance 1

2 develops fast, then no further
changes are discernible.

The last example shows that a variety of behaviors is possible if V < 0 on (0, 1
2 ).

Example 6.4. We compare

V(2)(θ) = sin(4πθ)− γ sin(2πθ) (γ > 2)

and
V(3)(θ) = sin(6πθ)− γ sin(2πθ) (γ > 3).

In both cases V < 0 on (0, 1
2 ), V ′(0) < 0 and V ′( 1

2 ) > 0. For V(2) only the second
eigenvalue is positive for D < 1

8π ; for V(3) only the third eigenvalue is positive for
D < 1

12π ; all other eigenvalues are negative. We have V(2),2 = 2 sin(4πθ) > 0 on
(0, 1

4 ) and V(3),3 = 3 sin(6πθ) > 0 on (0, 1
6 ); all other V(j),n are zero.
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V=sin(4*pi*theta)+0.5*sin(6*pi*theta)
  

D=0.02, max ~ 4.5

D=0.018

D=0.016

D=0.014

D=0.012

D=0.01, max ~ 17
V=sin(4*pi*theta)+0.5*sin(6*pi*theta)
  D=0.01
  start: stat.sol. of V=sin(2*pi*theta), D=0.03
  

t=0

t=0.1

t=0.2

t>=0.5, max ~ 16.8

0.4

V=sin(4*pi*theta)+0.5*sin(6*pi*theta), 1/2-periodic
  

D=0.02, max ~ 4.4

D=0.018

D=0.016

D=0.014

D=0.012

D=0.01, max ~ 6.8

V=sin(4*pi*theta)+0.5*sin(6*pi*theta)
  D=0.01
  Start: 0.1*sin(2*pi*theta)
  

t=8

t=8.6

t=8.8

t=9.1

t>=9.4

V=sin(4*pi*theta)+0.5*sin(6*pi*theta), 1/3-periodic
  

D = 0.013
D = 0.012

D = 0.01

D = 0.008

D = 0.001, max~13.2 

V=sin(4*pi*theta)+0.5*sin(6*pi*theta)
  D=0.001
  

t=0.02

t=0.05

t=0.14

t=0.2

t=0.27

t=0.35

t=0.55
t=0.8, ...(5 times), 75

max ~ 13.3

V=sin(4*pi*theta)+0.5*sin(6*pi*theta)
  D=0.01
  

t=0.04 
t=0.5 1.0 1.4 1.6 

t=1.75 

t=1.86 

t=1.93 

t=2.08 

t=2.3 t=2.5, ...(5 times), 50; max ~ 7.7 

Figure 5. V (θ) = sin(4πθ) + 0.5 sin(6πθ).

Therefore we expect (at small enough diffusion coefficient D) for V(2) stationary
solutions with two equal maxima at distance 1

2 , and for V(3) three equal maxima
with distance 1

3 . These develop indeed, but the time scales are interesting, see
Figure 6. Two, resp. three different maxima develop very quickly but at unexpected



EJDE-2012/157 STABILITY OF PEAK SOLUTIONS 37

distances; development toward equal distances and heights can be a very slow
process. The explanation is that for both V there are orbits of other stationary
solutions when D = 0: For V(2) two peaks whose masses add to 1; for V(3) three
peaks whose positions and masses satisfy (5.1), namely 0 =

∑3
k=1mkV (θj(t) −

θk(t)) for j = 1, 2, 3 and m1 +m2 +m3 = 1 (θj ∈ S1, mj > 0).

V=sin(4*pi*theta)-3*sin(2*pi*theta)
  D=0.01
  

t=0.06

t=0.2

t=0.3

t=0.5

t=0.8

6.7, t=1.3
V=sin(6*pi*theta)-4*sin(2*pi*theta)
  D=0.01
  

5.26, t=270

t=0.04

t=115
t=30

t=1.4t=1.4

t=0.9t=0.9

Figure 6. V (θ) = sin(4πθ)−3 sin(2πθ) (left), V (θ) = sin(6πθ)−
4 sin(2πθ) (right) D = 0.01. Initial condition were one (left)
and two (right) sharp peaks. Solutions were calculated with the
Fourier-based algorithm. The iteration algorithm does not con-
verge for these V ’s (it runs into two-cycles); however, it converges
to the shown stationary solutions if V(2),2 and V(3),3 and 1

2 - and
1
3 -periodicity are used, respectively.

7. Discussion

For the transport-diffusion equation (2.1) a wide variety of different patterns has
been observed. Indeed, only a limited number could be shown in the last section. It
emerges that it is nearly impossible to predict pattern formation only by knowing
the shape of V ; however, if one compiles information like the sign of the eigenvalues
ck, the zeros of V , the signs of V ′( jn ) and the shapes of the Vn and of

∫ θ
0
Vn(ψ) dψ,

then the picture becomes clearer.
If there is no diffusion, then we know quite something about the stability or

otherwise of peak solutions. Stability of n peaks shows itself often also in the ‘short-
time’ behavior of solutions of the diffusion-transport equation at small diffusion.
Therefore it is hard to clarify numerically whether a given stationary solution is
stable for small diffusion. It is an open and interesting problem how to clarify the
stability of stationary solutions if diffusion is present and if several eigenvalues are
positive.

A possible interest in the transport-diffusion equation (TDE) comes from its
relation to the following integro-differential equation (IDE) for a function f :
[0,∞)× S1 → R+:

∂f

∂t
(t, θ) = −Mf(t, θ)+

∫
S1

∫
S1
Gσ(θ−θo−V (θi−θo)) f(t, θi) f(t, θo) dθo dθi, (7.1)
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where M =
∫
S1 f(0, θ) dθ, σ > 0, Gσ : S1 → R+ is the periodic Gaussian with∫

S1 Gσ(θ) dθ = 1,

Gσ(θ) =
1√
2πσ

∑
n∈Z

e−
1
2 ( θ+n

σ )2

,

and the turning function V : S1 → S1 is odd.
This IDE describes a jump process in which particles at an old orientation θo

interact over S1 with particles in θi and jump to a new position θ = θo+V (θi−θo).
The precision of the jump is measured by σ. Note that for the IDE V is a turning
(therefore it maps to S1), while the function V for the TDE is a velocity and takes
real values that can be arbitrarily large. If, e.g., V (ψ) = ψ in the IDE, then all
solutions converge for t→∞ to the constant solution (Geigant [7]), while the TDE
has non-constant stable stationary solutions.

Both equations preserve mass, positivity, axial symmetry and any periodicity,
and both are invariant under translations and reflections. The SO(2)-invariance
makes linearization and calculation of eigenvalues near the stationary homogeneous
solution possible, as well as the fast numerical calculation of solutions by Fourier
transforming the equation into a system of ODEs (see Geigant and Stoll [9] for the
IDE).

Let M = 1. If V = 0, then the solutions of both systems converge to the
constant 1 as t → ∞ (the TDE is the linear diffusion equation, the IDE a linear
jump process). If D or σ are large compared to V , solutions also converge to 1
(Theorem 3.2 for the TDE; Geigant [7] for the IDE). Therefore, if V is small, then
D and σ, resp., must be very small for pattern formation. On the other hand, if
V = 0 and D = 0 or σ = 0, resp., then ∂f

∂t = 0, therefore nothing happens. Hence,
if V as well as D or σ are very small, then pattern formation occurs very slowly (if
at all). Last but not least, if D = 0 or σ = 0 but V 6= 0, the limiting equations of
both equations have delta distributions as solutions (see Geigant [8] for the IDE).

This said, we assume that σ and V are very small, and we use Taylor expansion
in σ, V to get

Gσ(θ−θo−V (θi−θo)) = δ(θ−θo)−V (θi−θo)δ′(θ−θo)+
σ2

2
δ′′(θ−θo)+O

(
(σ2+|V |)2

)
.

Plugging this right hand side into (7.1) yields the transport-diffusion equation (2.1)
with D = σ2/2, because∫

S1
δ(θ − θo)f(θi)f(θo) dθi dθo = f(θ),

∫
S1

∫
S1
δ′(θ − θo)(V (θi − θo)f(θo)) dθo f(θi) dθi

=
∫
S1

d

dθo

(
V (θi − θo)f(θo)

) ∣∣∣
θo=θ

f(θi) dθi

= −
∫
S1

(
V ′(θi − θ)f(θ)− V (θi − θ)f ′(θ)

)
f(θi) dθi

= − d

dθ

(
(V ∗ f)(θ) f(θ)

)
and ∫

S1
δ′′(θ − θo)f(θo)f(θi) dθo dθi =

∫
S1
f(θi) dθi f ′′(θ) = f ′′(θ).
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Different arguments for this derivation are given in Mogilner and Edelstein-Keshet
[14] and in Primi et al. [16].

Similarly, for the eigenvalues c̃k of (7.1) (see Geigant and Stoll [9]), Taylor ex-
pansion with small V yields

c̃k = −1 + 4Gσ,k
∫ 1/2

0

cos(πkψ) cos
(
2πk( 1

2ψ − V (ψ))
)
dψ

≈ −1 + 4Gσ,k
∫ 1/2

0

cos(πkψ) cos(πkψ) dψ

+ 8π2k2Gσ,k

∫ 1
2

0

cos(πkψ) sin(πkψ)V (ψ) dψ

= (−1 +Gσ,k) + 4π2k2Gσ,k

∫ 1/2

0

V (ψ) sin(2πkψ) dψ

σ→0−→ 4π2k2

∫ 1/2

0

V (ψ) sin(2πkψ) dψ,

because the k-th Fourier coefficient Gσ,k tends to 1 as σ → 0.
Since ck = 4πk

∫ 1/2

0
V (θ) sin(2πkθ) dθ for D = 0 (see (2.2)), the signs of the

eigenvalues of both models agree for small enough V , D and σ (similar arguments
were given by I. Primi, personal communication). We stress again that for larger
V or D,σ the signs of the eigenvalues may differ.

But we see for example that for both models there are turning functions V
that are negative on (0, 1

2 ) but lead to non-trivial patterns, see the Example 6.4 in
Section 6.3. Especially for the IDE this was a surprise to us. Only the eigenvalue of
the first mode in the IDE is always negative if V is negative, which may correspond
to the result of Primi et al. [16] that there are no one-peak like solutions for small
diffusion if

∫ θ
0
V (ψ) dψ is negative somewhere.

The formulas for the eigenvalues show also that higher modes have larger eigen-
values for the IDE (k2 versus k in TDE). This explains perhaps why in simulations
of the IDE at small σ we see the initial formation of several peak-like maxima much
more often than in simulations of the TDE with small diffusion D.

Both equations have limiting equations for D → 0 and σ → 0, respectively. For
σ = 0 we have Gσ = δ0, and the limiting equation is

∂f

∂t
(t, θ) = −f(t, θ) +

∫
S1
f(t, θ − V (ψ))f(t, θ + ψ − V (θ)) dψ. (7.2)

In Geigant [8] it is shown that for σ → 0 the solutions of the IDE converge to those
of the limiting equation on fixed finite time intervals.

For both limiting equations a single peak is a stationary solution, which is linearly
stable if V is attracting. ‘Attraction’ in the case of the IDE means 0 < V (θ) < θ for
0 < θ < 1

2 (see Geigant [8]3), and in the case of the TDE V (θ) > 0 for 0 < θ < 1
2

and V ′(0) > 0, see Theorem 5.6. In both equations the perturbation may not
extend to the opposite side of the peak since particles located there cannot turn
back (because V ( 1

2 ) = 0).

3In Theorem 3.1. of [8] there is a typing mistake: ‘attracting’ must be defined as given here
and in the definition on page 1211 in [8].
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Two peaks with distance 1
2 whose masses add up to 1 are also a stationary

solution for both limiting equations because V ( 1
2 ) = 0. For the IDE with σ = 0

Kang et al. formulate theorems on convergence of solutions to two opposite peaks
if the initial distribution is sufficiently localized, see Theorems 15 and 19 in [12]
and the erratum [13]4. They show that the second moments and the supremum
away from the peaks converge to zero. However, we feel that our simpler method,
namely linearization near the peak, is worthwile considering.

For both limiting equations the assumptions for convergence to two opposite
peaks are essentially an attracting shape of V near 0 (V > 0 to the right of 0,
V ′(0) > 0, and for the IDE additionally V ′(0) < 1 near 0) and near 1

2 (V < 0 to
the left of 1

2 , V ′( 1
2 ) > 0, and for the IDE additionally V ′( 1

2 ) < 1).
It is important to see that in both limiting equations there is no ‘mass selection’

toward equal masses of the peaks. The open question is then on what time scales
equalization of the peaks occurs when σ or D, resp., are positive.

The central differences between the two limiting equations for the TDE and IDE
are as follows.

• n ≥ 2 initial peaks, i.e., f(0, ·) =
∑n
k=1mkδ(. − θk) with mk > 0, do not

keep that form for the IDE (e.g., starting with two peaks in θ1, θ2, particles
jump also to positions θ1 + V (θ2 − θ1) and θ2 + V (θ1 − θ2)).

• n ≥ 3 peaks — even if equidistant and with equal masses — are in general
not a stationary solution for the IDE.

Therefore, the IDE does not allow the ‘peak ansatz’ (see Section 5.1). Only if
V ( jn ) = 0 for j = 1, . . . , n−1, then n equidistant peaks with arbitrary masses are a
stationary solution of equation (7.2). It is an educated guess that they are locally
stable up to redistribution of mass and reorientation if 0 < V ′( jn ) < 1 holds for
0 ≤ j ≤ n− 1.
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