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POSITIVE SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS
WITH INTEGRAL BOUNDARY CONDITIONS ON INFINITE

INTERVALS

CHANGLONG YU, JUFANG WANG, YANPING GUO, HUIXIAN WEI

Abstract. In this article, we consider the existence of positive solutions for a
class of boundary value problems with integral boundary conditions on infinite
intervals

(ϕp(x′(t)))′ + φ(t)f(t, x(t), x′(t)) = 0, 0 < t < +∞,

x(0) =

Z +∞

0
g(s)x′(s)ds, lim

t→+∞
x′(t) = 0,

where ϕp(s) = |s|p−2s, p > 1. By applying the Avery-Peterson fixed point
theorem in a cone, we obtain the existence of three positive solutions to the
above boundary value problem and give an example at last.

1. Introduction

Boundary value problems (BVPs) on infinite intervals often appear in applied
mathematics and physics and so on. The existence and multiplicity of positive
solutions for such problems have become an important area of investigation in
recent years. There are many papers concerning the existence of solutions on the
half-line for the boundary value problems, see [1, 2, 4, 5, 8, 9, 11, 12, 15, 16, 17]
and the references therein.

At the same time, we notice that a class of BVPs with integral boundary condi-
tions appeared in heat conduction, chemical engineering, underground water flow,
thermo-elasticity, and plasma physics. Such problems include two-, three-, multi-
point and nonlocal BVPs as special cases and attract more attention see [7, 10, 14]
and the references therein. For more information about the general theory of inte-
gral equations and their relation with BVPs, we refer to the book of Corduneanu
[6] and Agarwal and O’Regan [2].

Recently, Lian et al [12], studied the existence of positive solutions for the
boundary-value problem with a p-Laplacian operator

(ϕp(x′(t)))′ + φ(t)f(t, x(t), x′(t)) = 0, 0 < t < +∞,

αx(0)− βx′(0) = 0, x′(∞) = 0.
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Guo and Yu [8] establish the existence of three positive solutions for m-point
BVPs on infinite intervals

(ϕp(x′(t)))′ + φ(t)f(t, x(t), x′(t)) = 0, 0 < t < +∞,

x(0) =
m−2∑
i=1

αix
′(ηi), lim

t→+∞
x′(t) = 0,

using the Avery-Peterson fixed point theorem in a cone.
Due to the fact that an infinite interval is noncompact, the discussion about

BVPs on the half-line is more complicated, in particular, for the BVPs with integral
boundary conditions on infinite intervals, few works were done.

Motivated by the results [8, 12], we will study the following BVPs with integral
conditions:

(ϕp(x′(t)))′ + φ(t)f(t, x(t), x′(t)) = 0, 0 < t < +∞,

x(0) =
∫ +∞

0

g(s)x′(s)ds, lim
t→+∞

x′(t) = 0,
(1.1)

where ϕp(s) = |s|p−2s, p > 1, φ : R+ → R+, f(t, u, v) : R3
+ → R+ is a continuous

function, R+ = [0,+∞), g ∈ L1[0,+∞) is nonnegative.
In this article, we use the following conditions:
(H1) φ ∈ C(R+,R+), φ 6≡ 0 on any interval of the form (t0,+∞) and∫ +∞

0

φ(s)ds < +∞,

∫ +∞

0

ϕ−1
( ∫ +∞

τ

φ(s)ds
)
dτ < +∞;

(H2) f(t, (1 + t)u, v) ∈ C(R3
+,R+), f(t, 0, 0) 6= 0 on any subinterval of (0,+∞)

and when u, v are bounded f(t, (1 + t)u, v) is bounded on [0,+∞).

2. Preliminary results

In this section, we present some definitions, theorems and lemmas, which will
be needed in the proof of the main results. We first give the Avery-Peterson fixed
point theorem.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set
P ⊂ E is called a cone if it satisfies the following two conditions:

(i) x ∈ P and λ ≥ 0 imply λx ∈ P ;
(ii) x ∈ P and −x ∈ P imply x = 0.

Definition 2.2. Given a cone P in a real Banach space E. A continuous map ψ
is called a concave (resp. convex) functional on P if for all x, y ∈ P and 0 ≤ λ ≤ 1,
it holds ψ(λx + (1 − λ)y) ≥ λψ(x) + (1 − λ)ψ(y), (resp. ψ(λx + (1 − λ)y) ≤
λψ(x) + (1− λ)ψ(y)).

Let α, γ, θ, ψ be nonnegative continuous maps on P with α concave, γ, θ convex.
Then for positive numbers a, b, c, d, we define the following subsets of P :

P (γd) = {x ∈ P : γ(x) < d};

P (αb, γ
d) = {x ∈ P (γd) : b ≤ α(x)};

P (αb, θ
c, γd) = {x ∈ P (γd) : b ≤ α(x), θ(x) ≤ c};

R(ψa, γ
d) = {x ∈ P (γd) : a ≤ ψ(x)}.
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It is obvious that P (γd), P (αb, γd), P (αb, θ
c, γd) are convex and R(ψa, γ

d) is closed.

Theorem 2.3 ([3]). Let P be a cone of a real Banach space E. Let γ, θ be non-
negative convex functional on P satisfying

ψ(λx) ≤ λψ(x), ∀0 ≤ λ ≤ 1,

α(x) ≤ ψ(x), ‖x‖ ≤Mγ(x) ∀x ∈ P (γd)

with M,d some positive numbers. Suppose that T : P (γd) → P (γd) is completely
continuous and there exist positive numbers a, b, c with a < b such that

(1) {x ∈ P (αb, θ
c, γd) : α(x) > b} 6= ∅ and α(Tx) > b for x ∈ P (αb, θ

c, γd);
(2) α(Tx) > b for x ∈ P (αb, γ

d) with θ(Tx) > c;
(3) 0 6∈ R(ψa, γ

d) and ψ(Tx) < a for x ∈ R(ψa, γ
d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γd) such that γ(xi) ≤ d,
i = 1, 2, 3; ψ(x1) < a; ψ(x2) > a with α(x2) < b; α(x3) > b.

Consider the space

X =
{
x ∈ C1[0,+∞), sup

0≤t<+∞

|x(t)|
1 + t

< +∞, lim
t→+∞

x′(t) = 0
}

(2.1)

with the norm ‖x‖ = max{‖x‖1, ‖x′‖∞}, where ‖x‖1 = sup0≤t<+∞ |x(t)|/(1 + t),
‖x′‖∞ = sup0≤t<+∞ |x′(t)|. By using the standard arguments, we can obtain that
(X, ‖ · ‖) is a Banach space. Define the P ⊂ X by

P =
{
x ∈ X : x(t) ≥ 0, t ∈ [0,+∞),

x(0) =
∫ +∞

0

g(s)x′(s)ds, x is concave on [0,+∞)
}
.

(2.2)

Remark 2.4. If x satisfies (1.1), then (ϕp(x′(t)))′ = −φ(t)f(t, x(t), x′(t)) ≤ 0 on
[0,+∞), which implies that x is concave on [0,+∞). Moreover, if limt→+∞ x′(t) =
0, then x′(t) ≥ 0, t ∈ [0,+∞) and so x is monotone increasing on [0,+∞).

Let k > 1 be a constant. For x ∈ P , define the nonnegative continuous function-
als:

α(x) =
k

k + 1
min

1
k≤t<+∞

x(t), γ(x) = sup
0≤t<+∞

x′(t),

ψ(x) = θ(x) = sup
0≤t<+∞

x(t)
1 + t

, A =
∫ +∞

0

g(s)ds,

C = ϕ−1
p

( ∫ +∞

0

φ(s)ds
)
, C1(t) =

∫ t

0

ϕ−1
p

( ∫ +∞

τ

φ(s)ds
)
dτ.

(2.3)

Since the Arzela-Ascoli theorem does not apply in the space X, we need a mod-
ified compactness criterion to prove T is compact. In the following, we present an
explicit one. For more general cases, we refer the readers to [2, 17] and the reference
therein.

Definition 2.5. For l > 0, let V = {x ∈ X : ‖x‖ < l}, and

V1 := { x(t)
1 + t

, x ∈ V } ∪ {x′(t), x ∈ V }
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which is called equiconvergent at infinity if for all ε > 0 there exists T = T (ε) > 0
such that for all x ∈ V1,∣∣ x(t1)

1 + t1
− x(t2)

1 + t2

∣∣ < ε, |x′(t1)− x′(t2)| < ε, ∀t1, t2 ≥ T.

Lemma 2.6 ([13]). If {x(t)
1+t , x ∈ V } and {x′(t), x ∈ V } are both equicontinuous

on any compact interval of [0,+∞) and equiconvergent at infinity . Then V is
relatively compact on X.

Lemma 2.7. Let g ∈ L1[0,+∞) and g is nonnegative, if v(t) is nonnegative and
continuous on [0,+∞) and limt→+∞ v(t) exists. Then there exists at least one η,
0 ≤ η ≤ +∞ such that ∫ +∞

0

g(s)v(s)ds = v(η)
∫ +∞

0

g(s)ds. (2.4)

Proof. It is obvious that the function v(t) exists and has maxima and minima which
are nonnegative and noted by M∗,m∗ on [0,+∞), then for all t ∈ [0,+∞), we have
m∗ ≤ v(t) ≤M∗, so

m∗
∫ +∞

0

g(s)ds ≤
∫ +∞

0

g(s)v(s)ds ≤M∗
∫ +∞

0

g(s)ds.

If
∫ +∞
0

g(s)ds = 0, the result is clear; If
∫ +∞
0

g(s)ds > 0, there is

m∗ ≤
∫ +∞
0

g(s)v(s)ds∫ +∞
0

g(s)ds
≤M∗.

Therefore, there exists at least one η, 0 ≤ η ≤ +∞ such that∫ +∞

0

g(s)v(s)ds = v(η)
∫ +∞

0

g(s)ds. (2.5)

�

Lemma 2.8. Let y ∈ C[R+,R+], and
∫ +∞
0

y(t)dt < ∞, then the boundary-value
problem

(ϕp(x′(t)))′ + y(t) = 0, 0 < t < +∞,

x(0) =
∫ +∞

0

g(s)x′(s)ds, lim
t→+∞

x′(t) = 0,
(2.6)

has a unique solution

x(t) =
∫ +∞

0

g(s)ϕ−1
p

( ∫ +∞

s

y(τ)dτ
)
ds+

∫ t

0

ϕ−1
p

( ∫ +∞

s

y(τ)dτ
)
ds.

Define the operator T : P → C1[0,+∞) by

(Tx)(t) =
∫ +∞

0

g(s)ϕ−1
p

( ∫ +∞

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds

+
∫ t

0

ϕ−1
p

( ∫ +∞

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds, t ∈ [0,+∞).

(2.7)

Lemma 2.9. For x ∈ P , ‖x‖1 ≤M‖x′‖∞, where M = max
{ ∫ +∞

0
g(s)ds, 1

}
.
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Proof. Since x ∈ P , by Lemma 2.7,

x(t)
1 + t

=
1

1 + t
(
∫ t

0

x′(s)ds+
∫ +∞

0

g(s)x′(s)ds)

≤
t+

∫ +∞
0

g(s)ds
1 + t

‖x′‖∞ ≤M‖x′‖∞.

The result follows. �

Lemma 2.10 ([8]). For x ∈ P , α(x) ≥ 1
k+1θ(x).

Lemma 2.11. Let (H1)–(H2) hold. Then T : P → P is completely continuous.

Proof. It is easy to see that T : P → P is well defined. Now we prove that T is
continuous and compact respectively. Let xn → x as n → +∞ in P , then there
exists r0 such that supn∈N\{0} ‖xn‖ < r0. Set Br0 = sup{f(t, (1+ t)u, v), (t, u, v) ∈
[0,+∞)× [0, r0]2}. Then we have∫ +∞

0

φ(s)|f(s, xn, x
′
n)− f(s, x, x′)|ds ≤ 2Br0

∫ +∞

0

φ(s)ds.

Therefore, by the Lebesgue dominated convergence theorem,

|ϕp((Txn)′(t))− ϕp((Tx)′(t))| =
∣∣ ∫ +∞

t

φ(s)(f(s, xn, x
′

n)− f(s, x, x′))ds
∣∣

≤
∫ +∞

0

φ(s)|f(s, xn, x
′

n)− f(s, x, x′)|ds

→ 0, as n→ +∞.

Furthermore, ‖Txn − Tx‖ ≤ M‖(Txn)′ − (Tx)′‖∞ → 0, as n → +∞. Hence, T is
continuous.
T is compact provided that it maps bounded sets into relatively compact sets.

Let Ω be any bounded subset of P . Then there exists r > 0 such that ‖x‖ ≤ r for
all x ∈ Ω. Obviously,

‖(Tx)′‖∞ = ϕ−1
p (

∫ +∞

0

φ(s)f(s, x(s), x′(s))ds) ≤ Cϕ−1
p (Br)

for all x ∈ Ω. Hence, ‖TΩ‖ ≤MCϕ−1
p (Br). So TΩ is bounded.

Moreover, for any L ∈ (0,+∞) and t1, t2 ∈ [0, L],∣∣∣ (Tx)(t1)
1 + t1

− (Tx)(t2)
1 + t2

∣∣∣
≤

∫ +∞

0

g(s)ϕ−1
p

( ∫ +∞

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds

∣∣∣ 1
1 + t1

− 1
1 + t2

∣∣∣
+

∫ t2

0

ϕ−1
p

( ∫ +∞

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds

∣∣ 1
1 + t1

− 1
1 + t2

∣∣
+

1
1 + t1

|
∫ t2

t1

ϕ−1
p

( ∫ +∞

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds|

≤ ϕ−1
p (Br)(AC + C1(L))|t1 − t2|+ |C1(t1)− C1(t2)|)

→ 0, uniformly as t1 → t2,
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and

|ϕp((Tx)′(t1))− ϕp((Tx)′(t2))| =
∣∣ ∫ t2

t1

φ(s)(f(s, x, x′)ds
∣∣

≤ Br|
∫ t2

t1

φ(s)ds| → 0, uniformly as t1 → t2,

for all x ∈ Ω. So TΩ is equicontinuous on any compact interval of [0,+∞).
Finally, for any x ∈ Ω,

lim
t→+∞

| (Tx)(t)
1 + t

| = lim
t→+∞

1
1 + t

∫ t

0

ϕ−1
p

( ∫ +∞

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds

≤Mϕ−1
p (Br) lim

t→+∞
ϕ−1

p

( ∫ +∞

t

φ(s)ds
)

= 0,

lim
t→+∞

|(Tx)′(t)| = lim
t→+∞

ϕ−1
p (

∫ +∞

t

φ(s)f(s, x(s), x′(s))ds)

≤ ϕ−1
p (Br) lim

t→+∞
ϕ−1

p

( ∫ +∞

t

φ(s)ds
)

= 0.

So TΩ is equiconvergent at infinity. By using Lemma 2.6, we obtain that TΩ
is relatively compact, that is, T is a compact operator. Hence, T : P → P is
completely continuous. The proof is complete. �

3. Main results

For the main result of this article we sue the hypothesis
(H3) f(t, (1 + t)u, v) ≤ ϕp(d/C), for (t, u, v) ∈ [0,+∞)× [0,Md]× [0, d];
(H4) f(t, (1 + t)u, v) > ϕp(b/N), for (t, u, v) ∈ [ 1

k , k]× [ b
k ,

(k+1)2b
km ]× [0, d];

(H5) f(t, (1 + t)u, v) < ϕp(a/MC), for (t, u, v) ∈ [0,+∞)× [0, a]× [0, d]; where

m = min{A, 1}, N =
1

(k + 1)2

∫ k

1
k

(g(s) + 1)ϕ−1
p

( ∫ k

s

φ(τ)dτ
)
ds.

Theorem 3.1. Let A > 0. Suppose (H1)–(H5) hold. Suppose further that there
exist numbers a, b, d such that 0 < ka < b ≤ Mmkd/(k + 1)2. Then (1.1) has at
least three positive solutions x1, x2, x3 such that

sup
0≤t<+∞

x′i(t) ≤ d, i = 1, 2, 3;

sup
0≤t<+∞

x1(t)
1 + t

< a, a < sup
0≤t<+∞

x2(t)
1 + t

<
(k + 1)2b
km

, min
1
k <t<k

x2(t) <
(k + 1)
k

b;

sup
0≤t<+∞

x3(t)
1 + t

< Md, min
1
k≤t<k

x3(t) >
(k + 1)
k

b.

(3.1)

Proof. Let X,P, α, γ, θ, ψ and T be defined as (2.1)-(2.3) and (2.7) respectively. It
is easy to prove that the fixed points of T coincide with the solution of BVP (1.1).
So it is enough to show that T has three positive fixed points.

In fact, for any x ∈ P (γd), sup0≤t<+∞ x′(t) ≤ d and so sup0≤t<+∞
x(t)
1+t ≤

Md. Condition (H3) implies that f(t, x(t), x′(t)) ≤ ϕp(d/C) for all t ∈ [0,+∞).
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Therefore,

γ(Tx) = sup
0≤t<+∞

(Tx)′(t) = (Tx)′(0)

= ϕ−1
p

( ∫ +∞

0

φ(s)f(s, x(s), x′(s))ds
)

≤ d

C
ϕ−1

p

( ∫ +∞

0

φ(s)ds
)

= d.

Hence T : P (γd) → P (γd) is completely continuous.
Obviously, α, γ, θ, ψ satisfy the assumptions in Theorem 2.3. Next we show that

conditions (1)-(3) in Theorem 2.3 hold.
Firstly, choose the function x(t) = (1 − 1

k+1e
− k

A t) (k+1)2

k b, 0 ≤ t < +∞. It

can be checked that x ∈ P (αb, θ
c, γd) with α(x) > b, where c = (k+1)2

km b. So
{x ∈ P (αb, θ

c, γd)|α(x) > b} 6= ∅. For any x ∈ P (αb, θ
c, γd), we obtain

b

k
≤ 1

1 + k
min

1
k≤t≤k

x(t) ≤ x(t)
1 + k

≤ x(t)
1 + t

≤ (k + 1)2

km
b, t ∈

[1
k
, k

]
,

and 0 ≤ x′(t) ≤ d, t ∈ [0,+∞). In view of assumption (H4) together with Lemma
2.10, we obtain

α(Tx) ≥ 1
k + 1

θ(Tx) =
1

k + 1
sup

0≤t<+∞

(Tx)(t)
1 + t

=
1

(k + 1)
sup

0≤t<+∞

1
1 + t

[ ∫ +∞

0

g(s)ϕ−1
p

( ∫ +∞

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds

+
∫ t

0

ϕ−1
p

( ∫ +∞

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds

]
≥ 1

(k + 1)2
[ ∫ k

1
k

g(s)ϕ−1
p

( ∫ k

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds

+
∫ k

1
k

ϕ−1
p

( ∫ k

s

φ(τ)f(τ, x(τ), x′(τ))dτ
)
ds

]
>

b

N

1
(k + 1)2

∫ k

1
k

(g(s) + 1)ϕ−1
p

( ∫ k

s

φ(τ)dτ
)
ds = b.

Hence, α(Tx) > b for x ∈ P (αb, θ
c, γd).

Next we will verify that the condition (2) of Theorem 2.3 is satisfied. Let x ∈
P (αb, γ

d) with θ(Tx) > c, it follows from Lemma 2.10 that

α(Tx) ≥ 1
k + 1

θ(Tx) >
1

k + 1
c =

1
k + 1

(k + 1)2

km
b =

(k + 1)
km

b > b,

Thus α(Tx) > b for all x ∈ P (αb, γ
d) with θ(Tx) > c.

Finally, we show that condition (3) of theorem 2.3 is satisfied. It is clear that
0 ∈ R(ψa, γ

d). Suppose that x ∈ R(ψa, γ
d) with ψ(x) = a, then by condition (H5)

and Lemma 2.9, we obtain

ψ(Tx) ≤Mγ(Tx) = M(Tx)′(0)

= Mϕ−1
p (

∫ +∞

0

φ(s)f(s, x(s), x′(s))ds)
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≤M · a

MC
ϕ−1

p (
∫ +∞

0

φ(s)ds = a.

Therefore, T has at least three fixed points x1, x2, x3 ∈ P (γd) such that

ψ(x1) < a, ψ(x2) > a with α(x2) < b, α(x3) > b.

In addition, condition (H2) guarantees that those fixed points are positive. So
(1.1) has at least three positive solutions x1, x2, x3 satisfying (3.1) and the proof is
complete. �

4. Example

Consider the boundary-value problem with integral boundary value conditions

(|x′|x′)′ + e−tf(t, x(t), x′(t)) = 0,

x(0) =
∫ +∞

0

e−2sx′(s)ds, lim
t→+∞

x′(t) = 0,
(4.1)

where

f(t, u, v) =

{
| sin t|
100 + 104

(
u

1+t

)10 + 1
100

(
v

200

)
, u ≤ 1,

| sin t|
100 + 104

(
1

1+t

)10 + 1
100

(
v

200

)
, u ≥ 1.

Set φ(t) = e−t and it is easy to verify that (H1) and (H2) hold. Choose k = 4,
a = 1

4 , b = 2, d = 200. Then by simple calculations, we can obtain M = 1, m = 1
2 ,

C = 1, N =
1
25

∫ 4

1
4

(e−2s + 1)
√
e−s − e−4ds ≥ 1

25

∫ 4

1
4

√
e−s − e−4ds >

1
48
.

So the nonlinear term f satisfies

(1) f(t, (1 + t)u, v) ≤ 0.01 + 104 + 0.01 < 4 × 104 = ϕ3(d/C), for (t, u, v) ∈
[0,+∞)× [0, 200]2;

(2) f(t, (1 + t)u, v) ≥ 104 > 962 = ϕ3(b/N), for (t, u, v) ∈ [ 14 , 4] × [ 12 , 25] ×
[0, 200];

(3) f(t, (1+t)u, v) ≤ 0.01+104×
(

1
4

)10+0.01 < 1
16 = ϕ3(a/MC), for (t, u, v) ∈

[0,+∞)× [0, 1
4 ]× [0, 200].

Therefore, the conditions in Theorem 3.1 are all satisfied. So (4.1) has at least
three positive solutions x1, x2, x3 such that

sup
0≤t<+∞

x′i(t) ≤ 200, i = 1, 2, 3;

sup
0≤t<+∞

x1(t)
1 + t

≤ 1
4
,

1
2
< sup

0≤t<+∞

x2(t)
1 + t

< 25, min
1
k≤t≤k

x2(t) ≤
5
2
;

sup
0≤t<+∞

x3(t)
1 + t

≤ 200 min
1
k≤t≤k

x3(t) >
5
2
.
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