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MULTIPLE SOLUTIONS FOR A Q-LAPLACIAN EQUATION ON
AN ANNULUS

SHIJIAN TAI, JIANGTAO WANG

Abstract. In this article, we study the q-Laplacian equation

−∆qu =
˛̨
|x| − 2

˛̨a
up−1, 1 < |x| < 3,

where ∆qu = div(|∇u|q−2∇u) and q > 1. We prove that the problem has two
solutions when a is large, and has two additional solutions when p is close to

the critical Sobolev exponent q∗ = Nq
N−q

. A symmetry-breaking phenomenon

appears which shows that the least-energy solution cannot be radial function.

1. Introduction

This article concerns the q-Laplacian equation

−∆qu = Φau
p−1 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where ∆qu = div(|∇u|q−2∇u), Ω = {x ∈ RN |1 < |x| < 3} is an annulus in RN ,
N ≥ 3, a > 0, p > q > 1 and Φa is the radial function

Φa(x) =
∣∣|x| − 2

∣∣a.
Equation (1.1) is an extension of the problem

−∆qu = |x|aup−1 in |x| < 1,

u = 0 on |x| = 1.
(1.2)

Equation (1.2) can be seen as a natural extension to the annular domain Ω of the
celebrated Hénon equation with Dirichlet boundary conditions

−∆u = |x|aup−1 in |x| < 1,

u = 0 on |x| = 1.
(1.3)

This equation was proposed by Hénon in [13] when he studied rotating stellar
structures.
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For a > 0, 2 < p < 2∗ = 2N/(N − 2), we generalize (1.3) to the case of q-
Laplacian. In fact, the weight function Φa(x) reproduces on Ω a similar qualitative
behavior of | · |a on the unit ball B in RN .

A standard compactness argument shows that the infimum

inf
0 6=u∈H1

0 (B)

∫
B
|∇u|2dx( ∫

B
|x|a|u|pdx

)2/p
(1.4)

is attained for 2 < p < 2∗ and any a > 0. Ni [16] proved that the infimum

inf
0 6=u∈H1

0,rad(B)

∫
B
|∇u|2dx( ∫

B
|x|a|u|pdx

)2/p
(1.5)

is attained for any 2 < p < 2∗ + 2a/(N − 2) by a function in H1
0,rad(B), the

space of radial H1
0 (B) functions. Therefore, radial solutions of (1.3) also exist for

supercritical exponents p. Indeed, H1
0,rad(B) shows a power-like decay away from

the origin (as a result of the Strauss Lemma, see [1, 21]) that combines with the
weight |x|a and provides the compactness of the embedding H1

0,rad(B) ⊂ Lp(B) for
any 2 < p < 2∗ + 2a/(N − 2).

When a > 0, Smets, Su and Willem obtained some symmetry-breaking results
for (1.3) in [23]. They proved that minimizers of (1.4) could not be radial, at least
for a sufficiently large. Consequently, (1.3) had at least two solutions when a was
large (see also [24]).

Serra [20] proved that (1.3) had at least one nonradial solution when p = 2∗, and
in [4] Badiale and Serra obtained the existence of more than one solutions to (1.3)
also for some supercritical values of p. These solutions are nonradial and they are
obtained by minimization under suitable symmetry constraints.

Cao and Peng [8] proved that, for p sufficiently close to 2∗, the ground-state
solutions of (1.3) possessed a unique maximum point whose distance from ∂B
tended to zero as p → 2∗. And they also proved the same results in the case of
q-laplacian of the Hénon equation (see [9]).

This result was improved in [18], where multi-bump solutions for the Hénon
equation with almost critical Sobolev exponent p were found, by applying a finite-
dimensional reduction. These solutions are not radial, though they are invariant
under the action of suitable subgroups of O(N), and they concentrate at boundary
points of the unit ball B in RN as p → 2∗. However, the role of a is a static one
(for more results for p ≈ 2∗, see also [19]).

When the weight disappeared; i.e. a = 0, Brezis and Nirenberg proved in [3]
that the ground state solution of −∆u = up in H1

0 (Ω) was not a radial function.
Actually, they proved that both a radial and a nonradial (positive) solution arise
as p ≈ 2∗.

When the weight in (1.1) disappeares; i.e. a = 0, Li and Zhou [14] proved that
existence of multiple solutions to the p-Laplacian type elliptic problem

−∆pu(x) = f(x, u) in Ω,
u = 0 on ∂Ω,

(1.6)

where Ω was a bounded domain in RN (N > 1) with smooth boundary ∂Ω, and
f(x, u) went asymptotically in u to |u|p−2u at infinity.
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When q = 2 in (1.1), Calanchi, Secchi and Terraneo [10] obtained multiple solu-
tions for a Hénon-like equation on 1 < |x| < 3. For more results about asymptotic
estimates for solutions of the Hénon equation with a large, one can see [5, 6].

This paper is mainly motivated by [10]. We want to extend the results in [10] to
a general q-Laplacian problem. We consider the critical points of

Ra,p =

∫
Ω
|∇u|qdx( ∫

Ω
Φa|u|pdx

)q/p
, u ∈W 1,q

0 (Ω)\{0}, (1.7)

which is the Rayleigh quotient associated with (1.1).
Our main results are as follows.

Theorem 1.1. Assume that p ∈ (q, q∗). For a large enough, any ground state ua,p

is a nonradial function.

Theorem 1.2. Assume that a > 0. For p close to q∗ the quotient Ra,p has at least
two nonradial local minima.

Theorem 1.3. There exist a > 0 and q < p < q∗ such that for all a ≥ ā and
p̄ ≤ p < q∗, it results that the mountain-pass level c(defined by (2.14))is a critical
value for Ra,p and it is attained by a nonradial function.

To the best of our knowledge, the results we obtain in this article are new. To
prove Theorem 1.1, the key is to give the energy estimates of both ground solutions
and radial symmetry solutions when p is fixed. Applying these estimates, we can
prove that ground solution is not radially symmetric when a→∞. Using the same
arguments in [10], we can prove Theorem 1.2 and Theorem 1.3. We would like to
point out that our problem is more complicated than the problem in [10].

This paper is organized as follows. In Section 2 we prove our main results. In
Section 3 we describe the behavior of ground-state solution of (1.1) when p < q∗ is
fixed and a→ +∞. Although the conclusion is not as precise as in the case p→ q∗,
we can nevertheless show that a sort of concentration near the boundary ∂Ω still
appears.

2. Proofs of main results

2.1. Proof of Theorem 1.1. Denote

Sa,p = inf
u∈W 1,q

0 (Ω)\{0}
Ra,p(u). (2.1)

It is easy to prove that up to a scaling for p subcritical Sa,p is attained by a
function ua,p that satisfies (1.1). To prove that for a is large any solution ua,p is
not radial first we need an estimate from above of Sa,p.

Lemma 2.1. Assume that p ∈ (q, q∗). There exists ā such that for a ≥ ā,

Sa,p ≤ Caq−N+ qN
p . (2.2)

Proof. We use the same techniques as in [23]. Let φ be a smooth function with
support in the unit ball B. Let us consider φa(x) = φ(a(x − xa)), where xa =
(3 − 1

a , 0, . . . , 0). Since φα has support in the ball B(xa,
1
a ), by the change of

variable y = a(x− xa), we obtain∫
Ω

Φaφ
p
a(x)dx =

∫
B(xa, 1

a )

∣∣|x| − 2
∣∣aφp

a(x)dx ≥
(
1− 2

a

)a
a−N

∫
B

φp(y)dy. (2.3)



4 S. TAI, J. WANG EJDE-2012/16

Furthermore,∫
Ω

|∇φa|qdx = aq

∫
Ω

|∇φ(a(x− xa))|qdx = aq−N

∫
B

|∇φ|qdx. (2.4)

It follows from (2.3) and (2.4) that

Ra,p(φa) =

∫
Ω
|∇φa|qdx( ∫

Ω
Φa(x)φp

adx
)q/p

≤ Caq−N+ qN
p .

Hence we obtain
Sa,p ≤ Ra,p(φa) ≤ Caq−N+ qN

p

for all a large enough. �

Let W 1,q
0,rad(Ω) be the space of radially symmetric functions of W 1,q

0 (Ω). In the
sequel, we denote u(x) = u(|x|) for u ∈W 1,q

0,rad(Ω).
Consider the minimization problem

Srad
a,p = inf

u∈W 1,q
0,rad(Ω)\{0}

Ra,p(u). (2.5)

It is well known that any minimizers of (2.5) can be scaled so as to be solutions of
(1.1). Thus, we will use freely this fact in the sequel.

In the following lemma, we obtain an estimate of the energy Srad
a,p as a→∞.

Lemma 2.2. Let p > q. As a → ∞, there exist two constants C1, C2 depending
on p such that

0 < C1 ≤
Srad

a,p

aq−1+ q
p

≤ C2 < +∞. (2.6)

Proof. Let φ ∈ C∞
0 (Ω) be a positive, radial function, and set

φa(x) = φa(|x|) = φ(a(|x| − 3 + 3/a)).

Then ∫
Ω

Φaφ
p
adx ≥

(
1− 2

a

)a
a−1

∫
Ω

φpdx

and ∫
Ω

|∇φa|qdx = ωN−1

∫ 3

3− 2
a

(φ′a(r))qrN−1dr

= ωN−1

∫ 3

1

aq(φ′(s))q
( s
a

+ 3− 3
a

)N−1

a−1ds

= aq−1ωN−1

∫ 3

1

(φ′(s))q
(s+ 3a− 3

sa

)N−1

sN−1ds

≤ 3N−1aq−1

∫
Ω

|∇φ|qdx,

since 1 ≤ s+3a−3
sa ≤ 3. Therefore,

Rrad
a,p (φa) =

∫
Ω
|∇φa|qdx( ∫

Ω
Φa(x)φp

adx
)q/p

≤ C(a, p)aq−1+ q
p ,

where

C(a, p) =
3N−1

∫
Ω
|∇φ|qdx

(1− 2
a )qa/p

( ∫
Ω
φpdx

)q/p
,
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for any p > q and a > 1, C(a, p) ≤ C2. So we obtain Srad
a,p ≤ C2a

q−1+ q
p .

To find the lower bound C1, we will do some scaling. Let us define the functions
φ1 : [1, 2] → [1, 2] and φ2 : [2, 3] → [2, 3] as follows:

φ1(r) = 2− (2− r)b, φ2(r) = 2 + (r − 2)b,

where b ∈ (0, 1) will be chosen later. It is obvious that we can obtain a piecewise
C1 homeomorphism φ : [1, 3] → [1, 3] by gluing φ1 and φ2. Now, for any radial
function u ∈W 1,q

0 (Ω), setting υ(ρ) = u(φ(ρ)) and choosing b = 1/(a+1), we obtain∫
Ω

Φa(x)
∣∣u(|x|)∣∣pdx

= ωN−1

∫ 3

1

Φa(r)|u(r)|prN−1dr

≤ 3N−1ωN−1

∫ 3

1

Φa(r)|u(r)|pdr

= 3N−1ωN−1

( ∫ 2

1

Φa(φ1(ρ))|υ(ρ)|pφ′1(ρ)dρ+
∫ 3

2

Φa(φ2(ρ))|υ(ρ)|pφ′2(ρ)dρ
)

= 3N−1ωN−1b

∫ 3

1

|υ(ρ)|pdρ

and ∫
Ω

|∇u|qdx = ωN−1

∫ 3

1

|u′(r)|qrN−1dr

≥ ωN−1

∫ 3

1

|u′(r)|qdr

= ωN−1

( ∫ 2

1

|υ′(ρ)|q 1
|φ′1(ρ)|q−1

dρ+
∫ 3

2

|υ′(ρ)|q 1
|φ′2(ρ)|q−1

dρ
)

= ωN−1
1

bq−1

∫ 3

1

|υ′(ρ)|q|ρ− 2|(1−b)(q−1)dρ

≥ ωN−1
1

bq−1

∫ 3

1

|υ′(ρ)|q|ρ− 2|(q−1)dρ.

Therefore,

Ra,p(u) ≥ Caq−1+ q
p inf

υ∈W 1,q
0 (Ω)\{0}

∫ 3

1
|υ′(ρ)|q|ρ− 2|(q−1)dρ( ∫ 3

1
|υ(ρ)|pdρ

)q/p
, (2.7)

where C depends only on N . To end the proof, we will show that the right-hand side
of (2.7) is greater than zero. This follows from some general Hardy-type inequality
(see [17, Theorem 11.4]), but we present here an elementary proof for the sake of
completeness. Indeed, given υ ∈W 1,p

0,rad(Ω), for ρ ∈ [1, 2], we can write

|υ(ρ)| = |υ(ρ)− υ(1)|

≤
∫ ρ

1

|υ′(t)||2− t|(q−1)/q 1
|2− t|(q−1)/q

dt

≤
( ∫ ρ

1

|υ′(t)|q|2− t|q−1dt
)1/q( ∫ ρ

1

1
|2− t|

dt
)(q−1)/q
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≤
( ∫ 3

1

|υ′(t)|q|2− t|q−1dt
)1/q(

− ln |2− ρ|
)(q−1)/q

.

Hence,∫ 2

1

|υ(ρ)|pdρ ≤
( ∫ 3

1

|υ′(t)|q|2− t|q−1dt
)p/q

∫ 2

1

(
− ln |2− ρ|

) p(q−1)
q

dρ

=
( ∫ 3

1

|υ′(t)|q|2− t|q−1dt
)p/q

∫ ∞

0

t
p(q−1)

q e−tdt

≤ Γ
(p(q − 1) + q

q

)( ∫ 3

1

|υ′(t)|q|2− t|q−1dt
)p/q

and in a similar way,∫ 3

2

|υ(ρ)|pdρ ≤ Γ
(p(q − 1) + q

q

)( ∫ 3

1

|υ′(t)|q|2− t|q−1dt
)p/q

.

Therefore,∫ 3

1

|υ′(t)|q|2− t|q−1dt ≥
( ∫ 3

1

|υ(ρ)|pdρ
)q/p 1

2q/pΓ
(p(q−1)+q

q

)q/p
.

This implies that the infimum in (2.7) is strictly positive. There exists a constant
C1 > 0 such that Srad

a,p ≥ C1a
q−1+ q

p . �

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Note that q − N + q
pN < q − 1 + q

p . Then it follows from
(2.2) and (2.6) that Sa,p < Srad

a,p when a is large. So any ground state ua,p is a
nonradial function. �

2.2. Proof of Theorem 1.2. Now we consider any minimum ua,p. The following
proposition describes the profile of ua,p as p→ q∗.

Proposition 2.3. Let p ∈ (q, q∗) and a > 0. Any minimum ua,p of Ra,p(u) in
W 1,q

0 \{0} satisfies for some x0 ∈ ∂Ω,
(1) |∇ua,p|q → µδx0 weakly in sense of measure as p→ q∗;
(2) |ua,p|q

∗ → νδx0 weakly in sense of measure as p→ q∗,

where µ > 0 and ν > 0 are such that µ ≥ S0,q∗ν
q/q∗ and δx is the Dirac mass at x.

Since the result can be proved by using the same arguments in [8], with some
minor modifications, we omit its proof here.

Remark 2.4. Proposition 2.3 implies that any ground state solution concentrates
in a single point at the boundary as p → q∗ and consequently this solution is
not radial. This symmetry breaking can be also proved by using a continuation
argument as in [3]. Indeed, limp→q∗ Sa,p = S0,q∗ , and since S0,q∗ < Srad

0,q∗ we
conclude as in [3] that ground state of Sa,p cannot be radially symmetric as p→ q∗.

Let

Ω− =
{
x ∈ RN : 1 < |x| < 2

}
, Ω+ =

{
x ∈ RN : 2 < |x| < 3

}
,

Σ =
{
u ∈W 1,p

0 (Ω)\{0} :
∫

Ω−
|∇u|qdx =

∫
Ω+

|∇u|qdx
}
,
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∧ =
{
u ∈W 1,p

0 (Ω) :
∫

Ω−
|∇u|qdx >

∫
Ω+

|∇u|qdx
}
.

We already know that any global minimizer of Ra,p yields a first solution ua,p. From
Proposition 2.3 we know that this solution concentrates at precisely one point of the
boundary ∂Ω. Noting that this boundary has two connected components, we will
minimize Ra,p over the set Λ of W 1,q

0 functions which concentrate at the opposite
component of boundary. We need a careful estimate to show that minimizers fall
inside the interior of Λ.

To obtain a second local minimizer, we assume without loss of generality that
any ua,p concentrates at some point on the sphere |x| = 3. After a rotation, we can
even assume that any ua,p concentrates at the point (3, 0, . . . , 0).

Lemma 2.5. If a > 0, then there exists δ > 0 such that

lim inf
p→q∗

Ta,p > S0,q∗ + δ, (2.8)

where Ta,p = infu∈ΣRa,p(u).

Proof. First we prove that Ta,p is attained by a function υa,p ∈ Σ. Consider a
minimizing sequence {un} for Ta,p. We can apply the homogeneity of Ra,p and
assume that

∫
Ω
|∇un|qdx = 1. Passing to a subsequence, un converges to υ = υa,p

weakly in W 1,q
0 (Ω) and strongly in Ls(Ω), for all s ∈ (q, q∗). What we have to check

is that υ ∈ Σ (proving that the convergence of un to υ is strong). From the strong
convergence in Ls(Ω) we have that

Ra,p(υ) ≤
1( ∫

Ω
Φa(x)|υ|pdx

)q/p
= Ta,p (2.9)

and particularly υ 6= 0. We may assume that υ ≥ 0 in Ω. For the sake of contra-
diction, assume that ∫

Ω+
|∇υ|qdx < 1

2
.

Fix a nonnegative smooth function ψ1 ∈ C∞
0 (Ω+), ψ1 6= 0 and δ ≥ 0. Setting

u = υ + δψ1 from the positivity of υ and ψ1, we have, for δ > 0,∫
Ω

Φa(x)|υ|pdx <
∫

Ω

Φa(x)|u|pdx. (2.10)

Now, ∫
Ω+

|∇u|qdx =
∫

Ω+
|∇υ + δ∇ψ1|qdx, (2.11)

if we define f1 : [0,+∞] → R by

f1(δ) =
∫

Ω+
|∇υ + δ∇ψ1|qdx,

we know that f1 is continuous and f1(0) < 1
2 , limδ→∞ f1(δ) = +∞. Hence there ex-

ists δ1 > 0 with f1(δ1) = 1/2. We can reason in an analogous way if
∫
Ω−

|∇υ|qdx <
1
2 in order to find δ2 ≥ 0 and ψ2 ≥ 0 such that

∫
Ω−

|∇(υ + δ2ψ2)|qdx = 1/2.
From (2.10), this implies that there exists ω = υ + δ1ψ1 + δ2ψ2 ∈ Σ such that

Ra,p(ω) < Ta,p, which yields a contradiction.
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Finally we must have that υa,p ∈ Σ is a minimum point. Moreover for any a > 0
and q < p < q∗, we have Ta,p ≥ Sa,p. We want to prove that the inequality is strict
at least for p→ q∗. In fact assume on the contrary that

lim inf
p→q∗

Ta,p = lim inf
p→q∗

Ra,p(υa,p) = S0,q∗ .

By the definition of S0,q∗ and Hölder inequality we obtain, for a subsequence p =
pk → q∗,

S0,q∗ ≤
∫
Ω
|∇υa,p|qdx( ∫

Ω
|υa,p|q∗dx

) q
q∗

≤
∣∣Ω∣∣ (q∗−p)q

q∗p

∫
Ω
|∇υa,p|qdx( ∫

Ω
|υa,p|pdx

)q/p

≤
∣∣Ω∣∣ (q∗−p)q

q∗p

∫
Ω
|∇υa,p|qdx( ∫

Ω
Φa(x)|υa,p|pdx

)q/p
= S0,q∗ + o(1),

since the weight satisfies Φa ≤ 1. In particular, we obtain∫
Ω
|∇υa,p|qdx( ∫

Ω
|υa,p|q∗dx

) q
q∗

→ S0,q∗

and υa,p is a minimizing sequence of S0,q∗ .
By the same argument as Cao and Peng [8, Theorem 1.1], we can prove that υa,p

concentrates at precisely one point of the boundary ∂Ω. This yields a contradiction
since

∫
Ω+ |∇υa,p|qdx =

∫
Ω−

|∇υa,p|qdx. �

Now we consider the points

x0,ε = x0 =
(
3− 1

| ln ε|
, 0, . . . , 0

)
, x1,ε = x1 =

(
1 +

1
| ln ε|

, 0, . . . , 0
)
,

and the function

U(x) =
1

(1 + |x|
q

q−1 )(N−q)/q
.

We recall that S0,q∗ is not achieved on any proper subset of RN , and that it is
independent of Ω. However, it is known that S0,q∗(RN ) is achieved, and all the
minimizers can be written in the form

Uθ,y =
1

(θ2 + |x− y|
q

q−1 )(N−q)/q
, θ > 0, y ∈ RN .

We set

U i
ε(x) = ε−

N−q
q U

( x− xi

ε(q−1)/q

)
=

1

(ε+ |x− xi|
q

q−1 )
N−q

q

and denote by ψi(i = 0, 1) two cut-off functions such that 0 ≤ ψi ≤ 1, |∇ψi| ≤
C| ln ε| for some constant C > 0, and

ψi =

{
1 if |x− xi| < 1

2| ln ε| ,

0 if |x− xi| ≥ 1
| ln ε| .

The following lemma shows that the truncated functions

ui
ε = ψi(x)U i

ε(x), i = 0, 1, (2.12)
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are almost minimizers for S0,q∗ . Since it is an easy modification of the arguments
of [8], we omit the proof of this fact.

Lemma 2.6. If a > 0, then

lim
p→q∗

Ra,p(ui
ε) = So,q∗ +K(ε), (2.13)

with limε→0K(ε) = 0.

As a direct consequence of Lemma 2.6, we obtain the following result.

Corollary 2.7. S0,q∗ = Sα,q∗ .

Proof. On one hand, S0,q∗ ≤ Sa,q∗ since Φa(|x|) ≤ 1. On the other hand by Lemma
2.6, we have

Ra,q∗(ui
ε) = lim

p→q∗
Ra,p(ui

ε) = S0,q∗ +K(ε),

which implies that S0,q∗ + K(ε) ≥ Sa,q∗ for every ε > 0. Letting ε → 0, we infer
S0,q∗ ≥ Sa,q∗ . Therefore S0,q∗ = Sa,q∗ . �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let ua,p be a ground state solution. Let us suppose that it
concentrates on the outer boundary. The infimun of Ra,p on Λ̄ is attained. However
it cannot be attained on the boundary ∂Λ = Σ. In fact, from Lemma 2.5, we obtain

inf
Σ
Ra,p(u) > S0,q∗ + δ, as p→ q∗

and
inf
Λ
Ra,p(u) ≤ Ra,p(u1

ε) → S0,q∗ +K1(ε), as p→ q∗,

since u1
ε ∈ Λ for ε sufficiently small. Then the infimum is attained in an interior

point of Λ and is therefore a critical point of Ra,p. �

2.3. Proof of Theorem 1.3. Now we prove the existence of a third nonradial
solution, in the previous section we proved the existence of two solutions of (1.1)
which were local minima of Rayleigh quotient for p near q∗. We would expect
another critical point of Ra,p located in some sense between these minimum points.

For ε sufficiently small let ui
ε = ψi(x)U i

ε(x), i ∈ {0, 1}, be defined as in (2.12).
We will verify that Ra,p has the mountain-pass geometry. Let us introduce the
mountain-pass level

c = c(a, p) = inf
γ∈Γ

max
t∈[0,1]

Ra,p(γ(t)), (2.14)

where
Γ =

{
γ ∈ C([0, 1],W 1,q

0 (Ω)) : γ(0) = u0
ε, γ(1) = u1

ε

}
is the set of continuous paths joining u0

ε with u1
ε. We claim that c is a critical value

for Ra,p.
We start to prove that c is larger, uniformly with respect to ε, than the values

of the functional Ra,p at the points u0
ε and u1

ε.

Lemma 2.8. Set Mε = max{Ra,p(u0
ε), Ra,p(u1

ε)}. There exists σ > 0 such that
c ≥Mε + σ uniformly with respect to ε.
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Proof. We prove that there exists σ such that for all γ ∈ Γ,

maxRa,p(γ(t)) ≥Mε + σ.

A simple continuity argument shows that for every γ ∈ Γ there exists tγ such that
γ(tγ) ∈ Σ, where

Σ =
{
u ∈W 1,p

0 (Ω)\{0} :
∫

Ω−
|∇u|qdx =

∫
Ω+

|∇u|qdx
}
.

In fact the map

t ∈ [0, 1] 7→
∫

Ω+
|∇γ(t)|qdx−

∫
Ω−

|∇γ(t)|qdx

is continuous and it takes a negative value at t = 0 and a positive value at t = 1.
It follows from Lemma 2.5 that for p near q∗ there exists δ > 0 such that

max
t∈[0,1]

Ra,p(γ(t)) ≥ Ra,p(γ(tγ)) ≥ inf
u∈Σ

Ra,p(u) ≥ S0,q∗ + δ.

On the other hand, for ε small enough, we have

Mε < S0,q∗ +
δ

2
.

This completes the proof. �

By the previous estimates, we can show that c is a critical level for Ra,p. As a
result a further nonradial solution to (1.1) arises.

Proof of Theorem 1.3. By the previous results, we can apply a deformation argu-
ment (see [1, 22]) to prove that c is a critical level and it is achieved ( since the
PS condition is satisfied ) by a function υ. By the asymptotic estimate (2.6) for
the radial level Srad

a,p , we know that there exists a constant C independent of p such
that

Srad
a,p ≥ Caq−1+ q

p .

Particularly, we obtain Srad
a,p → +∞asa → +∞. Therefore we can choose a0 such

that
Srad

a,p ≥ 3S0,q∗ ∀a ≥ a0.

Define ζ ∈ Γ by ζ(t) = tu1
ε + (1 − t)u0

ε for all t ∈ [0, 1], and let τ ∈ [0, 1] be such
that

Ra,p(ζ(τ)) = max
t∈[0,1]

Ra,p(ζ(t)).

Noting that u0
ε and u1

ε have disjoint support one has, for ε small enough, we have

Ra,p(υ) = c ≤ Ra,p(ζ(τ))

=

∫
Ω
|∇(τu1

ε + (1− τ)u0
ε)|qdx( ∫

Ω
Φa|τu1

ε + (1− τ)u0
ε|pdx

)q/p

=

∫
Ω
τ q|∇u1

ε|qdx+
∫
Ω
(1− τ)q|∇u0

ε|qdx(
τp

∫
Ω

Φa|u1
ε|pdx+ (1− τ)p

∫
Ω

Φa|u0
ε|pdx

)q/p

≤
τ q

∫
Ω
|∇u1

ε|qdx(
τp

∫
Ω

Φa|u1
ε|pdx

)q/p
+

(1− τ)q
∫
Ω
|∇u0

ε|qdx(
(1− τ)p

∫
Ω

Φa|u0
ε|pdx

)q/p

= Ra,p(u1
ε) +Ra,p(u0

ε)
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≤ 2Mε < 3S0,q∗

≤ Srad
a,p .

�

3. Behavior of the ground-state solution for a large

In this section, we mainly analyze a ground state solution as a→ +∞. Even in
this case this solution tends to “concentrate” at the boundary ∂Ω. However, this
concentration is much weaker than concentration as p→ q∗.

We use the notation C(ρ1, ρ2) = {x ∈ RN |ρ1 < |x| < ρ2}. Let δ be sufficiently
small (say δ < 1

2 ) and ϕ be a smooth cut-off function such that 0 ≤ ϕ ≤ 1 with

ϕ(x) =

{
1, x ∈ C(1, 1 + δ) ∪ C(3− δ, 3),
0, x ∈ C(2− δ, 2 + δ).

(3.1)

From now on, since p ∈ (q, q∗) is fixed we denote a ground state solution of
problem (1.1) ua,p with ua.

Lemma 3.1. Let ua be such that Ra,p(ua) = Sa,p. If ϕ is defined in (3.1), then

Ra,p(ϕua) = Sa,p + o(Sa,p)asa→ +∞. (3.2)

Proof. By the homogeneity of Ra,p, we may assume
∫
Ω
|∇ua|qdx = 1. We will prove

it by two steps.
Step 1. We claim that∫

Ω

Φa(ϕua)pdx =
∫

Ω

Φau
p
adx+ o

( ∫
Ω

Φau
p
adx

)
. (3.3)

Actually, if we assume

lim sup
α→∞

∫
Ω

Φau
p
a(1− ϕp)dx∫

Ω
Φau

p
adx

= b > 0,

which implies that, up to some subsequence,∫
Ω

Φau
p
a(1− ϕp)dx∫

Ω
Φau

p
adx

>
b

2
> 0.

Since 1− ϕp ≡ 0 on C(1, 1 + δ) ∪ C(3− δ, 3), we have∫
Ω

Φau
p
a(1− ϕp)dx =

∫
C(1+δ,3−δ)

Φau
p
a(1− ϕp)dx

≤ (1− δ)a

∫
Ω

up
a(1− ϕp)dx

≤ (1− δ)a

∫
Ω

up
adx.

Hence, ∫
Ω

up
adx ≥ (1− δ)−a

∫
Ω

Φau
p
a(1− ϕp)dx.

Thus, ∫
Ω
up

adx∫
Ω

Φau
p
adx

≥ (1− δ)−a

∫
Ω

Φau
p
a(1− ϕp)dx∫

Ω
Φau

p
adx

≥ (1− δ)−a b

2
. (3.4)
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Since Sp/q
a,p = (

∫
Ω

Φau
p
adx)

−1, (3.4) can be written as

Sp/q
a,p ≥ b

2
(1− δ)−a∫

Ω
up

adx
≥ b

2
(1− δ)−aS

p/q
0,p ,

where

S0,p = inf
u 6=0

∫
Ω
|∇u|qdx( ∫

Ω
updx

)q/p
.

On the other hand, from (2.2), it follows that

Sp/q
a,p ≤ Cap− pN

q +N ,

which gives a contradiction for a large. Hence (3.3) is true.
Step 2. Now we prove that∫

Ω

|∇(ϕua)|qdx =
∫

Ω

|∇ua|qdx+ o(1) = 1 + o(1). (3.5)

It is easy to prove that ua satisfies the problem

−∆qua = Sp/q
a,p Φau

p−1
a in Ω,

ua > 0 in Ω,
ua = 0 on ∂Ω.

(3.6)

Since
∫
Ω
|∇ua|qdx = 1, up to subsequences, as a→∞, we have that:

ua → u weakly in W 1,q
0 (Ω), and strongly in Ls(Ω) ė. in Ω.

Now we prove that u = 0. In fact, multiplying problem (3.6) by a smooth
function φ with suppφ b Ω and integrate, we obtain∫

Ω

|∇ua|q−2∇ua∇φdx =
∫

Ω

Sp/q
a,p Φau

p−1
a φdx→ 0, as a→ +∞, (3.7)

since, by (2.2), Sp/q
a,p Φa → 0 uniformly on suppφ and ua is uniformly bounded in

Ls for q < s < q∗. Hence
∫
Ω
|∇u|q−2∇u∇φdx = 0 for all φ ∈ C∞

0 (Ω). Since
u ∈W 1,q

0 (Ω), this implies that u = 0.
Note that ∣∣∣ ∫

Ω

|∇ua|qdx−
∫

Ω

|∇(ϕua)|qdx
∣∣∣

=
∣∣∣ ∫

Ω

|∇ua|qdx−
∫

Ω

|∇uaϕ+∇ϕua|qdx
∣∣∣

≤
∫

Ω

|∇ua|q(1− ϕq)dx+
∫

Ω

|∇ϕua|qdx

+ C

∫
Ω

∣∣∣|∇uaϕ|q−1∇ϕua +∇uaϕ|∇ϕua|q−1
∣∣∣dx.

(3.8)

Due to the strong convergence in Ls for all s ∈ (q, q∗), the last terms tend to zero.
To estimate the term

∫
Ω
|∇(ua)|q(1−ϕq)dx, we multiply (3.6) by ua(1−ϕq) = uaη

and integrate. Since supp η = supp(1− ϕq) b Ω, we have∫
Ω

|∇ua|q−2∇ua∇(uaη)dx =
∫

Ω

Sp/q
a,p Φau

p
aηdx.
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Therefore,∣∣ ∫
Ω

|∇ua|qηdx
∣∣ ≤ ∣∣ ∫

Ω

|∇ua|q−2∇ua∇η · uadx
∣∣ +

∣∣ ∫
Ω

Sp/q
a,p Φau

p
aηdx

∣∣
≤ ‖∇η‖∞

∫
supp η

|∇ua|q−1|ua|dx+
∣∣ ∫

supp η

Sp/q
a,p Φau

p
aηdx

∣∣ → 0.

Hence (3.5) holds. �

In Lemma 3.1 we proved that the infimum of the Rayleigh quotient Ra,p is es-
sentially achieved by the function φua. From the definition of φ, we can decompose
φua = ua,1 +ua,2, where ua,1 vanishes in C(2−δ, 3) and ua,2 vanishes in C(1, 2+δ).
The following proposition is the key step in order to prove that the function φua

concentrates at the boundary.

Proposition 3.2. Let φua = ua,1 + ua,2, where suppua,1 ⊂ C(1, 2 − δ) and
suppua,2 ⊂ C(2 + δ, 3), and λa =

∫
Ω

Φau
p
a,1dx/

∫
Ω

Φau
p
a,2dx. If limn→∞ λan = L

for a sequence an →∞, then either L = 0 or L = ∞.

Remark 3.3. For the quantity λa =
∫
Ω

Φau
p
a,1dx/

∫
Ω

Φau
p
a,2dx, we cannot exclude

the case lim supa→∞ λa = +∞ and lim infa→∞ λa = 0. If a uniqueness result
for the minimizer ua were known, then it would be easy to infer that a 7→ ua is
continuous. Hence λa would be continuous too, and we could replace both the
lower and the upper limit by a unique limit. Generally, one does not expect such
a uniqueness property for any p and any a. However, when p ≈ q∗ we conjecture
that the uniqueness argument of [19] may be used to our setting.

Proof. By the definition of ua,1 and ua,2 we have

Ra,p(ϕua) =

∫
Ω
|∇ua,1|qdx+

∫
Ω
|∇ua,2|qdx( ∫

Ω
Φau

p
a,1dx+

∫
Ω

Φau
p
a,2dx

)q/p
. (3.9)

Since ua is a positive solution, we can say that λa > 0. We get

Ra,p(ϕua)

=

∫
Ω
|∇ua,1|qdx+

∫
Ω
|∇ua,2|qdx(

λa

∫
Ω

Φau
p
a,2dx+

∫
Ω

Φau
p
a,2dx

)q/p

=

∫
Ω
|∇ua,1|qdx

(λa + 1)q/p
( ∫

Ω
Φau

p
a,2dx

)q/p
+

∫
Ω
|∇ua,2|qdx

(λa + 1)q/p
( ∫

Ω
Φau

p
a,2dx

)q/p

=
λ

q/p
a

∫
Ω
|∇ua,1|qdx

(λa + 1)q/p
( ∫

Ω
Φau

p
a,1dx

)q/p
+

∫
Ω
|∇ua,2|qdx

(λa + 1)q/p
( ∫

Ω
Φau

p
a,2dx

)q/p
.

(3.10)

By the definition of Sa,p each quotient Ra,p(ua,1) and Ra,p(ua,2) in the last term
is greater than or equal to Sa,p. Therefore by Lemma 3.1 and equation (3.9) we
obtain

Sa,p + o(Sa,p) ≥
1 + λ

q/p
a

(λa + 1)q/p
Sa,p. (3.11)

We notice that the function g(x) = 1+xq/p

(x+1)q/p is strictly greater than 1 for every
x > 0, g(0) = 1 and g(x) → 1 as x → +∞. Further it is increasing in [0, 1] and
decreasing in [1,+∞) and maxx>0 g(x) = g(1) = 21−q/p. Let L ∈ Λ and {an} a
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sequence such that λan → L as n→ +∞. Taking to the limit in (3.11), we obtain
that 1 ≥ 1+Lq/p

(L+1)q/p and so either L = +∞ or L = 0. �

Corollary 3.4. With the notation of Proposition 3.2, for any sequence {an} such
that λan → 0 one has

lim
n→+∞

∫
Ω
|∇uan,1|qdx∫

Ω
|∇uan,2|qdx

= 0. (3.12)

Proof. Denote ∫
Ω
|∇ua,1|qdx∫

Ω
|∇ua,2|qdx

= κa

and suppose that lim supn→∞ κan
> 0. Passing to subsequences, κan

> κ > 0 for
some κ. Therefore we have

San,p + o(San,p) =

∫
Ω
|∇uan,1|qdx+

∫
Ω
|∇uan,2|qdx( ∫

Ω
Φanu

p
an,1dx+

∫
Ω

Φanu
p
an,2dx

)q/p

=
(1 + κan

)
∫
Ω
|∇uan,2|qdx

(
∫
Ω

Φanu
p
an,2dx)q/p(1 + λan)q/p

≥ Ran,p(uan,2)
1 + κ

1 + o(1)
≥ (1 + κ)San,p + o(San,p),

which is a contradiction. Therefore,

κan =

∫
Ω
|∇uan,1|qdx∫

Ω
|∇uan,2|qdx

→ 0.

�

The following result is an immediate consequence of the previous results.

Proposition 3.5. For any an such that λan
→ 0,

lim
n→+∞

∫
Ω

|∇uan,1|qdx = 0. (3.13)
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[5] J. Byeon, Z. Q. Wang; On the Hénon equation: asymptotic profile of ground states. I. Ann.
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growth. Math. Z. 256 (2007), 75-97.

[20] E. Serra; Non radial positive solutions for the Hénon equation with critical growth. Calc. Var.
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