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TRAVELING WAVES AND SPREADING SPEED ON A LATTICE
MODEL WITH AGE STRUCTURE

ZONGYI WANG

Abstract. In this article, we study a lattice differential model for a single
species with distributed age-structure in an infinite patchy environment. Using
method of approaches by Diekmann and Thieme, we develop a comparison
principle and construct a suitable sub-solution to the given model, and show
that there exists a spreading speed of the system which in fact coincides with
the minimal wave speed.

1. Introduction

Assume u(t, a, x) is the population density at time t, age a and spatial location
x, and x denotes the point coordinate which may be an integer, in Z, or real number
in R. We study the species in a patchy environment with infinite number of patches
connected by diffusion of population within the neighboring islands, where we can
describe the patches as integer nodes of a one-dimensional lattice. In this case we
change x to j, and let u(t, a, j) = uj(t, a) denote the population density of the
species at j-th patch. Let f(r) be a probability density function which specifies
the probability of maturing of an individual with age a ≥ r. This function satisfies
f(0) = 0, f(∞) = 0 and

∫∞
0

f(r)dr = 1. Let wj(t) denotes the total of mature
population at time t and location j:

wj(t) =
∫ ∞

0

f(r)
( ∫ ∞

r

uj(t, a)da
)
dr.

Ling [5] derived the lattice model

dwj(t)
dt

= D[wj+1(t) + wj−1(t)− 2wj(t)]− dwj(t)

+
1
2π

∫ ∞

0

e−daf(a)
∞∑

l=−∞

β(a, l)b(wl+j(t− a))da, t > 0,
(1.1)

where

β(a, l) = 2
∫ π

0

cos(lω)e−4Da sin2( ω
2 )dω.
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Note that this equation has a nonlocal term
∑∞

l=−∞ β(a, l)b(wl+j(t−a)) and a delay
that is continuously distributed and infinite. Ling studied the existence and unique-
ness of solutions to (1.1) with an initial value, also discussed the global attractivity
of the zero solution, and the existence of wavefronts with speed greater than the
spreading speed c∗ of traveling wave. Motivated by the method in Diekmann and
Thieme [9], in this article, we give a study on the traveling wave and spreading
speed for (1.1). More information on the traveling waves for lattice differential
systems can be found in [2, 3, 4, 5, 7, 8, 10] and the references therein.

Let R+ := [0,+∞) and f̃(d) :=
∫∞
0

f(a)e−dada < 1. We will use the following
assumptions:

(H0) b(0) = 0, b(w) ≤ b′(0)w for w ≥ 0; b(w)f̃(d) < dw for w > 0, and
b′(0)f̃(d) < d.

(H1) b(0) = 0, b ∈ C1(R+, R+), b is non-decreasing function on [0,K] and
b(K)f̃(d) ≤ dK, |b(u)− b(v)| ≤ b′(0)|u− v| for u, v ∈ R+.

(H2) b(0) = 0, b is non-decreasing function on [0,K], b(w) ≤ b′(0)w for w ∈ R+.
(H3) b′(0)f̃(d) > d, b(w)f̃(d) = dw admits a positive solution w+ on (0,K].

b(w)f̃(d) > dw for 0 < w < w+; and b(w)f̃(d) < dw for w > w+.

This article is organized as follows. In Section 2, we introduce some definitions
and properties of the characteristic equations. In Section 3, we establish the well-
posedness and the comparison principle for (1.1), and obtain our main result on
the existence of the spreading speed c∗ of traveling wave of (1.1). We also give
an estimate for c∗ and study the relation between the spreading speed with the
minimal wave speed.

2. Preliminaries

A solution {wj(t)}j∈Z is called a traveling wave of (1.1) provided that it has the
form wj(t) = φ(j + ct) = φ(s). A sequence of functions W (t) = {wj(t)}j∈Z is called
isotropic on an interval I if wj(t) = w−j(t) for j ∈ Z and t ∈ I. Define

C+
K(−∞, T ] = {φ : φ is continuous function defined from (−∞, T ] to [0,K]}.

We need also the following notation.

BN = {j ∈ N : |j| ≤ N,N ∈ N},
wj(t) = w(t, j) for j ∈ Z, W (t) = W (t, ·) = {wj(t)}j∈Z,

suppW (t, ·) = {j : w(t, j) 6= 0} is the support of W (t, ·),
W (t) ≥ V (t) if wj(t) ≥ vj(t) for j ∈ Z,

W (t) � V (t) if W (t) ≥ V (t) and wj(t) > vj(t) for j ∈ suppV (t, ·).

A constant c∗ > 0 is called the spreading speed of (1.1) provided that

lim
t→∞

sup{wj(t) : |j| ≥ ct} = 0 for c > c∗, (2.1)

lim
t→∞

inf{wj(t) : |j| ≤ ct} ≥ w+ > 0 for c ∈ (0, c∗). (2.2)

where {wj(t)}j∈Z is a solution of (1.1).
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Substituting wj(t) = φ(j + ct) = φ(s) into (1.1), we obtain the wave equation

cφ′(s) = D[φ(s + 1) + φ(s− 1)− 2φ(s)]− dφ(s)

+
1
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)b(φ(s + l − ca))da.
(2.3)

The following assumption is needed for considering characteristic equation.
(H4) Assume that for a given c > 0, one of the following two conditions is

satisfied,
(i) For any λ > 0,

∫∞
0

f(a)e−dae2D(cosh λ−1)a−λcada < ∞ holds.
(ii) There has λ0 > 0, for any λ < λ0,

∫∞
0

f(a)e−dae2D(cosh λ−1)a−λcada <
∞ and

lim
λ→λ0−0

∫ ∞

0

f(a)e−dae2D(cosh λ−1)a−λcada = +∞.

If case (i) holds, let λ̄ = λ̄(c) = +∞; if case (ii) holds, let λ̄ = λ̄(c) = λ0.
Assume that (H1)-(H4) hold. Then (2.3) has two equilibria w = 0 and w = w+ >

0 in [0,K]. Denote the characteristic equation of (2.3) at w0 := 0, by ∆(λ, c) = 0,
we have

∆(λ, c) = −cλ + D[eλ + e−λ − 2]− d +
b′(0)
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)eλle−λcada.

(2.4)
where

1
2π

∞∑
l=−∞

β(a, l)eλl = exp{D[e−λ + eλ − 2]a} = e2D(cosh λ−1)a

(see [10]). Simplify (2.4) to obtain

∆(λ, c) := −cλ + D[eλ + e−λ − 2]− d + b′(0)
∫ ∞

0

f(a)e[−d−cλ+2D(cosh λ−1)]ada = 0.

(2.5)
From (2.4)-(2.5), it is easy to observe the following fact.

Lemma 2.1. If b satisfies (H2)-(H4). Then there exists a unique pair (c∗, λ∗)
(c∗ > 0, λ∗ > 0) such that

(i) ∆(λ∗, c∗) = 0, ∂
∂λ∆(λ∗, c∗) = 0;

(ii) for 0 < c < c∗ and any λ ∈ (0, λ̄),∆(λ, c) > 0;
(iii) for c > c∗, the equation ∆(λ, c) = 0 has two positive real roots 0 < λ1 <

λ2 < λ̄, and there exists ε0 > 0 such that for any ε ∈ (0, ε0) with 0 < λ1 <
λ1 + ε < λ2, we have ∆(λ1 + ε, c) < 0.

We rewrite (2.5) as

1 =
1

δ + λc

[
D(eλ+e−λ)+b′(0)

∫ ∞

0

f(a)e−dae2D(cosh λ−1)a−λcada
]

=: Lc(λ), (2.6)

where δ := 2D + d. Hence c∗ can be represented as

c∗ := inf{c > 0 : there exists some λ ∈ R+, such that Lc(λ) = 1}.
From Lemma 2.1 we have

Lc(λ) > 1 for λ ∈ (0, λ̄), and c ∈ (0, c∗); Lc(λ) < 1 for λ ∈ (λ1, λ2) and c > c∗.
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Now we shall show that c∗ is the spreading speed of (1.1). Consider the equivalent
form

wj(t) = e−δtwj(0) +
∫ t

0

e−δ(t−s){D[wj+1(s) + wj−1(s)]

+
1
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)b(wl+j(s− a))da}ds, j ∈ Z, t ≥ 0,

wj(t) = wo
j (t), j ∈ Z, t ∈ (−∞, 0],

(2.7)
For any W o = {wo

j}j∈Z, wo
j ∈ C+

K(−∞, 0], w0
j (0) > 0, j ∈ Z, and T ∈ [0,∞], define

the set

ΛT = {W = {wj}j∈Z : wj ∈ C+
K(−∞, T ), wj(t) = wo

j (t) for t ∈ (−∞, 0]},

Equip ΛT with the norm

‖W‖λ := sup
t∈[0,T ),j∈Z

|wj(t)|e−λt.

Therefore, (ΛT , ‖ · ‖λ) is a Banach space. Define the sequence of functions ST =
{ST

j }j∈Z ∈ ΛT by

ST
j [W ](t) =


e−σtwj(0) +

∫ t

0
e−σ(t−s){D[wj+1(s) + wj−1(s)]

+ 1
2π

∫∞
0

f(a)e−da
∑∞

l=−∞ β(a, l)b(wl+j(s− a))da}ds, j ∈ Z, t ≥ 0,

wo
j (t), j ∈ Z, t < 0.

Then ST
j [W ](t) is continuous in t ∈ (−∞, T ).

Theorem 2.2. Suppose the initial function W o = {wo
j}j∈Z is isotropic on interval

(−∞, 0], wo
j ∈ C+

K(−∞, 0], j ∈ Z, and there exists N̄ ∈ N such that suppW o(t, ·) ⊆
BN̄ , t ∈ (−∞, 0]. Then for any c > c∗, (2.1) holds; i.e., limt→∞ sup{wj(t)| |j| ≥
ct} = 0.

Proof. Define a sequence of maps by

W (n)(t) = S∞[W (n−1)](t) for n ∈ N, t ∈ R, W (o)(t) = {w(o)
j (t)}j∈Z,

w
(o)
j (t) =

{
wo

j (t), t ∈ (−∞, 0],
wo

j (0), t ∈ (0,∞).

Then W (o)(t) is isotropic on R, and suppW (o)(t, ·) ⊂ BN̄ for t ∈ R. Similarly
to [5, Theorem 3.1], we obtain a convergent sequence in Λ∞, which is denoted as
{W (n)(t)}, t ∈ [0,∞). Let

W (t) =

{
limn→∞W (n)(t), t ∈ [0,∞),
W (o)(t), t ∈ (−∞, 0].

By Lebesgue’s dominated convergence theorem, (2.7) has a solution W ∈ Λ∞,
which is isotropic on R. For any c1 > c∗, let c2 ∈ (c∗, c1). By the assumption on
W (o), we choose proper N ∈ N such that

w
(o)
j (t)eλ(j−c2t) ≤ KeλN for t ≥ 0, λ > 0, j ∈ Z. (2.8)
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For t ≥ 0, by (2.8) we have

w
(1)
j (t)eλ(j−c2t)

= e−(δ+λc2)t
{

w
(o)
j (0)eλj +

∫ t

0

eδsD[w(o)
j+1(s)e

λ(j+1)e−λ + w
(o)
j−1(s)e

λ(j−1)eλ]ds

+
1
2π

∫ t

0

eδs

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)b(wl+j(s− a))eλ(j+l)e−λlda ds
}

≤ e−(δ+λc2)t
{

KeλN + D

∫ t

0

KeλNe(δ+λc2)s(e−λ + eλ)ds

+ b′(0)
( ∫ ∞

0

f(a)e−dae2D(coshλ−1)ada
)
KeλN

∫ t

0

e(δ+λc2)sds
}

= e−(δ+λc2)tKeλN
{

1 +
[
D(e−λ + eλ)

+ b′(0)
∫ ∞

0

f(a)e−dae2D(coshλ−1)ada
] ∫ t

0

e(δ+λc2)sds
}

≤ KeλN [1 + Lc2(λ)].
(2.9)

From the above inequality and by induction, we obtain

w
(n)
j (t)eλ(j−c2t) ≤ KeλN [1 + Lc2(λ) + · · ·+ (Lc2(λ))n]. (2.10)

Noting −d+b′(0)
∫∞
0

f(a)e−dada > 0, we have Lc(0) > 1 for c > 0. Since Lc(λ) = 1
has two roots for c > c∗, we can choose λ > 0 such that Lc2(λ) < 1 for c2 > c∗.
Clearly the right side of (2.10) is uniformly bounded for n, thus for every j ∈ Z,

wj(t) ≤
KeλN

1− Lc2(λ)
eλ(c2t−j) for t ≥ 0.

Since W is isotropic, we have

wj(t) ≤
KeλN

1− Lc2(λ)
eλ(c2t−|j|) for t ≥ 0;

thus,

sup{wj(t)| |j| ≥ c1t} ≤
KeλN

1− Lc2(λ)
eλ(c2−c1)t → 0 as t →∞.

Hence we obtain limt→∞ sup{wj(t)| |j| ≥ c1t} = 0, c1 > c∗. �

3. The spreading speed and minimal speed

For Φ ∈ M∞, t ≥ T > 0, j ∈ Z, we define the mapping on M∞ = {Φ = {φj}j∈Z :
φj ∈ C+

K(R)} by

ET
j [Φ](t) :=

∫ T

0

e−δs{D[φj+1(t− s) + φj−1(t− s)]

+
1
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)b(φl+j(t− s− a))da}ds.

Lemma 3.1. Suppose Φ ∈ M∞ and satisfies the following conditions:
(i) for any t′ > 0, there exists an N = N(t′) ∈ N such that for any t ∈

[0, t′], suppΦ(t, ·) ⊂ BN ;
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(ii) if {(tn, jn)}∞n=1 ⊂ R+×Z, jn ∈ suppΦ(tn, ·), and limn→∞(tn, jn) = (t0, j0),
then j0 ∈ suppΦ(t0, ·).

For such Φ, assume that

ET [Φ](t) � Φ(t) for t ≥ T, (3.1)

and the solution of (1.1) satisfies

W (t̄ + t) � Φ(t) for t ∈ (−∞, T ] (3.2)

for some t̄ ≥ 0. Then

W (t̄ + t) � Φ(t) for t ∈ [0,∞). (3.3)

Proof. Let
t0 = sup{t ≥ T : W (t̄ + t) � Φ(t)} ≥ T. (3.4)

If t0 < ∞, since W (t) is non-negative, there exists {(tn, jn)}∞n=1 such that
(a) tn ↓ t0, n →∞,
(b) jn ∈ suppΦ(tn, ·),
(c) wjn(t̄ + tn) ≤ φjn(tn).

By assumption (i), {jn} must be bounded. Thus {jn} is composed of finite integers
and contains a convergent sub-sequence, which is a constant sequence {j0}. From
(b) and (c), we know that j0 ∈ suppΦ(t0, ·) and wj0(t̄ + t0) ≤ φj0(t0). For t0 ≥ T
and t̄ ≥ 0, from (2.7) and (3.4) we have

wj0(t̄ + t0) ≥
∫ T

0

e−δs{D[wj0+1(t̄ + t0 − s) + wj0−1(t̄ + t0 − s)]

+
1
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)b(wj0+l(t̄ + t0 − s− a))da}ds

≥
∫ T

0

e−δs{D[φj0+1(t0 − s) + φj0−1(t0 − s)]

+
1
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)b(φl+j0(t0 − s− a))da}ds

= ET
j0 [Φ](t0) > φj0(t0).

Since wj0(t̄ + t0) ≤ φj0(t0), the above inequality is a contradiction. Thus we have
t0 = ∞. �

Define Kc = Kc(h, T, N, λ) by

Kc(h, T, N, λ)

=
∫ T

0

e−(δ+λc)s{D[e−λ + eλ] +
h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)eλl−λcada}ds

=
1− e−(δ+λc)T

δ + λc
{D[e−λ + eλ] +

h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)eλl−λcada}.

(3.5)

Lemma 3.2. For any c ∈ (0, c∗), there exist h ∈ (0, b′(0)), T > 0 and N ∈ N such
that

Kc(h, T, N, λ) > 1 for λ ∈ R. (3.6)
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Proof. From the definition of Kc(h, T, N, λ), we have

Kc(h, T, N,−λ) ≥ Kc(h, T, N, λ), λ ≥ 0.

We claim that
Kc(h, T, N, λ) > 1 for λ ≥ 0.

We first show that there exist N0 > 0, λ0 > 0, h0 ∈ (0, b′(0)) and T0 > 0 such that

Kc(h, T, N, λ) > 1 for λ ≥ λ0, N ≥ N0, h ≥ h0, T ≥ T0.

However, we can choose proper N0 > 0 and h0 ∈ (0, b′(0)) such that for all T > 0,
N ≥ N0 and h ≥ h0,

h

2π

∫ T

0

f(a)e−da
N∑

l=−N

β(a, l)eλ(l−ca)da > 0

holds uniformly for λ ≥ 0. Since

lim
λ→∞

eλ

λc∗ + δ
= ∞,

we can choose T0 > 0 and λ0 > 0 such that

1− e−(λc+δ)T ≥ 1− e−δT ≥ 1− e−δT0 > 0,

D

λc + δ
(1− e−δT0)eλ >

D

λ0c∗ + δ
(1− e−δT0)eλ0 ≥ 1,

for T ≥ T0, λ ≥ λ0. For any N ≥ N0, T ≥ T0, h ≥ h0 and λ ≥ λ0, we have

Kc(h, T, N, λ) >
D

λ0c∗ + δ
(1− e−δT0)eλ0 ≥ 1.

If (3.6) is not true, there exist {hn}, {Tn}, {λn}, {Nn} such that hn ↑ b′(0), Tn ↑ ∞,
Nn ↑ ∞, {λn} ⊂ [0, λ0] and

Kc(hn, Tn, Nn, λn) ≤ 1, n = 1, 2, . . . .

Since {λn} is bounded, we choose a convergent sub-sequence {λnk
}. Obviously

{λnk
} has a finite limit, denotes as λ̃. By Fatou’s lemma, we have

1 < Lc(λ̃) ≤ lim inf
k→∞

Kc(hnk
, Tnk

, Nnk
, λnk

) ≤ 1,

which is a contradiction. Hence (3.6) is true. �

Define a function

q(y;ω, ζ) =

{
e−ωy sin(ζy), y ∈ [0, π

ζ ],
0, y ∈ R/[0, π

ζ ].

Lemma 3.3. Suppose c ∈ (0, c∗). Then there exist ζ0 > 0, a continuous function
ω = ω(ζ) defined on [0, ζ0], and a positive number δ1 ∈ (0, 1) such that∫ T

0

e−δs
{
D[q(m + cs + 1) + q(m + cs− 1)]

+
h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)q(m + l + cs + ca)da
}
ds ≥ q(m− δ1),

(3.7)

for m ∈ Z, where q(y) = q(y;ω(ζ), ζ).
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Proof. Define

L(λ) =
∫ T

0

e−δs
{
D[e−λ(cs+1) + e−λ(cs−1)]

+
h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)e−λ(l+cs+ca)da
}
ds,

where T, h, N are defined in Lemma 3.2. By Lemma 3.2, for sufficiently large N ,

L(λ) = Kc(h, T, N, λ) > 1 for λ ∈ R. (3.8)

Let λ = ω + iζ, then we have

L(λ)|λ=ω+iζ = Re[L(λ)] + i Im[L(λ)],

where
Re[L(λ)]

= D

∫ T

0

e−δs
{

e−ω(cs+1) cos ζ(cs + 1) + e−ω(cs−1) cos ζ(cs− 1)
}

ds

+
h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)
{∫ T

0

e−δse−ω(l+cs+ca) cos ζ(l + cs + ca)ds
}

da,

Im[L(λ)]

= −D

∫ T

0

e−δs
{

e−ω(cs+1) sin ζ(cs + 1) + e−ω(cs−1) sin ζ(cs− 1)
}

ds

− h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)
{∫ T

0

e−δse−ω(l+cs+ca) sin ζ(l + cs + ca)ds
}

da.

Since L′′(λ) > 0 and lim|λ|→∞ L(λ) = ∞ for λ ∈ R, L(λ) attains the minimal value
at λ = θ ∈ R. Thus,

L′(θ) = −D

∫ T

0

e−δs[(cs + 1)e−θ(cs+1) + (cs− 1)e−θ(cs−1)]ds

− h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)
[ ∫ T

0

e−δs(l + cs + ca)e−θ(l+cs+ca)ds
]
da = 0.

Define a function H = H(ω, ζ) by

H(ω, ζ) =
1
ζ

Im[L(λ)] for ζ 6= 0,

H(ω, 0) = lim
ζ→0

H(ω, ζ) = L′(ω).

Obviously H(θ, 0) = 0 and ∂H
∂ω (θ, 0) = L′′(θ) > 0. By implicit function theorem,

there exist ζ1 > 0 and continuous function ω = ω(ζ), ζ) ∈ [0, ζ1] satisfying ω(0) = θ,
and H(ω(ζ), ζ) = 0, ζ ∈ [0, ζ1]. Thus,

Im[L(λ)]|λ=ω(ζ)+iζ = 0, ζ ∈ [0, ζ1]. (3.9)

By (3.5) and (3.9), we have

Re[L(ω + iζ)]|ω=θ,ζ=0 = L(θ) > 1.
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Then there exists ζ2 > 0 such that

Re[L(ω(ζ) + iζ)] > 1, ζ ∈ [0, ζ2]. (3.10)

Let 0 < ζ ≤ ζ0 := min{ζ1, ζ2,
π

N+2c∗T }. For m ∈ [0, π
ζ ], |l| ≤ N and a, s ∈ [0, T ],

−π

ζ
< −N ≤ l ≤ m + l + cs + ca ≤ m + l + 2cT < N + 2c∗T +

π

ζ
≤ 2π

ζ
.

Thus,

sin ζ(m + l + c(s + a)) < 0, for m + l + c(s + a) ∈ (−π

ζ
, 0) ∪ (

π

ζ
,
2π

ζ
). (3.11)

From the definition of q(·) we obtain∫ T

0

e−δs{D[q(m + cs + 1) + q(m + cs− 1)]

+
h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)q(m + l + cs + ca)da}ds

≥ D

∫ T

0

e−δs
{

e−ω(ζ)(m+cs+1) sin(ζ(m + cs + 1))

+ e−ω(ζ)(m+cs−1) sin(ζ(m + cs− 1))
}

ds

+
h

2π

∫ T

0

e−δs

∫ T

0

f(a)e−da

×
∑
|l|≤N

β(a, l)e−ω(ζ)(m+l+cs+ca) sin(ζ(m + l + cs + ca))da ds.

(3.12)

Using sin(A + B) = sin A cos B + sinB cos A and (3.10)-(3.12), we have∫ T

0

e−δs{D[q(m + cs + 1) + q(m + cs− 1)]

+
h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)q(m + l + cs + ca)da}ds

≥ e−ω(ζ)m sin(ζm)Re[L(λ)]|λ=ω(ζ)+iζ + e−ω(ζ)m cos(ζm) Im[L(λ)]|λ=ω(ζ)+iζ

= e−ω(ζ)m sin(ζm) = q(m).
(3.13)

Choose N large enough such that −N + 2c∗T < 0, thus (3.12) and (3.13) are strict
inequalities on m ∈ (0, π

ζ ). Moreover, from (3.11)-(3.12), we know that (3.13) is
also a strict inequality for m = 0 or m = π

ζ . In fact, let a, s ∈ [0, T ], m = π
ζ and

l = N , then

m + l + c(s + a) >
π

ζ
.

Similarly, if m = 0 and l = −N , then m + l + c(s + a) < −N + 2c∗T < 0. Thus for
both cases, we have

q(m + l + cs + ca) = 0 and sin(ζ(m + l + cs + ca)) < 0,
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which means (3.13) is a strict inequality for m = 0 or m = π
ζ . Then for any

m ∈ [0, π
ζ ],∫ T

0

e−δs{D[q(m + cs + 1) + q(m + cs− 1)]

+
h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)q(m + l + cs + ca)da}ds > q(m).
(3.14)

If m 6∈ [0, π
ζ ], (3.14) still holds since q(m) = 0. From the above discussion, we know

that (3.14) holds for m ∈ R, then (3.7) follows from the continuity consideration.
�

Consider the family of functions,

R(y;ω, ζ, γ) : = max
η≥−γ

q(y + η;ω, ζ)

=


M, y ≤ γ + ρ,

q(y − γ;ω, ζ), γ + ρ ≤ y ≤ γ + π
ζ ,

0, y ≥ γ + π
ζ ,

(3.15)

where
M = M(ω, ζ) := max{q(y;ω, ζ)| 0 ≤ y ≤ π

ζ
}. (3.16)

We assume M attain the maximum at ρ = ρ(ω, ζ). The following lemma gives a
sub-solution of (1.1).

Lemma 3.4. Let c ∈ (0, c∗) be given, then there exist T > 0, ζ > 0, ω ∈ R, ϑ > 0
and σ0 > 0 such that for σ ∈ (0, σ0) and t ≥ T , there holds

ET [σΦ](t) � σΦ(t) for t ≥ T, (3.17)

where Φ(t) = {φj(t)}j∈Z, φj(t) = R(|j|;ω, ζ, ϑ + ct).

Proof. Let h ∈ (0, b′(0)), T > 0, N > 0 be chosen such that Kc(h, T, N, λ) > 1 for
λ ∈ R. By Lemma 3.3, we can choose ζ > 0, ω = ω(ζ) and δ1 ∈ (0, 1) such that
(3.7) holds.

Let σh be the smallest positive root of the equation b(w) = hw, then b(w) > hw
for w ∈ (0, σh). Choose σ0 ∈ (0, σhM−1), where M is defined in (3.16). For
σ ∈ (0, σ0) and t ≥ T , we have

ET
j [σΦ](t) =

∫ T

0

e−δs
{
Dσ[φj+1(t− s) + φj−1(t− s)]

+
1
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)b(σφj+l(t− s− a))da
}
ds

≥
∫ T

0

e−δs
{
Dσ[φj+1(t− s) + φj−1(t− s)]

+
1
2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)b(σφj+l(t− s− a))da
}
ds.

(3.18)

For any given ϑ > 0, we consider two cases.
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Case (i) |j| ≤ ϑ + ρ + c(t− 2T )−N . For |l| ≤ N, a, s ∈ [0, T ], then

|l + j| ≤ ϑ + ρ + c(t− 2T ) ≤ ϑ + ρ + c(t− s− a)

Since the definition of ET
j [Φ](t) and b(σφj+l(t− s− a)) = b(σM) > hσM , we have

ET
j [σΦ](t) ≥

{
2DσM +

1
2π

∫ T

0

f(a)e−da
N∑

l=−N

β(a, l)b(σM)da
} ∫ T

0

e−δsds

> σMKc(h, T, N, 0) > σM.

(3.19)
Case (ii) ϑ + ρ + c(t − 2T ) − N ≤ |j| ≤ π

ζ + ϑ + ct. Let |l| ≤ N, t ≥ T . If

ϑ ≥ N2

2δ1
− ρ + cT + N (δ1 is defined in Lemma 3.3), then

|l + j| = (l2 + 2lj + j2)1/2 ≤ |j|+ lj

|j|
+

l2

2|j|

≤ |j|+ lj

|j|
+

N2

2|j|

≤ |j|+ lj

|j|
+

N2

2(ϑ + ρ− cT −N)
≤ |j|+ lj

|j|
+ δ1.

Since φj(t) is non-decreasing for |j|, by (3.18) we obtain

ET
j [σΦ](t)

≥
∫ T

0

e−δs
{

Dσ[ max
η≥−ϑ−c(t−s)

q(|j|+ 1 + δ1 + η)

+ max
η≥−ϑ−c(t−s)

q(|j| − 1 + δ1 + η)]

+
hσ

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l) max
η≥−ϑ−c(t−s−a)

q(|j|+ l + δ1 + η)da
}

ds

= σ

∫ T

0

e−δs
{

D[ max
η≥−ϑ−ct

q(|j|+ 1 + cs + δ1 + η)

+ max
η≥−ϑ−ct

q(|j| − 1 + cs + δ1 + η)]

+
h

2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l) max
η≥−ϑ−ct

q(|j|+ l + cs + ca + δ1 + η)da
}

ds

≥σ max
η≥−ϑ−ct

q(|j|+ η).

Combining (i) and (ii), we obtain (3.17) and complete the proof. �

The proof of the following lemma is similar to [10, Lemma 5.5], and hence is
omitted.

Lemma 3.5. Assume that W = {wj}j∈Z is a solution of (1.1), and the following
conditions hold:

(i) W o = {wo
j}j∈Z is isotropic on (−∞, 0], wo

j ∈ C+
K(−∞, 0];

(ii) there exists N1 ∈ N such that suppW o(t, ·) ⊂ BN1 for t ∈ (−∞, 0], wo
j (0) >

0 for j| ≤ N1.
Then there exists t0 > 0 such that wj(t) > 0 for t ∈ [t0,∞), j ∈ Z.
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Lemma 3.6. Let {Qn(t, N)} be defined by Q1(t, N) ≡ a ∈ (0, w+),

Qn+1(t, N) =
1
δ

[
2DQn(t, N)

+
1
2π

∫ T

0

{f(a)e−da
∑
|l|≤N

β(a, l)da}b(Qn(t, N))
]
(1− e−δt)

(3.20)

for n = 1, 2, . . . . Then for ε > 0, there exist t̄(ε), N̄(ε), T̄ (ε) and n̄(ε) such that for
any T ≥ T̄ (ε), t ≥ t̄(ε), N ≥ N̄(ε) and n ≥ n̄(ε),

Qn(t, N) ≥ w+ − ε.

Proof. Since

2Dw+ + b(w+)f̃(d)
δ

= w+, δ = 2D + d, f̃(d) =
∫ ∞

0

f(a)e−dada,

0 < Q1(t, N) < w+, 0 <
1
δ
(1− e−δt) < 1, 0 <

1
2π

∑
|l|≤N

β(a, l) < 1,

we have by induction that 0 < Qn(t, N) ≤ K for any n ∈ N, t ≥ 0 and N ∈ N. By
(H3), 2Dw + f̃(d)b(w) > (2D + d)w, for 0 < w < w+. For ε > 0, we have

sup
{2Dw + f̃(d)b(w)

(2D + d)w
| 0 < w ≤ w+ − ε

}
> 1.

Let f̃T (d) =
∫ T

0
f(a)e−dada. Choose large enough α(ε) < 1, T̄ = T̄ (ε) such that

for 0 < w ≤ w+ − ε, T ≥ T̄ , there holds

α(ε)
[
2Dw + f̃T (d)b(w)

]
> (2D + d)w. (3.21)

Define the sequence:

M1 ≡ a, Mn+1 =
α(ε)

δ

[
2DMn + f̃T (d)b(Mn)

]
for n ≥ 2.

Obviously,
(i) if 0 < Mn ≤ w+ − ε, then Mn+1 ≥ Mn;
(ii) if Mn > w+ − ε, then

Mn+1 >
α(ε)

δ

[
2D(w+ − ε) + f̃T (d)b(w+ − ε)

]
≥ w+ − ε.

Now we show that Mn > w+ − ε for sufficiently large n. If that is not true, we can
assume that Mn ≤ w+ − ε holds for all n. By (i), we know that limn→∞Mn =
M ≤ w+ − ε exists and satisfies

M =
α(ε)

δ
[2DM + b(M)f̃T (d)].

which is a contraction to (3.21). Thus there exists n̄(ε) > 0 such that Mn > w+− ε
for any n > n̄(ε).

Let T ≥ T̄ = T̄ (ε). We choose t̄ = t̄(ε) and N̄ = N̄(ε) such that 1−e−δt̄(ε) ≥ α(ε)
and

1
2π

(1− e−δt̄(ε))
∫ T

0

{f(a)e−da
∑
|l|≤N̄

β(a, l)}da ≥ α(ε)f̃T (d). (3.22)
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Then Q1(t, N) = a ≥ M1 for t ≥ t̄(ε), T ≥ T̄ (ε) and N ≥ N̄(ε). By (3.22) we obtain

Qn+1(t, N)

≥ 1
δ
(1− e−δt̄(ε))

[
2DQn(t, N) +

b(Qn(t, N))
2π

∫ T

0

{f(a)e−da
∑
|l|≤N

β(a, l)}da
]

>
1
δ

[
2Dα(ε)Qn(t, N) + α(ε)f̃T (d)b(Qn(t, N))

]
=

α(ε)
δ

[
2DQn(t, N) + f̃T (d)b(Qn(t, N))

]
.

Using monotonicity of b, we have Qn(t, N) ≥ Mn ≥ w+ − ε for n > n̄(ε). �

Theorem 3.7. Assume all the conditions for W o in Lemma 3.5 are satisfied. Then
for any c ∈ (0, c∗), there holds

lim
t→∞

inf{wj(t) : |j| ≤ ct} ≥ w+.

Proof. Let c1 ∈ (0, c∗), c2 ∈ (c1, c∗). From Lemma 3.4, there exist T > 0, ζ > 0, ω ∈
R, ϑ > 0 and σ0 > 0 such that for σ ∈ (0, σ0) t ≥ T ,

ET [σΦ](t) � σΦ(t),

where Φ(t) = {φj(t)}j∈Z, φj(t) := R(|j|;ω, ζ, ϑ + c2T ). We can assume T ≥ T̄ , and
T̄ is defined in Lemma 3.6. From Lemma 3.5, there exists t0 > 0 such that

wj(t) > 0 for t ∈ [t0, t0 + T ], j ∈ Z.

Since Φ(t) is a bounded function, we can choose σ1 ∈ (0, σ0) such that

σ1M < w+, wj(t0 + t) > σ1φj(t) for t ∈ [0, T ], j ∈ Z.

Using the comparison principle (Lemma 3.1), we have

wj(t0 + t) > σ1φj(t) for t ∈ [0,∞), j ∈ Z. (3.23)

From (3.23) and definition of φj(t), we have

wj(t0 + t) ≥ σ1M, t ≥ 0, |j| ≤ ρ + ϑ + c2t. (3.24)

By (2.7), we have

wj(t0 + t) ≥
∫ t

0

e−δs{D[wj+1(t0 + t− s) + wj−1(t0 + t− s)]

+
1
2π

∫ T

0

f(a)e−da
∑
|l|≤N

β(a, l)b(wl+j(t0 + t− s− a))da}ds.
(3.25)

Let a = σ1M = Q1(t, N), and Qn(t, N) be defined in Lemma 3.6. From (3.24)-
(3.25), we have by induction

wj(t0 + t) ≥ Qn(t, N), t ≥ 0, |j| ≤ ρ + ϑ + c2t− n(N + T ).

For any ε > 0, we choose t̄(ε), T̄ (ε), N̄(ε) and n̄(ε) such that

wj(t) ≥ w+−ε, t ≥ t0 + t̄(ε), |j| ≤ ρ+ϑ+c2(t−t0)− n̄(ε)(N̄(ε)+ T̄ (ε)). (3.26)

Define

t1 := max
{

t0 + t̄(ε),
n̄(ε)[N̄(ε) + T̄ (ε)] + c2t0 − ρ− ϑ

c2 − c1

}
.
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Since c2 > c1 and (3.26), we obtain

wj(t) ≥ w+ − ε for t ≥ t1, | j| ≤ c1t.

Then (2.2) holds. �

The following theorem shows the relation between the minimal wave speed and
the spreading speed.

Theorem 3.8. Assume (H1)–(H4) are satisfied. Then lattice system (1.1) admits
two equilibria, W = 0 and W = w+ > 0. Further, for c ≥ c∗, Equation (1.1) has a
monotone traveling wave satisfying

lim
s→−∞

φ(s) = 0, lim
s→∞

φ(s) = w+. (3.27)

For c ∈ (0, c∗), (1.1) has no monotone traveling wave satisfying (3.27).

Proof. From [5, Theorem 5.1], we have that (1.1) admits monotone traveling wave
satisfying (3.27) for c > c∗, thus we only need to claim the case as c = c∗.

Choose a sequence {cn} ∈ (c∗, c∗ + 1] such that cn+1 > cn and limn→∞ cn =
c∗. Then the wave equation (2.1) admits a wavefront connecting 0 with w+, say
φn(j + cnt), which has the speed cn. It is easy to see 0 < φn(j + cnt) < w+, and

cφ′n(s) = D[φn(s + 1) + φn(s− 1)− 2φn(s)]− dφn(s)

+
1
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)b(φn(s + l − cna))da.
(3.28)

Since (3.28) is a homogeneous system, from the basis theory of differential equation,
we know that a traveling wave of (3.28) is still another traveling wave after sliding.
Without generality, we assume φn(0) = w+

2 .
Differentiating (3.28) with respect to s, we obtain

cφ′′n(s) = D[φ′n(s + 1) + φ′n(s− 1)− 2φ′n(s)]− dφ′n(s)

+
1
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)
db

dw
(φn(s + l − cna))φ′n(s + l − cna)da.

(3.29)
From (3.28) and 0 < φn(j + cnt) < w+, there exists M1,M2 such that |φ′n(s)| ≤
M1, |φ′′n(s)| ≤ M2 for s ∈ R. Thus φn and φ′n are uniformly bounded, equsi-
continuous in R. According to Arzela-Ascoli theorem, there has a sub-sequence of
cn, still denoted as cn, such that φn(s) and φ′n(s) are convergent to limits in every
bounded and closed subset in R. We denote the limits as φ∗(s), φ′∗(s) respectively.

Let n →∞ in (3.28). By Lebesque’s dominated convergence theorem, we have

cφ′∗(s) = D[φ∗(s + 1) + φ∗(s− 1)− 2φ∗(s)]− dφ∗(s)

+
1
2π

∫ ∞

0

f(a)e−da
∞∑

l=−∞

β(a, l)b(φ∗(s + l − c∗a))da.
(3.30)

Hence φ∗(j + c∗t) is the traveling wavefront of (1.1) with speed c∗ satisfying (3.1).
Now we prove (1.1) admits no traveling wavefront for c1 ∈ (0, c∗). Suppose that is

not true, and system (1.1) has monotone traveling wave φ(s) = φ(j +c1t) satisfying
(3.27). Thus there exists s1 > 0 such that φ(s) > w+

2 for s ≥ s1. Choose proper
initial function: wo

j (t) = φ(j + c1t), t ∈ (−∞, 0], and {wo
j (t)}j∈Z ∈ C+

K(−∞, 0].
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Let {wj(t) = φ(j + c1t)}j∈Z be a solution of (1.1) with initial value wo
j (t). Noting

{wo
j (t)}j∈Z satisfying conditions in Theorem 3.7, we have

lim
t→∞

inf{wj(t)| |j| ≤ ct} = lim
t→∞

inf{φ(j + c1t) |j| ≤ ct} ≥ w+ for c ∈ (0, c∗).

Choose c2 ∈ (c1, c∗), j = −c2t, then

φ(j + c1t) = φ((c1 − c2)t) ≥ w+ for t ≥ t1.

Let t →∞, we have

lim
t→∞

inf{φ(j + c1t) |j = −c2t} = lim
t→∞

inf{φ((c1 − c2)t)} ≥ w+,

which leads to a contradiction to the first equality in (3.27). Hence (1.1) admits no
monotone traveling wave for c1 ∈ (0, c∗). �
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