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NONEXISTENCE OF ASYMPTOTICALLY FREE SOLUTIONS TO
NONLINEAR SCHRÖDINGER SYSTEMS

NAKAO HAYASHI, CHUNHUA LI, PAVEL I. NAUMKIN

Abstract. We consider the nonlinear Schrödinger systems

−i∂tu1 +
1

2
∆u1 = F (u1, u2),

i∂tu2 +
1

2
∆u2 = F (u1, u2)

in n space dimensions, where F is a p-th order local or nonlocal nonlinearity
smooth up to order p, with 1 < p ≤ 1 + 2

n
for n ≥ 2 and 1 < p ≤ 2 for n = 1.

These systems are related to higher order nonlinear dispersive wave equations.
We prove the non existence of asymptotically free solutions in the critical and
sub-critical cases.

1. Introduction

We study the nonexistence of asymptotically free solutions for the nonlinear
dispersive wave equations

(∂2
t +

1
4
∆2)u = λ|∂tu|p−1∂tu, (t, x) ∈ R× Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn
(1.1)

and

(∂2
t +

1
4
∆2)v = µ∇(|∇v|p−1∇v), (t, x) ∈ R× Rn,

v(0, x) = v0(x), ∂tv(0, x) = v1(x), x ∈ Rn,
(1.2)

where λ, µ ∈ C, 1 < p ≤ 1 + 2
n for n ≥ 2, and 1 < p ≤ 2 for n = 1. When we

consider the large time asymptotic behavior of solutions for the above equations, it
is known that the critical power of the nonlinearity p is 1+ 2

n , so that 1 < p < 1+ 2
n

is called the sub-critical one.
Related to (1.1) and (1.2), the equations

(∂2
t + (−∆)m)u = λ(−∆)

m−1
4 + m

2 (up), (t, x) ∈ R× Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn
(1.3)
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and

(∂2
t + (−∆)m)u = λ(−∆)

m−1
4 P (∂tu, (−∆)

m
2 u), (t, x) ∈ R× Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn,
(1.4)

were studied in [7], with m ≥ 1, and P a homogeneous polynomial of order p in
two variables. If p is an integer and satisfies

p > 1 +
2

n− 1
,

with n ≥ 2, it was shown in [7] that (1.3) and (1.4) have a unique global solution
for small regular data. The number 1+ 2

n−1 is the well-known critical exponent for
the nonlinear wave equation. However, taking into account the time decay rates of
solutions to the linear problem for (1.3) or (1.4) with m 6= 1, the critical exponent
1 + 2

n−1 should be replaced by 1 + 2
n . Indeed, a closely related problem to (1.4)

written as

(∂2
t +

1
m2

(−∂2
x)m)u = λ|∂tu|p−1∂tu, (t, x) ∈ R× R,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R,
(1.5)

with 0 < m ≤ 2, m 6= 1, λ ∈ C, and p > 3 for 0 < m < 1, p > 2 +m for 1 < m ≤ 2
was studied in [5], and the existence of asymptotically free solutions was shown.
Thus p = 3 is a critical exponent for the problem (1.5) from the point of view of the
scattering problem. Other problems related to (1.2) in one dimension were studied
in [10] (see also the literature cited therein for the case of the initial-boundary value
problems). Therefore, we call p = 1 + 2

n the critical exponent and 1 < p < 1 + 2
n

sub-critical exponents for our problems (1.1) and (1.2).
Equation (1.1) may be transformed into a system of nonlinear Schrödinger equa-

tions. In fact, let us define new dependent variables by

u1 =
(
i∂t +

1
2
∆

)
u, u2 =

(
− i∂t +

1
2
∆

)
u.

Now (1.1) becomes (
(−i∂t + 1

2∆)u1

(i∂t + 1
2∆)u2

)
=

(
F (u1, u2)
F (u1, u2)

)
, (1.6)

where
F (u1, u2) = −2−piλ|u1 − u2|p−1(u1 − u2),

since u = −(−∆)−1(u1 + u2) and ∂tu = 1
2i (u1 − u2). We write (1.6) in the form

Lu = F(u), (1.7)

where

L =
(
L 0
0 L

)
=

(
−i∂t + 1

2∆ 0
0 i∂t + 1

2∆

)
,

u =
(
u1

u2

)
, a =

(
1
1

)
, b =

(
1
−1

)
,

F(u) = −ia2−pλ|(b · u)|p−1(b · u).

Similarly, if we define

v1 = |∇|−1(−i∂t −
1
2
∆)v, v2 = |∇|−1(i∂t −

1
2
∆)v,
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where |∇| = (−∆)1/2, |∇|−1 = (−∆)−1/2 and

G(v1, v2) = −µ ∇
|∇|

(
| ∇
|∇|

(v1 + v2)|p−1 ∇
|∇|

(v1 + v2)
)
,

then (1.2) can be reduced to the following system of nonlinear Schrödinger equations
with nonlocal nonlinearities(

(−i∂t + 1
2∆)v1

(i∂t + 1
2∆)v2

)
=

(
G(v1, v2)
G(v1, v2)

)
. (1.8)

We write this equation in the form

Lv = G(v) (1.9)

with

v =
(
v1
v2

)
, G(v) = −µa ∇

|∇|

(
| ∇
|∇|

(a · v)|p−1 ∇
|∇|

(a · v)
)
.

Multiplying both sides of (1.7) by
(
−u1

u2

)
, taking the imaginary parts and inte-

grating in space, we obtain
d

dt
(‖u1‖2L2 + ‖u2‖2L2) = 21−p(Reλ)‖u1 − u2‖p+1

Lp+1 . (1.10)

Therefore there exist C > 0, independent of t > 0 such that

‖u(t)‖L2 ≤ C (1.11)

if Re(λ) ≤ 0. The Strichartz estimate and (1.11) imply that there exists a unique
global solution of (1.7) for 1 < p < 1 + 4

n such that

u =
(
u1

u2

)
∈

(
(C ∩ L∞)(R;L2) ∩ Lβ

loc(R;Lp+1)
)2

,

where β = 4
n

p+1
p−1 (see Appendix 5). Note that the identity (1.10) can be written as

d

dt
(‖∂tu‖2L2 +

1
4
‖∆u‖2L2) = 2(Reλ)‖∂tu‖p+1

Lp+1 .

In the same manner, multiplying both sides of (1.9) by
(
−v1
v2

)
, taking the imagi-

nary parts and integrating in space, we obtain
d

dt
(‖v1‖2L2 + ‖v2‖2L2)

= 2Re
(
iµ

∫
Rn

| ∇
|∇|

(v1 + v2)|p−1
( ∇
|∇|

(v1 + v2)
)( ∇
|∇|

(v1 − v2)
)
dx

)
,

from which we obtain the estimate
d

dt

(
‖v1‖2L2 + ‖v2‖2L2

)
≤ 2|µ|‖ ∇

|∇|
(v1 + v2)‖p

Lp+1‖
∇
|∇|

(v1 − v2)‖Lp+1 . (1.12)

Estimate (1.12) is not sufficient to ensure the existence of global solutions to (1.9).

We again multiply both sides of (1.9) by
(
−∂tv1
∂tv2

)
, take the real parts and integrate

in space to obtain
d

dt

(
‖∇v1‖2L2 + ‖∇v2‖2L2

)
= − 4µ

p+ 1
d

dt
‖ ∇
|∇|

(v1 + v2)‖p+1
Lp+1 (1.13)
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for µ ∈ R. This identity is equivalent to
d

dt

(
‖∂tv‖2L2 +

1
4
‖∆v‖2L2 +

2µ
p+ 1

‖∇v‖p+1
Lp+1

)
= 0.

If we assume that µ ≥ 0, then (1.13) yields a-priori estimates for ‖∇v1‖2L2 , ‖∇v2‖2L2 ,
and ‖ ∇

|∇| (v1 + v2)‖Lp+1 . Applying the Sobolev imbedding theorem to (1.12) we
obtain

d

dt
(‖v1‖2L2 + ‖v2‖2L2) ≤ C‖ ∇

|∇|
(v1 − v2)‖Lp+1

≤ C‖ ∇
|∇|

(v1 − v2)‖
1−n

2 ( p−1
p+1 )

L2 ‖∇(v1 − v2)‖
n
2 ( p−1

p+1 )

L2

≤ C‖v1‖
1−n

2 ( p−1
p+1 )

L2 + C‖v2‖
1−n

2 ( p−1
p+1 )

L2 .

Therefore we have the estimate

(‖v1‖L2 + ‖v2‖L2)1+
n
2 ( p−1

p+1 ) ≤ C + Ct. (1.14)

Thus by the method in [9], Equation (1.9) has a unique global solution for µ ≥ 0,
1 < p < 1 + 4

n such that

v =
(
v1
v2

)
∈

(
(C ∩ L∞)(R;L2) ∩ Lβ

loc(R;Lp+1)
)2

,

where β = 4
n

p+1
p−1 (see Appendix 5). However, as far as we know, the large time

asymptotic behavior of such solutions is not well established.
We denote the weighted Sobolev space by

Hm,s =
{
f = (f1, f2) ∈ L2 × L2; ‖f‖Hm,s =

2∑
j=1

‖fj‖Hm,s <∞
}
,

where
‖f‖Hm,s = ‖(1−∆)m/2(1 + |x|2)s/2f‖L2 .

We write Hm = Hm,0 for simplicity. As usual, let the Fourier transform be defined
by

Fφ = φ̂(ξ) =
1

(2π)n/2

∫
Rn

e−i(x·ξ)φ(x)dx

and the inverse Fourier transform be given by

F−1φ =
1

(2π)n/2

∫
Rn

ei(x·ξ)φ(ξ)dξ.

Denote by U(t) = F−1e−
it
2 |ξ|

2F the free Schrödinger evolution group.
In what follows, we assume that (1.7) or (1.9) has a unique global solution. To

solve the usual scattering problem we need to find a solution of (1.7) or (1.9) in a

neighborhood of a free solution w =
(
w1

w2

)
of the linear equation

Lw = 0 (1.15)

with some initial data w(0) = w0 =
(
w1,0

w2,0

)
.

The purpose of this paper is to show that it is impossible to find a solution to
(1.7) or (1.9) in any neighborhood of any free solution w. We use the functional
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used in [1] for the Schrödinger equations which is a version of the one used for the
nonlinear Klein-Gordon equation in [3] and [6].

Our main results are the following.

Theorem 1.1. Let Imλ 6= 0, β = 4
n

p+1
p−1 , and let

u ∈
(
(C ∩ L∞)(R;L2) ∩ Lβ

loc(R;Lp+1)
)2

be a solution of (1.7) with 1 < p ≤ 1 + 2
n for n ≥ 2, 1 < p ≤ 2 for n = 1. Then,

there does not exist any free solution w of (1.15) with the initial data w0 6= 0 such
that w0 ∈ (H0,1 ∩ L1)2 and

lim
t→∞

‖u(t)−w(t)‖L2 = 0.

For the case of the system (1.9) we have

Theorem 1.2. Let Reµ 6= 0, β = 4
n

p+1
p−1 and let

v ∈
(
(C ∩ L∞)(R;L2) ∩ Lβ

loc(R;Lp+1)
)2

be a solution of (1.9) with 1 < p ≤ 1 + 2
n for n ≥ 2, 1 < p ≤ 2 for n = 1. Then,

there does not exist any free solution w of (1.15) with the initial data w0 6= 0 such
that w0 ∈ (H0,1 ∩ L1)2 and

lim
t→∞

‖v(t)−w(t)‖L2 = 0.

For (1.1) and (1.2), we define free solution to be a solution u+(t) to the linear
dispersive equation (

∂2
t +

1
4
∆2

)
u+ = 0 (1.16)

with initial data u+(0) = u1+, ∂tu+(0) = u2+. As a consequence of the above
results we have the corollaries for (1.1) and (1.2).

Corollary 1.3. Let Imλ 6= 0, β = 4
n

p+1
p−1 and let u be a solution of (1.1) with

1 < p ≤ 1 + 2
n for n ≥ 2, 1 < p ≤ 2 for n = 1 such that

∆u, ∂tu ∈ (C ∩ L∞)(R;L2) ∩ Lβ
loc(R;Lp+1).

Then, there does not exist any free solution u+(t) of (1.16) with the initial data
(u1+, u2+) 6= 0 such that ∆u1+, u2+ ∈ H0,1 ∩ L1 and

lim
t→∞

(‖∂t(u(t)− u+(t))‖L2 + ‖∆(u(t)− u+(t))‖L2) = 0.

Corollary 1.4. Let Reµ 6= 0, β = 4
n

p+1
p−1 and let v be a solution of (1.2) with

1 < p ≤ 1 + 2
n for n ≥ 2, 1 < p ≤ 2 for n = 1 such that

|∇|v, |∇|−1∂tv ∈ (C ∩ L∞)(R;L2) ∩ Lβ
loc(R;Lp+1).

Then, there does not exist any free solution u+(t) of (1.16) with the initial data
(u1+, u2+) 6= 0 such that |∇|u1+, |∇|−1u2+ ∈ H0,1 ∩ L1 and

lim
t→∞

(
‖|∇|−1∂t(v(t)− u+(t))‖L2 + ‖∇(v(t)− u+(t))‖L2

)
= 0.
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To prove our results using the methods in [3] and [6], we need a-priori lower
bounds for the solutions to the linear problem. Our main point in this paper is to
prove the lower bound of time decay estimates of solutions to the linear problem
which is a main tool on the proof of [3] and [6]. To get these estimates in the case
of nonlinear Klein-Gordon equations, the finite propagation property of solutions
was used in [3] and [6]. However, the equations considered in this paper do not
have this property, so instead we study the large time asymptotic behavior for a
linear combination of two types of free Schrödinger evolution groups to get the
lower bound of solutions. We note that the lower bound of time decay estimates of
solutions was shown in [1] for a single free Schrödinger evolution group.

2. A-priori estimates of solutions to the linear problem from below

In this section we prove the estimates ‖a ·w‖Lp+1 ≥ Ct−
n
2

p−1
p+1 and ‖b ·w‖Lp+1 ≥

Ct−
n
2

p−1
p+1 for the solution w(t) =

(
w1(t)
w2(t)

)
of the linear problem

Lw = 0

with the initial data

w(0) = w0 =
(
w1,0

w2,0

)
.

Note that

w(t) =
(
U(−t)w1,0

U(t)w2,0

)
.

Since a ·w = w1 + w2 and b ·w = w1 − w2 do not have the finite propagation
property which was used in papers [3] and [6], we need to find the large time
asymptotic behavior for U(−t)φ ± U(t)ψ. Denote M(t) = e

i
2t |x|

2
and D(t)φ =

1
(it)n/2φ(x

t ). We only consider the case t ≥ 0, since the case t ≤ 0 can be treated in
the same way.

Lemma 2.1. Let 0 ≤ γ ≤ 1. For any φ ∈ H2γ

‖U(t)φ−M(t)D(t)Fφ‖L2 ≤ Ct−γ‖φ̂‖H2γ

for t > 0.

Proof. By the identity U(t) = M(t)D(t)FM(t) we find

U(t)φ = M(t)D(t)FM(t)φ = M(t)D(t)Fφ+M(t)D(t)F(M(t)− 1)φ.

The L2-norm of the last term in the right-hand side of the above identity is esti-
mated by

‖M(t)D(t)F(M(t)− 1)φ‖L2 = ‖(M(t)− 1)φ‖L2

≤ Ct−γ‖φ‖H0,2γ = Ct−γ‖φ̂‖H2γ .

This proves the lemma. �

In the next lemma we find a lower bound of the norm ‖U(−t)φ± U(t)ψ‖Lp+1 .

Lemma 2.2. For φ, ψ ∈ H0,1 ∩ L1,

‖U(−t)φ± U(t)ψ‖Lr

≥ 1
2
(2kt)

n
2 ( 2

r−1)
(
‖φ̂‖L2(|ξ|≤k) + ‖ψ̂‖L2(|ξ|≤k)

)
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− C(k)(kt)
n
2 ( 2

r−1)t−α/2
(
‖φ̂‖H1 + ‖ψ̂‖H1 + ‖φ̂‖L∞ + ‖ψ̂‖L∞

)
for all t > 0 and k > 0, where 2 ≤ r ≤ ∞, α < 1

2 for n = 1 and α = 1
2 for n ≥ 2,

and C(k) is a positive constant depending on k.

Proof. By Hölder’s inequality

‖U(−t)φ± U(t)ψ‖L2(|x|≤kt)

≤ ‖U(−t)φ± U(t)ψ‖Lr(|x|≤kt)

( ∫
|x|≤kt

dx
) r−2

2r

= (2kt)
n
2 (1− 2

r )‖U(−t)φ± U(t)ψ‖Lr(|x|≤kt)

≤ (2kt)
n
2 (1− 2

r )‖U(−t)φ± U(t)ψ‖Lr .

(2.1)

Hence in order to get the desired estimate from below we need to find a lower bound
for the norm ‖U(−t)φ± U(t)ψ‖L2(|x|≤kt). By Lemma 2.1 with γ = 1

2 we find

‖U(−t)φ± U(t)ψ − (M(−t)D(−t)φ̂±M(t)D(t)ψ̂)‖L2(|x|≤kt)

≤ ‖U(−t)φ± U(t)ψ − (M(−t)D(−t)φ̂±M(t)D(t)ψ̂)‖L2

≤ 2|t|−1/2(‖φ̂‖H1 + ‖ψ̂‖H1).

Therefore changing the variable of integration by ξ = x
t , we obtain

‖U(−t)φ± U(t)ψ‖L2(|x|≤kt)

≥ ‖M(−t)D(−t)φ̂±M(t)D(t)ψ̂‖L2(|x|≤kt) − Ct−1/2(‖φ̂‖H1 + ‖ψ̂‖H1)

≥ ‖e− it
2 |ξ|

2
(−i)nφ̂(−ξ)± e

it
2 |ξ|

2
ψ̂(ξ)‖L2(|ξ|≤k) − Ct−1/2(‖φ̂‖H1 + ‖ψ̂‖H1).

(2.2)

By a direct computation we have

‖e− it
2 |ξ|

2
(−i)nφ̂(−ξ)± e

it
2 |ξ|

2
ψ̂(ξ)‖2L2(|ξ|≤k)

= ‖φ̂‖2L2(|ξ|≤k) + ‖ψ̂‖2L2(|ξ|≤k) ± 2 Re
∫
|ξ|≤k

(−i)nφ̂(−ξ)ψ̂(ξ)e−it|ξ|2dξ.
(2.3)

Integration by parts and using the identity

e−it|ξ|2 =
1

n− 2it|ξ|2
∇ · ξe−it|ξ|2

yields ∫
|ξ|≤k

F (ξ)e−it|ξ|2dξ =
∫
|ξ|≤k

F (ξ)
1

n− 2it|ξ|2
∇ · ξe−it|ξ|2dξ

=
∫
|ξ|≤k

∇ ·
( ξF (ξ)
n− 2it|ξ|2

e−it|ξ|2
)
dξ

−
∫
|ξ|≤k

e−it|ξ|2ξ · ∇ F (ξ)
n− 2it|ξ|2

dξ,

for any F ∈ L∞ with ∇F ∈ L1. Therefore,∣∣ ∫
|ξ|≤k

∇ ·
( ξF (ξ)
n− 2it|ξ|2

e−it|ξ|2
)
dξ

∣∣ ≤ C(k)t−1/2‖F‖L∞
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and by a direct calculation

ξ · ∇ F (ξ)
n− 2it|ξ|2

=
4it|ξ|2F (ξ)

(n− 2it|ξ|2)2
+

ξ · ∇F (ξ)
n− 2it|ξ|2

.

Hence

|
∫
|ξ|≤k

F (ξ)e−it|ξ|2dξ|

≤
∫
|ξ|≤k

2|F (ξ)|+ |ξ · ∇F (ξ)|
n+ 2t|ξ|2

dξ + C(k)t−
1
2 ‖F‖L∞

≤ Ct−α

∫
|ξ|≤k

(
|F (ξ)|
|ξ|2α

+ |∇F (ξ)|)dξ + C(k)t−
1
2 ‖F‖L∞

≤ Ct−α‖F‖L∞
∫
|ξ|≤k

|ξ|−2αdξ + Ct−α‖∇F‖L1 + C(k)t−1/2‖F‖L∞

≤ Ct−α(C(k)‖F‖L∞ + ‖∇F‖L1),

where α < 1/2 for n = 1 and α = 1/2 for n ≥ 2. Therefore taking F (ξ) = φ̂(−ξ)ψ̂(ξ)
in the above estimate, we obtain∣∣ ∫

|ξ|≤k

φ̂(−ξ)ψ̂(ξ)e−it|ξ|2dξ
∣∣

≤ Ct−α
(
(kn−2α + 1)‖φ̂(−ξ)ψ̂(ξ)‖L∞ + ‖∇(φ̂(−ξ)ψ̂(ξ))‖L1

)
≤ C(k)t−α

(
‖φ̂‖H1 + ‖φ̂‖L∞

)(
‖ψ̂‖H1 + ‖ψ̂‖L∞

)
.

(2.4)

We apply (2.4) to (2.3) and use (2.2) to obtain

‖U(−t)φ± U(t)ψ‖L2(|x|≤kt)

≥
(
‖φ̂‖2L2(|ξ|≤k) + ‖ψ̂‖2L2(|ξ|≤k)

)1/2

−
(
2|

∫
|ξ|≤k

φ̂(−ξ)ψ̂(ξ)e−it|ξ|2dξ|
)1/2

− 2|t|− 1
2 (‖φ̂‖H1 + ‖ψ̂‖H1)

≥ 1
2
‖φ̂‖L2(|ξ|≤k) +

1
2
‖ψ̂‖L2(|ξ|≤k)

− C(k)t−α/2
(
‖φ̂‖H1 + ‖ψ̂‖H1 + ‖φ̂‖L∞ + ‖ψ̂‖L∞

)
.

Finally by (2.1) we obtain

‖U(−t)φ± U(t)ψ‖Lr ≥ (2kt)
n
2 ( 2

r−1)‖U(−t)φ± U(t)ψ‖L2(|x|≤kt)

≥ 1
2
(2kt)

n
2 ( 2

r−1)(‖φ̂‖L2(|ξ|≤k) + ‖ψ̂‖L2(|ξ|≤k))

− C(k)(kt)
n
2 ( 2

r−1)t−α/2(‖φ̂‖H1 + ‖ψ̂‖H1 + ‖φ̂‖L∞ + ‖ψ̂‖L∞),

which proves Lemma 2.2. �

3. Proof of Theorem 1.1

By the contradiction, suppose that there exists a free solution w of (1.15) defined
by the initial data such that w0 6= 0: w0 ∈ (H0,1 ∩ L1)2 satisfying

lim
t→∞

‖u(t)−w(t)‖L2 = 0. (3.1)
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Define the functional

Hu(t) = Re
∫

Rn

iw · udx = Re
2∑

j=1

∫
Rn

iwjujdx

as in [1]. By (1.15) and (1.6) we have

d

dt
Hu(t) = Re

∫
Rn

( (
i∂t 0
0 i∂t

)
w · u + w·

(
−i∂t 0

0 −i∂t

)
u
)
dx

= Re
∫

Rn

( (
1
2∆ 0
0 − 1

2∆

)
w · u + w·

(
−i∂t 0

0 −i∂t

)
u
)
dx

= Re
∫

Rn

w·
(
−i∂t + 1

2∆ 0
0 −(i∂t + 1

2∆)

)
udx

= Re
∫

Rn

w·
(
−2−piλ|u1 − u2|p−1(u1 − u2)
2−piλ|u1 − u2|p−1(u1 − u2)

)
dx.

Letting
W = w1 − w2, U = u1 − u2,

from the above identity we have

d

dt
Hu(t)

= 2−p Re
(
iλ

∫
Rn

|U |p−1UW dx
)

= 2−p Re
(
iλ

∫
Rn

(|U |p−1UW − |W |p+1)dx
)

+ 2−p(Imλ)
∫

Rn

|W |p+1dx.

(3.2)

Due to the inequality∣∣|a|p−1a− |b|p−1b
∣∣ ≤ C(|a|p−1 + |b|p−1)|a− b|
≤ C(|a− b|p−1 + |b|p−1)|a− b|,

where a, b ∈ C and the Hölder inequality we obtain∣∣∣2−p Re
(
iλ

∫
Rn

(|U |p−1UW − |W |p+1)dx
)∣∣∣

=
∣∣∣2−p Re

(
iλ

∫
Rn

(|U |p−1U − |W |p−1W )W dx
)∣∣∣

≤ C

∫
Rn

(|U −W |p|W |+ |U −W ||W |p)dx

≤ C‖U −W‖p
L2‖W‖

L
2

2−p
+ C‖U −W‖L2‖W‖p

L2p

≤ C(δ)|t|n
2 (1−p)‖U −W‖L2(1 + ‖U −W‖p−1

L2 ),

(3.3)

since 1 < p ≤ 1 + 2
n ≤ 2 for n ≥ 2, 1 ≤ p ≤ 2 for n = 1, and ‖W‖Lr ≤

C|t|n
2 ( 2

r−1)‖w0‖L r
r−1

for r ≥ 2, where C(δ) is a constant depends on δ=‖w0‖L1 +
‖w0‖H0,1 .

Since w0 6= 0, there exists a k > 0 such that ‖ŵ1,0‖L2(|ξ|≤k)+‖ŵ2,0‖L2(|ξ|≤k) > 0.
We apply Lemma 2.2 with r = p+ 1 to the difference w1(t)−w2(t) = U(−t)w1,0 −
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U(t)w2,0 to find

‖w1(t)− w2(t)‖p+1
Lp+1

≥ (
1
2
)p+1(2kt)

n
2 (1−p)

(
‖ŵ1,0‖L2(|ξ|≤k) + ‖ŵ2,0‖L2(|ξ|≤k)

)p+1

− C(k)(kt)
n
2 (1−p)t−α p+1

2

(
‖w0‖p+1

H0,1 + ‖w0‖p+1
L1

)
≥ C(k, γ)t

n
2 (1−p) − C(k, δ)t

n
2 (1−p)−α p+1

2

(3.4)

for all t > 0, where C(k, γ) is a constant depending on k and γ =‖ŵ1,0‖L2(|ξ|≤k) +
‖ŵ2,0‖L2(|ξ|≤k) and C(k, δ) is a constant depending on k and δ. Integrating (3.2)
in time, and using (3.3) and (3.4), we obtain

|Hu(2T )−Hu(T )| ≥ 2−p| Imλ||
∫ 2T

T

∫
Rn

|W (t, x)|p+1dxdt|

− C

∫ 2T

T

|t|n
2 (1−p)‖U −W‖p−1

L2 (1 + ‖U −W‖L2)dt

≥ 2−p| Imλ|
∫ 2T

T

‖w1(t)− w2(t)‖p+1
Lp+1dt

− C(δ)
∫ 2T

T

|t|n
2 (1−p)‖u(t)−w(t)‖p−1

L2 dt

≥ 2−p| Imλ|
∫ 2T

T

(C(k, γ)t
n
2 (1−p) − C(k, δ)t

n
2 (1−p)−α p+1

2 )dt

− C(δ)
∫ 2T

T

tn(1−p)/2‖u(t)−w(t)‖p−1
L2 dt.

By (3.1), it follows that for any ε satisfying 0 < ε ≤ 2−p−2| Imλ|C(k, γ)/C(δ),
there exists a T1 > 0 such that

‖u(t)−w(t)‖L2 < ε
1

p−1

for t ≥ T1. Let T2 > 0 be such that

C(k, γ)t
n
2 (1−p) − C(k, δ)t

n
2 (1−p)−α p+1

2 ≥ 1
2
C(k, γ)t

n
2 (1−p)

for t ≥ T2. Hence

|Hu(2T )−Hu(T )| ≥ (2−p−1| Imλ|C(k, γ)− C(δ)ε)
∫ 2T

T

t
n
2 (1−p)dt

≥ (2−p−1| Imλ|C(k, γ)− C(δ)ε)
∫ 2T

T

t−1dt

≥ 2−p−2| Imλ|C(k, γ) log 2 > 0

(3.5)

for T ≥ max{T1, T2} > 0. On the other hand, by the definition of Hu(t) and (3.1)
we find

|Hu(t)| = |Re
∫

Rn

(iw · (u−w))dx| ≤ C‖w(t)‖L2‖u(t)−w(t)‖L2

≤ C‖w0‖L2‖u(t)−w(t)‖L2 → 0
(3.6)

for t→∞. From (3.6) and (3.5) we have the desired contradiction. This completes
the proof.
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4. Proof of Theorem 1.2

As in the proof of Theorem 1.1, suppose that there exists a free solution w of
(1.15) defined by the initial data such that w0 6= 0, w0 ∈ (H0,1 ∩ L1)2 satisfying

lim
t→∞

‖v(t)−w(t)‖L2 = 0. (4.1)

Define the functional

Gv(t) = Re
∫

Rn

(iw1v1 − iw2v2)dx

and denote

Ω =
∇
|∇|

(w1 + w2), V =
∇
|∇|

(v1 + v2).

Then by (1.15) and (1.8) we obtain

d

dt
Gv(t) = Re

∫
Rn

w·Lvdx

= −Re
(
µ

∫
Rn

(a ·w)
∇
|∇|

|V |p−1V dx
)

= Re
(
µ

∫
Rn

Ω|V |p−1V dx
)

= Re
(
µ

∫
Rn

Ω(|V |p−1V − |Ω|p−1Ω)dx
)

+ (Reµ)
∫

Rn

|Ω|p+1dx.

(4.2)

As in (3.3) we find∣∣ Re
(
µ

∫
Rn

Ω(|V |p−1V − |Ω|p−1Ω)dx
)∣∣

≤ C‖V − Ω‖p
L2‖Ω‖

L
2

2−p
+ C‖V − Ω‖p−1

L2 ‖Ω‖2
L

4
3−p

≤ C(δ)|t|n
2 (1−p)‖V − Ω‖p−1

L2 (1 + ‖V − Ω‖L2).

(4.3)

Applying Lemma 2.2 to Ω = ∇
|∇| (w1 + w2), we obtain

‖Ω(t)‖p+1
Lp+1 ≥ C(k, γ)t

n
2 (1−p) − C(k, δ)t

n
2 (1−p)−α p+1

2 (4.4)

for all t > 0, since the norm ‖ ∇
|∇| ·‖Lp+1 is equivalent to ‖·‖Lp+1 (see [8]). Integrating

(4.2) in time, and using (4.3) and (4.4), we obtain

|Gv(2T )−Gv(T )|

≥ |Reµ|
∫ 2T

T

‖Ω(t)‖p+1
Lp+1dt− C(δ)

∫ 2T

T

|t|n
2 (1−p)‖v(t)−w(t)‖p−1

L2 dt

≥ |Reµ|
∫ 2T

T

(
C(k, γ)t

n
2 (1−p) − C(k, δ)t

n
2 (1−p)−α p+1

2

)
dt

− C(δ)
∫ 2T

T

t
n
2 (1−p)‖v(t)−w(t)‖p−1

L2 dt.

By (4.1), it follows that for any ε satisfying 0 < ε ≤ 2−2|Reµ|C(k, γ)/C(δ), there
exists a T1 > 0 such that

‖u(t)−w(t)‖L2 < ε
1

p−1

for t ≥ T1. Again, let T2 > 0 such that

C(k, γ)t
n
2 (1−p) − C(k, δ)t

n
2 (1−p)−α p+1

2 ≥ 1
2
C(k, γ)t

n
2 (1−p)
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for t ≥ T2. Therefore,

|Gv(2T )−Gv(T )| ≥ (2−1|Reµ|C(k, γ)− C(δ)ε)
∫ 2T

T

t
n
2 (1−p)dt

≥ (2−1|Reµ|C(k, γ)− C(δ)ε)
∫ 2T

T

t−1dt

≥ 2−2|Reµ|C(k, γ) log 2 > 0

(4.5)

for T ≥ max {T1, T2} > 0. On the other hand, by the definition of Gv(t) and (4.1)
we find

|Gv(t)| =
∣∣ Re

∫
Rn

(iw1(v1 − w1)− iw2(v2 − w2))dx
∣∣

≤ C‖w(t)‖L2‖v(t)−w(t)‖L2

≤ C‖v(t)−w(t)‖L2 → 0

(4.6)

as t → ∞. Therefore we have the desired contradiction by (4.5) and (4.6). This
completes the proof.

5. Appendix

In this section we prove the existence of global solutions to the systems (1.7))
and (1.9). We introduce the following space-time norm

‖φ‖Lq(I;Lr) = ‖‖φ(t, x)‖Lr
x
‖Lq

t (I),

where I is a bounded or unbounded time interval.
To prove the local existence of L2-solutions, we write (1.7) as a system of integral

equations

u1(t) = U(t)φ1 + i

∫ t

0

U(t− τ)F (u1(τ), u2(τ))dτ,

u2(t) = U(t)φ2 − i

∫ t

0

U(t− τ)F (u1(τ), u2(τ))dτ,
(5.1)

where U(t) is the free Schrödinger evolution group. As in [9], we treat the problem
in L2 space by applying the results for a single nonlinear Schrödinger equation with
power nonlinearities.

Define the space

X(I) = (C ∩ L∞)(I;L2) ∩ Lβ(I;Lp+1)

with the norm

‖u‖X(I) =
2∑

j=1

(
‖uj‖L∞(I;L2) + ‖uj‖Lβ(I;Lp+1)

)
,

on a time-interval I = [−T, T ], where β = 4
n

p+1
p−1 , 1 < p < 1 + 4

n . We now prove the
following result.

Theorem 5.1. For any ρ > 0 there exists a T (ρ) > 0 such that for any initial data
φ = (φ1, φ2) ∈ L2 with the norm ‖φ‖L2 ≤ ρ, the Cauchy problem for (1.7) has a
unique solution u = (u1, u2) ∈ X(I) with I = [−T (ρ), T (ρ)].
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Proof. We denote the right-hand sides of (5.1) by Φj(u) for j = 1, 2. Applying the
Strichartz inequality

‖
∫ t

0

U(t− τ)g(τ)dτ‖Lr
t (I;Lq

x) ≤ C‖g‖Ls
t (I;Ll

x)

for 2 ≤ r ≤ ∞, 1 ≤ s ≤ 2, 1
q = 1

2 −
2

nr , 1
l = 1

2 + 2
n (1 − 1

s ) (see [2]), we estimate
Φj(u) via the Hölder inequality in space and in time. We choose r = β, q = p+ 1,
s = β

β−1 , l = p+1
p and β = 4

n
p+1
p−1 , then

‖Φj(u)‖X(I) ≤ C‖φ‖L2 + C‖F(u)‖
Ls(I;L

p+1
p )

≤ C‖φ‖L2 + C
( ∫

I

‖u‖ps
Lp+1dt

)1/s

≤ C‖φ‖L2 + CT
1
s−

p
β ‖u‖p

X(I).

Note that β − ps > 0 since p < 1 + 4
n . Similarly, we find the estimate for the

difference

‖Φj(u)− Φj(u′)‖X(I) ≤ CT
1
s−

p
β (‖u‖p−1

X(I) + ‖u′‖p−1
X(I))‖u− u′‖X(I).

Therefore the conclusion of the theorem follows from the contraction mapping prin-
ciple if we take T > 0 sufficiently small which depends only on the size ρ of the
initial data. �

The existence of global solutions for (1.7) follows from Theorem 5.1 and a-priori
estimates (1.11). Similarly, a-priori estimates (1.14) and Theorem 5.1 ensure the
existence of global solutions to (1.9).
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