Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 166, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ANALYTIC SEMIGROUPS GENERATED BY AN OPERATOR MATRIX IN $L^{2}(\Omega) \times L^{2}(\Omega)$

SALAH BADRAOUI

Abstract

This article concerns the generation of analytic semigroups by an operator matrix in the space $L^{2}(\Omega) \times L^{2}(\Omega)$. We assume that one of the diagonal elements is strongly elliptic and the other is weakly elliptic, while the sum of the non-diagonal elements is weakly elliptic.

1. Introduction

The theory of semigroups of linear operators has applications in many branches of analysis as evolution equations: parabolic and hyperbolic equations and systems with various boundary conditions, harmonic analysis and ergodic theory. In the theory of evolution equations, it is usually shown that a given differential operator A is the infinitesimal generator of a strongly continuous semigroup in a certain concrete Banach space of functions X. This provides us with the existence and uniqueness of a solution of the initial value problem

$$
\begin{gathered}
\frac{\partial u(x, t)}{\partial t}+A u(x, t)=0 \\
u(x, 0)=u_{0}(x)
\end{gathered}
$$

in the sense of the Banach space X.
This article concerns the generation of analytic semigroups by an operator matrix in the space $L^{2}(\Omega) \times L^{2}(\Omega)$, where Ω is a bounded open set in \mathbb{R}^{N}, with smooth boundary $\partial \Omega$. Passo and Mottoni 4] proved that the operator matrix

$$
\mathcal{M}=\left(\begin{array}{cc}
a_{11} \Delta & a_{12} \Delta \tag{1.1}\\
a_{21} \Delta & a_{22} \Delta
\end{array}\right)
$$

with domain $D(\mathcal{M})=\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{2}$ generates an analytic semigroup on $L^{2}(\Omega) \times L^{2}(\Omega)$ provided $a_{11}, a_{22} \geq 0, a_{11}+a_{22}>0, a_{11} a_{22}>a_{12} a_{21}$.

Also, de Oliveira [3] proved that the operator matrix

$$
\mathcal{M}=\left(\begin{array}{ccc}
a_{11} \Delta & \ldots & a_{1 n} \Delta \tag{1.2}\\
\vdots & \vdots & \vdots \\
a_{n 1} \Delta & \ldots & a_{n n} \Delta
\end{array}\right)
$$

[^0]with domain $D(\mathcal{M})=\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{n}$ generates an analytic semigroup on $\left(L^{2}(\Omega)\right)^{n}$ provided that all eigenvalues of the matrix
\[

\left($$
\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}
$$\right)
\]

have positive real part.
In this paper we consider the linear operator

$$
A(x, D)=\left(\begin{array}{ll}
A_{11}(x, D) & A_{12}(x, D) \tag{1.3}\\
A_{21}(x, D) & A_{22}(x, D)
\end{array}\right)
$$

where every element $A_{h l}$ is a symmetric second order differential operator given by

$$
\begin{equation*}
A_{h l}(x, D) u=-\sum_{j, k=1}^{N} \frac{\partial}{\partial x_{j}}\left(a_{j k}(x) \frac{\partial u}{\partial x_{k}}\right) \tag{1.4}
\end{equation*}
$$

and one of the diagonal operators A_{11} or A_{22} is strongly elliptic and the other diagonal operator is weakly elliptic and the sum of the non-diagonal operators $A_{12}(x, D)+A_{21}(x, D)$ is also weakly elliptic. Under these assumptions we show that this operator matrix generates an analytic semigroup on $L^{2}(\Omega) \times L^{2}(\Omega)$.

2. Preliminaries

Let us consider the differential operator

$$
A(x, D)=\left(\begin{array}{ll}
A_{11}(x, D) & A_{12}(x, D) \tag{2.1}\\
A_{21}(x, D) & A_{22}(x, D)
\end{array}\right)
$$

where

$$
\begin{equation*}
A_{h l}(x, D) u=-\sum_{j, k=1}^{N} \frac{\partial}{\partial x_{j}}\left(a_{j k}^{h l}(x) \frac{\partial u}{\partial x_{k}}\right) \quad x \in \bar{\Omega}, h, l=1,2 \tag{2.2}
\end{equation*}
$$

under the following assumptions:
(H1) The operators $A_{h l}(h, l=1,2)$ are symmetric; i.e.,

$$
\begin{equation*}
a_{k j}^{h l}(x)=a_{j k}^{h l}(x), \quad x \in \bar{\Omega}, \text { for all } j, k=1, \ldots N \tag{2.3}
\end{equation*}
$$

(H2) The operators $A_{h l}(h=1,2)$ are regular; i.e.,

$$
\begin{equation*}
a_{j k}^{h l}(x) \in C^{1}(\bar{\Omega} ; \mathbb{R}), \quad h, l=1,2 \text { and } j, k=1, \ldots N \tag{2.4}
\end{equation*}
$$

(H3) One of the diagonal operator A_{11} or A_{22} is strongly elliptic; i.e., there is a constant $\mu>0$ such that for all $\xi=\left(\xi_{j}\right)_{j=1}^{N} \in \mathbb{R}^{N}$ and all $x \in \Omega$,

$$
\begin{equation*}
\sum_{j, k=1}^{N} a_{j k}^{m m}(x) \xi_{j} \xi_{k} \geq \mu \sum_{j=1}^{N} \xi_{j}^{2}=\mu|\xi|^{2}, m=1 \text { or } m=2 \tag{2.5}
\end{equation*}
$$

(H4) The other diagonal operator $A_{l l}(l=2$ if $m=1$ and $l=1$ if $m=2)$ is weakly elliptic; i.e., for all $\xi=\left(\xi_{j}\right)_{j=1}^{N} \in \mathbb{R}^{N}$ and all $x \in \Omega$

$$
\begin{equation*}
\sum_{j, k=1}^{N} a_{j k}^{l l}(x) \xi_{j} \xi_{k} \geq 0 \tag{2.6}
\end{equation*}
$$

(H5) The sum non-diagonal operators $A_{12}+A_{21}$ is weakly elliptic; i.e., for all $\xi=\left(\xi_{j}\right)_{j=1}^{N} \in \mathbb{R}^{N}$ and all $x \in \Omega$

$$
\begin{equation*}
\sum_{j, k=1}^{N}\left(a_{j k}^{12}+a_{j k}^{21}\right)(x) \xi_{j} \xi_{k} \geq 0 \tag{2.7}
\end{equation*}
$$

We give now some definitions which will be used in the sequel. We define the operator A with domain

$$
\begin{equation*}
D(A)=\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{2} \tag{2.8}
\end{equation*}
$$

as

$$
A u \equiv\left(\begin{array}{ll}
A_{11} & A_{12} \tag{2.9}\\
A_{21} & A_{22}
\end{array}\right) u=A(x, D) u \equiv\binom{A_{11}(x, D) u_{1}+A_{12}(x, D) u_{2}}{A_{21}(x, D) u_{1}+A_{22}(x, D) u_{2}}
$$

where $u=\operatorname{col}\left(u_{1}, u_{2}\right)$. The following results are well known; see, for instance [5] page 213].

Theorem 2.1. The operator $A_{h l}$ with domain

$$
\begin{equation*}
D\left(A_{h l}\right)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \tag{2.10}
\end{equation*}
$$

and defined by

$$
\begin{equation*}
A_{h l} u=A_{h l}(x, D) u \tag{2.11}
\end{equation*}
$$

is closed.
Theorem 2.2. Let $1 \leq p<\infty, L_{n}^{p}(\Omega)=\prod_{j=1}^{n} L^{p}(\Omega)$, and $\left(L_{n}^{p}(\Omega)\right)^{\prime}$ the dual space of $L_{n}^{p}(\Omega)$. Then, to every $\varphi \in\left(L_{n}^{p}(\Omega)\right)^{\prime}$ there corresponds unique $v=\left(v_{1}, \ldots, v_{n}\right) \in$ $L_{n}^{q}(\Omega)$ such that for every $u=\left(u_{1}, \ldots, u_{n}\right) \in L_{n}^{p}(\Omega)$:

$$
\begin{equation*}
\varphi(u)=\sum_{j=1}^{n}\left\langle u_{j}, v j\right\rangle \tag{2.12}
\end{equation*}
$$

Moreover, $\left\|\varphi ;\left(L_{n}^{p}(\Omega)\right)^{\prime}\right\|=\left\|v ; L_{n}^{q}(\Omega)\right\|$, where q is the conjugate exponent of p and $\left\langle u_{k}, v_{k}\right\rangle=\int_{\Omega} u_{k}(x) v_{k}(x) d x$. Therefore, $\left(L_{n}^{p}(\Omega)\right)^{\prime} \sim L_{n}^{q}(\Omega)$.

For a proof of the above theorem, see [1, page 47].
Definition 2.3. Let X be a Banach space and let X^{*} be its dual. For every $x \in X$, the duality set is defined by

$$
\begin{equation*}
J(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\} \tag{2.13}
\end{equation*}
$$

3. Main Results

Theorem 3.1. Assume that (2.1)-(2.11) hold. Then, the operator A generates a strongly continuous semigroup of contractions on the space $X=L^{2}(\Omega) \times L^{2}(\Omega)$ endowed with the norm $\|u\|=\left(\left\|u_{1}\right\|_{2}^{2}+\left\|u_{2}\right\|_{2}^{2}\right)^{1 / 2}$, where $u=\left(u_{1}, u_{2}\right)$ and $\left\|u_{1}\right\|_{2}^{2}=$ $\int_{\Omega}\left|u_{1}(x)\right|^{2} d x$.

To prove this theorem we will need some lemmas.
Lemma 3.2. For every $\lambda>0$ and $u \in D(A)$ we have

$$
\begin{equation*}
\lambda\|u\| \leq\|(\lambda I+A) u\| \tag{3.1}
\end{equation*}
$$

Proof. We denote the pairing between $L_{2}^{2}(\Omega)$ and itself by \langle,$\rangle . If u=\operatorname{col}\left(u_{1}, u_{2}\right) \in$ $D(A) \backslash\{0\}$ then the function $u^{*}=\operatorname{col}\left(u_{1}^{*}, u_{2}^{*}\right)$ is in the duality map $J(u)$ (see Definition 2.3 and Theorem 2.1), where $u_{h}^{*}=\overline{u_{h}}$ for $h=1,2$. We have

$$
\begin{equation*}
\left\langle A u, u^{*}\right\rangle=\left\langle A_{11} u_{l}, u_{1}^{*}\right\rangle+\left\langle A_{22} u_{2}, u_{2}^{*}\right\rangle+\left\langle A_{12} u_{2}, u_{1}^{*}\right\rangle+\left\langle A_{21} u_{1}, u_{2}^{*}\right\rangle \tag{3.2}
\end{equation*}
$$

Integration by parts yields

$$
\begin{aligned}
\left\langle A_{h h} u_{h}, u_{h}^{*}\right\rangle & =-\int_{\Omega_{j, k=1}} \sum_{j}^{N} \frac{\partial}{\partial x_{j}}\left(a_{j k}^{h h}(x) \frac{\partial u_{h}}{\partial x_{k}}\right) \overline{u_{h}} d x \\
& =\int_{\Omega_{j, k=1}} \sum_{j k}^{N} a_{j}^{h h}(x) \frac{\partial u_{h}}{\partial x_{k}} \frac{\partial \overline{u_{h}}}{\partial x_{j}} d x
\end{aligned}
$$

Denoting

$$
\frac{\partial u_{h}}{\partial x_{j}}=\alpha_{h j}+i \beta_{h j}, \quad h=1,2, j=1, \ldots, N
$$

where $\alpha_{h j}, \beta_{h j} \in \mathbb{R}$, we find that

$$
\begin{equation*}
\left\langle A_{h h} u_{h}, u_{h}^{*}\right\rangle=\int_{\Omega} \sum_{j, k=1}^{N} a_{j k}^{h h}(x)\left(\alpha_{h k} \alpha_{h j}+\beta_{h k} \beta_{h j}\right) d x, \quad h=1,2 . \tag{3.3}
\end{equation*}
$$

Also, integrating by parts we have

$$
\begin{align*}
\left\langle A_{12} u_{2}, u_{1}^{*}\right\rangle= & \int_{\Omega} \sum_{j, k=1}^{N} a_{j k}^{12}(x)\left(\alpha_{1 j} \alpha_{2 k}+\beta_{1 j} \beta_{2 k}\right) d x \tag{3.4}\\
& +i\left(\int_{\Omega} \sum_{j, k=1}^{N} a_{j k}^{12}(x)\left(\alpha_{1 j} \beta_{2 k}-\alpha_{2 k} \beta_{1 j}\right) d x\right)
\end{align*}
$$

and

$$
\begin{align*}
\left\langle A_{21} u_{1}, u_{2}^{*}\right\rangle= & \int_{\Omega} \sum_{j, k=1}^{N} a_{j k}^{21}(x)\left(\alpha_{1 k} \alpha_{2 j}+\beta_{1 k} \beta_{2 j}\right) d x \\
& +i\left(\int_{\Omega} \sum_{j, k=1}^{N} a_{j k}^{21}(x)\left(\alpha_{2 j} \beta_{1 k}-\alpha_{1 k} \beta_{2 j}\right) d x\right) \tag{3.5}
\end{align*}
$$

Then substituting (3.3)-(3.5) into (3.2) yields

$$
\begin{align*}
\left\langle A u, u^{*}\right\rangle= & \sum_{h=1}^{2} \int_{\Omega} \sum_{j, k=1}^{N} a_{j k}^{h h}(x)\left(\alpha_{h k} \alpha_{h j}+\beta_{h k} \beta_{h j}\right) d x \\
& +\int_{\Omega} \sum_{j, k=1}^{N}\left(a_{j k}^{12}+a_{j k}^{21}\right)(x)\left(\alpha_{1 j} \alpha_{2 k}+\beta_{1 j} \beta_{2 k}\right) d x \tag{3.6}\\
& +i\left\{\int_{\Omega} \sum_{j, k=1}^{N}\left(a_{j k}^{12}-a_{j k}^{21}\right)(x)\left(\alpha_{1 j} \beta_{2 k}-\alpha_{2 j} \beta_{1 k}\right) d x\right\}
\end{align*}
$$

Set

$$
\begin{equation*}
\left|\alpha_{h}\right|^{2}=\sum_{j=1}^{N} \int_{\Omega} \alpha_{h j}^{2} d x, \quad\left|\beta_{h}\right|^{2}=\sum_{j=1}^{N} \int_{\Omega} \beta_{h j}^{2} d x, \quad h=1,2 \tag{3.7}
\end{equation*}
$$

Then from 3.6-3.7) and using (H3)-(H5), we have that the real part of $\left\langle A u, u^{*}\right\rangle$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left\langle A u, u^{*}\right\rangle \geq 2 \mu\left(\sum_{h=1}^{2}\left|\alpha_{h}\right|^{2}+\sum_{h=1}^{2}\left|\beta_{h}\right|^{2}\right) \geq 0 \tag{3.8}
\end{equation*}
$$

From (3.8), the linear operator $-A$ is dissipative. It follows that for every $\lambda>0$ and $u \in D(A)$ we have $\lambda\|u\| \leq\|(\lambda I+A) u\|$ (see [5, page 14].

Lemma 3.3. The operator A is closed.
Proof. The adjoint operator of A is

$$
A^{*}=\left(\begin{array}{ll}
A_{11}^{*} & A_{21}^{*} \tag{3.9}\\
A_{12}^{*} & A_{22}^{*}
\end{array}\right)
$$

where $A_{h l}^{*}$ is the adjoint operator of $A_{h l}$, for $h, l=1,2$. As the domain $D\left(A^{*}\right)=$ $D(A)$ is dense in $L_{2}^{2}(\Omega)$, then the operator $\left(A^{*}\right)^{*}$ is closed (see [2, page 28]). Also, as $L^{2}(\Omega)$ is reflexive, then $L^{2}(\Omega) \times L^{2}(\Omega)$ is reflexive (see [1, page 8]); whence $\left(A^{*}\right)^{*}=A[2$, page 46]. We finally conclude that A is closed.

Lemma 3.4. for every $\lambda>0$, the operator $\lambda I+A$ is bijective.
Proof. From (3.1) it follows that $\lambda I+A$ is injective. As in lemma 3.2 we can prove that for every every $\lambda>0$ and $u \in D(A)$,

$$
\begin{equation*}
\lambda\|u\| \leq\left\|(\lambda I+A)^{*} u\right\| \tag{3.10}
\end{equation*}
$$

then the operator $\left((\lambda I+A)^{*}\right)^{*}=\lambda I+A$ is surjective (see [2, page 30]).
Proof of Theorem 3.1. The domain $D(A)$ of A contains $C_{0}^{\infty}(\Omega) \times C_{0}^{\infty}(\Omega)$ and it is therefore dense in $X \equiv L^{2}(\Omega) \times L^{2}(\Omega)$. Also, A is closed and as a consequence of Lemmas 3.2 and 3.4 we have

$$
\begin{equation*}
\left\|(\lambda I+A)^{-1}\right\| \leq \frac{1}{\lambda}, \quad \text { for all } \lambda>0 \tag{3.11}
\end{equation*}
$$

The Hille-Yosida theorem [5, page 8] now implies that $-A$ is the infinitesimal generator of a strongly continuous semigroup of contractions on $L^{2}(\Omega) \times L^{2}(\Omega)$.

Theorem 3.5. The semigroup generated in theorem 3.1 is also analytic.
Proof. Let X be a Banach space and let X^{*} be its dual. If $A: X \rightarrow X$ is a linear operator in X, the numerical range of A is the set

$$
\begin{equation*}
\mathcal{N}(A)=\left\{\left\langle x^{*}, A x\right\rangle: x \in D(A), x^{*} \in X^{*},\left\langle x^{*}, x\right\rangle=\|x\|=\left\|x^{*}\right\|=1\right\} \tag{3.12}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\left|a_{j k}^{h l}(x)\right| \leq M, \quad \text { for all } h, l=1,2 \text { and } j, k=1, \ldots, N \tag{3.13}
\end{equation*}
$$

we get from (3.6) that the imaginary part of $\left\langle A u, u^{*}\right\rangle$

$$
\begin{equation*}
\left|\operatorname{Im}\left\langle A u, u^{*}\right\rangle\right| \leq M\left(\sum_{h=1}^{2}\left|\alpha_{h}\right|^{2}+\sum_{h=1}^{2}\left|\beta_{h}\right|^{2}\right) \tag{3.14}
\end{equation*}
$$

and hence from (3.8) and (3.14), we find that

$$
\begin{equation*}
\frac{\left|\operatorname{Im}\left\langle A u, u^{*}\right\rangle\right|}{\left|\operatorname{Re}\left\langle A u, u^{*}\right\rangle\right|} \leq \frac{M}{2 \mu} \tag{3.15}
\end{equation*}
$$

We observe by 3.8) and 3.15 that the numerical range $\mathcal{N}(-A)$ of $-A$ is contained in the set $N_{\varphi}=\{\lambda:|\arg \lambda|>\pi-\varphi\}$ where $\varphi=\arctan (N M /(2 \mu)), 0<\varphi<\pi / 2$. Choosing $\varphi<\theta<\pi / 2$ and denoting

$$
\begin{equation*}
\mathcal{S}_{\theta}=\{\lambda:|\arg \lambda|<\pi-\theta\} \tag{3.16}
\end{equation*}
$$

It follows that there is a constant $C_{\theta}=\sin (\theta-\varphi)>0$ for which the distance of λ from $\mathcal{N}(-A)$

$$
d(\lambda, \overline{\mathcal{N}(-A)}) \geq C_{\theta}|\lambda|, \quad \text { for } \lambda \in \mathcal{S}_{\theta}
$$

Since $\lambda>0$ is in the resolvent set $\rho(-A)$ of the operator $-A$ by Theorem 3.1, it follows from [5, Theorem 1.3.9] that $S_{\theta} \subset \rho(-A)$ and that

$$
\begin{equation*}
\left\|(\lambda I+A)^{-1}\right\| \leq \frac{1}{C_{\theta}|\lambda|}, \quad \text { for all } \lambda \in \mathcal{S}_{\theta} \tag{3.17}
\end{equation*}
$$

Whence by [5, Theorem 2.5.2], the operator $-A$ is the infinitesimal generator of an analytic semigroup on the space $X=L^{2}(\Omega) \times L^{2}(\Omega)$.

4. Generalization

The above results are also true for the operator

$$
A(x, D)=\left(\begin{array}{cccc}
A_{11}(x, D) & A_{12}(x, D) & \cdots & A_{1 n}(x, D) \\
A_{21}(x, D) & A_{22}(x, D) & \cdots & A_{2 n}(x, D) \\
\vdots & \vdots & \vdots & \vdots \\
A_{n 1}(x, D) & A_{n 2}(x, D) & \cdots & A_{n n}(x, D)
\end{array}\right)
$$

where

$$
A_{h l}(x, D) u=-\sum_{j, k=1}^{N} \frac{\partial}{\partial x_{j}}\left(a_{j, k}^{h l}(x) \frac{\partial u}{\partial x_{k}}\right), \quad x \in \bar{\Omega}, h, l=1, \ldots, N
$$

under the following assumptions:
(A1) The operators $A_{h h}(h=1, \ldots, n)$ are symmetric; i.e.,

$$
a_{k j}^{h h}(x)=a_{j k}^{h h}(x), x \in \bar{\Omega}, \quad \text { for all } j, k=1, \ldots, N
$$

(A2) The operators $A_{h l}(h=1, \ldots, n)$ are regular; i.e., for all $h, l=1, \ldots, n$

$$
a_{j k}^{h l}(x) \in C^{1}(\bar{\Omega} ; \mathbb{R}), \quad j, k=1, \ldots, N
$$

(A3) There exists $m \in\{1, \ldots, n\}$ such that the diagonal operator $A_{m m}$ is strongly elliptic; i.e., there is a constant $\mu>0$ such that for all $\xi=\left(\xi_{j}\right)_{j=1}^{N} \in \mathbb{R}^{N}$ and all $x \in \Omega$,

$$
\sum_{j, k=1}^{N} a_{j k}^{m m}(x) \xi_{j} \xi_{k} \geq \mu \sum_{j=1}^{N} \xi_{j}^{2}=\mu|\xi|^{2}
$$

(A4) The other diagonal operators $A_{l l}(l \neq m)$ are weakly elliptic; i.e., for all $\xi=\left(\xi_{j}\right)_{j=1}^{N} \in \mathbb{R}^{N}$ and all $x \in \Omega$

$$
\sum_{j, k=1}^{N} a_{j k}^{l l}(x) \xi_{j} \xi_{k} \geq 0, \quad \text { for all } l \neq m
$$

(A5) The operators sums $A_{h l}+A_{l h}(h \neq l)$ are weakly elliptic; i.e., for all $\xi=\left(\xi_{j}\right)_{j=1}^{N} \in \mathbb{R}^{N}$ and all $x \in \Omega$

$$
\sum_{j, k=1}^{N}\left(a_{j k}^{h l}+a_{j k}^{l h}\right)(x) \xi_{j} \xi_{k} \geq 0
$$

By examining the proof of the Theorem 3.5, we note that the above results remain true if we assume only that one of the operators $A_{h h}(h=1, \ldots, n), A_{h l}+A_{l h}(h \neq l$, $h, l=1, \ldots, n)$ is strongly elliptic and the rest of them are all weakly elliptic.

References

[1] R. A. Adams; Sobolev spaces, Academic press, New York, 1975.
[2] H. Brezis; Analyse fonctionnelle Théorie et applications, Dunod, 1999.
[3] L. A. F. de Oliveira; On reaction diffusion equations, Electron. J. Differential Equations, Vol. 1998 (1998), No. 24, pp. 1-10.
[4] R. D. Passo, P. Mottoni; On a paper by A. I. Lee and J. M. Hille, J. Math. Anal. Appl., 106, pp. 184-187, 1985.
[5] A. Pazy; Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983.

Salah Badraoui
Laboratoire LAIG, Université du 08 Mai 1945-Guelma, BP 401, Guelma 24000, Algeria E-mail address: sabadraoui@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 35B40, 35B45, 35K55, 35K65.
 Key words and phrases. Analytic semigroup; infinitesimal generator; operator matrix;
 dissipative operator; dual space; adjoint operator; strongly elliptic operator.
 (C) 2012 Texas State University - San Marcos.

 Submitted June 15, 2012. Published September 28, 2012.

