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EXISTENCE OF SOLUTIONS TO BOUNDARY-VALUE
PROBLEMS GOVERNED BY GENERAL NON-AUTONOMOUS

NONLINEAR DIFFERENTIAL OPERATORS

CRISTINA MARCELLI

Abstract. This article concerns the existence and non-existence of solutions
to the strongly nonlinear non-autonomous boundary-value problem

(a(t, x(t))Φ(x′(t)))′ = f(t, x(t), x′(t)) a.e. t ∈ R

x(−∞) = ν−, x(+∞) = ν+

with ν− < ν+, where Φ : R → R is a general increasing homeomorphism,
with Φ(0) = 0, a is a positive, continuous function and f is a Caratheódory
nonlinear function. We provide sufficient conditions for the solvability which
result to be optimal for a wide class of problems. In particular, we focus on
the role played by the behaviors of f(t, x, ·) and Φ(·) as y → 0 related to that
of f(·, x, y) and a(·, x) as |t| → +∞.

1. Introduction

In the previous decade an increasing interest has been devoted to differential
equations of the type

(Φ(x′))′ = f(t, x, x′),

governed by nonlinear differential operators such as the classical p-Laplacian or
its generalizations. Various types of differential operators, even singular or non-
surjective, have been considered due to many applications in different fields. We
quote for the scalar case Bereanu and Mawhin [4]-[5], Garcia-Huidobro, Manásevich
and Zanolin [16], Dosla, Marini and Matucci [13, 21], Cabada and Pouso [6, 7],
and Papageorgiou and Papalini [23]. Moreover, Manásevich and Mawhin treated
systems of equations in [20], where they studied a periodic problem. Finally, in
the more general framework of differential inclusions we quote [14] and the paper
by Kyritsi, Matzakos and Papageorgiou [17] for systems of differential inclusions
involving maximal monotone operators and with various boundary conditions.

Different types of differential operators, depending also on x are involved in
reaction-diffusion equations with non-constant diffusivity (see, e.g. [1, 18, 19]), in
porous media equations and other models. So, it naturally arises the interest in
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mixed differential operators, that is strongly nonlinear equations as(
a(x)Φ(x′)

)′ = f(t, x, x′).

In [22] a periodic problem for a vectorial differential inclusion involving an operator
of the type (a(x)‖x′‖p−2x′)′ is studied, where a : R → R is a positive, continuous
function. Moreover, in [17] the differential operator is even more general, having
structure (A(x, x′))′, and the existence of solutions is proved for a Dirichlet vector
problem. In these last two papers, the boundary-value problem is studied on a
compact interval.

Recently, boundary-value problems on the whole real line, of the type(
a(x(t))Φ(x′(t))

)′ = f(t, x(t), x′(t)) for a.e. t ∈ R
x(−∞) = ν−, x(+∞) = ν+

have been studied in [11] where existence and non-existence results have been proved
for various types of differential operator Φ, including the classical p-laplacian. It
was proved that the existence of heteroclinic solutions depends on the behavior of
Φ and f(t, x, ·) at 0 and f(·, x, y) at infinity, while the presence of the function a
does not influence the existence of solutions.

The aim of this article is to introduce a dependence also on t on the function
a appearing in the differential operator; that is, to study the solvability of the
boundary-value problem(

a(t, x(t))Φ(x′(t))
)′ = f(t, x(t), x′(t)) for a.e. t ∈ R

x(−∞) = ν−, x(+∞) = ν+
(1.1)

where ν− < ν+ are given constants, Φ : R → R is a general increasing homeomor-
phism, with Φ(0) = 0, and a is a positive, continuous function. We underline that
we allow the function a to have null infimum.

Contrary to the autonomous case a = a(x), where the presence of the function
a does not influence the existence and non-existence of solutions (see [11]), in the
present setting the dependence on t of the function a is instead very relevant. In
more detail, the asymptotic behavior of a(·, x) as |t| → +∞, related to that of
f(·, x, y) and compared with the asymptotic behavior of f(t, x, ·) and Φ as y → 0,
plays a central role in the existence and non-existence results.

We provide sufficient conditions guaranteeing the solvability of problem (1.1),
that cannot be improved, in the sense that in a wide range of cases they are both
necessary and sufficient for the existence of solutions.

For instance, when a and f have the product structure

f(t, x, y) = h(t)g(x)c(y), a(t, x) = α(t)β(x)

with h ∈ Lq
loc(R), for some 1 ≤ q ≤ ∞, satisfying th(t)g(x) ≤ 0 for every (t, x) and

c(y) satisfying c(0) = 0, 0 < c(y) < K|y|2−
1
q for y 6= 0, we have (see Corollary 4.8):

if α(t) ∼ const.|t|p and |h(t)| ∼ const.|t|δ as |t| → +∞,

|c(y)| ∼ const.|y|β , |Φ(y)| ∼ const.|y|µ as y → 0

with 0 < µ ≤ 1, µ(δ + 1) > pβ and µ < β ≤ µ(2 − 1
q ), then (1.1) admits solutions

if and only if µ > β + p− δ − 1.
We underline that in the framework of autonomous functions a treated in [11],

only the case when δ ≥ −1 can be handled (see also [12]). Here, the dependence
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on t of the function a allows us to avoid this limitation, provided that p < 0; that
is, when a(t, x) vanishes as |t| → +∞.

To the best of our knowledge, the results presented here are new even if for
Φ(y) ≡ y; that is, for differential equations of the form(

a(t, x(t))x′(t)
)′ = f(t, x(t), x′(t)) a.e. t.

Moreover, the operators considered here are quite general and extend the classical
p-laplacian. Nevertheless, when dealing just with the p-laplacian the results can
be slightly improved, by using the positive homogeneity of the operator, as we will
show in a forthcoming paper.

2. Notation and auxiliary results

In the whole paper we will consider a general increasing homeomorphism Φ on R,
such that Φ(0) = 0, a positive continuous function a : R2 → R and a Carathéodory
function f : R3 → R. We will deal with the nonlinear differential equation(

(a(t, x(t))Φ(x′(t)
)′ = f(t, x(t), x′(t)) a.e. t (2.1)

We will adopt the following notation:

m(t) := min
x∈[ν−ν+]

a(t, x), M(t) := max
x∈[ν−ν+]

a(t, x),

m∗(t) := min
(s,x)∈[−t,t]×[ν−ν+]

a(s, x), M∗(t) := max
(s,x)∈[−t,t]×[ν−ν+]

a(s, x).

Of course, M∗(t) ≥ M(t) ≥ m(t) ≥ m∗(t) > 0 for every t ∈ R, with inft∈R m(t)
possibly null.

The approach we adopt to handle the nonlinear problem on the whole real line is
based on a sequential technique, considering boundary-value problems in compact
intervals exhausting R. The next lemma is just the key result for the convergence
of sequences of solutions in compact intervals towards a solution of (2.1) in R. It
was proved in the case the operator a is autonomous; that is, a(t, x) ≡ a(x), but
the same proof works also with the dependence on t.

Lemma 2.1 ([11, Lemma 2.2]). For all n ∈ N let In := [−n, n] and let un ∈ C1(In)
be such that the function t 7→ a(t, un(t))Φ(u′n(t)) belongs to W 1,1(In), the sequences
(un(0))n and (u′n(0))n are bounded and

(a(t, un(t))Φ(u′n(t)))′ = f(t, un(t), u′n(t)) for a.e. t ∈ In.

Assume that there exist two functions H, γ ∈ L1(R) such that

|u′n(t)| ≤ H(t), |a(t, un(t))Φ(u′n(t))| ≤ γ(t) a.e. on In, for all n ∈ N.

Then, the sequence (xn)n of continuous functions on R defined by xn(t) := un(t)
for t ∈ In and constant outside In, admits a subsequence uniformly convergent in
R to a function x ∈ C1(R), such that the composition t 7→ a(t, x(t))Φ(x′(t)) belongs
to W 1,1(R), and it is a solution of (2.1). Moreover, if limn→+∞ un(−n) = ν− and
limn→+∞ un(n) = ν+, then we have that limt→−∞ x(t) = ν− and limt→+∞ x(t) =
ν+.

To achieve the solvability of the boundary-value problem in compact intervals,
we will use the following existence result proved in [15], concerning a two-point
functional differential problem.
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Theorem 2.2. [15, Theorem 1] Let I = [a, b] ⊂ R and let A : C1(I) → C(I), x 7→
Ax, and F : C1(I) → L1(I), x 7→ Fx, be two continuous functionals. Suppose that
A maps bounded sets of C1(I) into uniformly continuous sets in C(I). Moreover,
assume that

m ≤ Ax(t) ≤ M for every x ∈ C1(I), t ∈ I, for some M > m > 0; (2.2)

and that there exists η ∈ L1(I) such that

|Fx(t)| ≤ η(t), a.e. on I, for every x ∈ C1(I). (2.3)

Then, there exists a function u ∈ C1(I) such that Au · (Φ ◦ u′) ∈ W 1,1(I) and

(Au(t)Φ(u′(t)))′ = Fu(t), a.e. on I

u(a) = ν−, u(b) = ν+.

For recent results on two-point boundary-value problems in different settings see
[2, 3, 8, 9, 10].

3. Existence and non-existence theorems

We begin with an existence result for differential operators growing at most
linearly at infinity.

Theorem 3.1. Let Φ be such that

lim sup
|y|→+∞

|Φ(y)|
|y|

< +∞. (3.1)

Assume that
f(t, ν−, 0) ≤ 0 ≤ f(t, ν+, 0) for a.e. t ∈ R (3.2)

and that there exist constants L,H > 0, a continuous function θ : R+ → R+ and a
function λ ∈ Lq([−L,L]), with 1 ≤ q ≤ ∞, such that

|f(t, x, y)| ≤ λ(t)θ(a(t, x)|Φ(y)|) for a.e. |t| ≤ L, every x ∈ [ν−, ν+], |y| ≥ H,
(3.3)∫ +∞ τ1− 1

q

θ(τ)
dτ = +∞ (3.4)

(with 1
q = 0 if q = +∞). Also assume that there exists a constant γ > 1 such that for

every C > 0 there exist a function ηC ∈ L1(R) and a function KC ∈ W 1,1
loc ([0,+∞)),

null in [0, L] and strictly increasing in [L,+∞), such that

NC(t) := Φ−1
( 1

m(t)

{
(M∗(L)Φ(C))1−γ + (γ − 1)

∣∣ ∫ t

0

K ′
C(|s|)

M(s)γ
ds

∣∣} 1
1−γ

)
∈ L1(R),

(3.5)

f(t, x, y) ≤ −K ′
C(t)Φ(|y|)γ , f(−t, x, y) ≥ K ′

C(t)Φ(|y|)γ

for a.e. t ≥ L, every x ∈ [ν−, ν+], |y| ≤ NC(t),
(3.6)

|f(t, x, y)| ≤ ηC(t) if x ∈ [ν−, ν+], |y| ≤ NC(t), for a.e. t ∈ R. (3.7)

Then, there exists a function x ∈ C1(R), such that t 7→ a(t, x(t))Φ(x′(t)) belongs to
W 1,1(R) and (

a(t, x(t))Φ(x′(t))
)′ = f(t, x(t), x′(t)) for a.e. t ∈ R

ν− ≤ x(t) ≤ ν+ for every t ∈ R
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x(−∞) = ν−, x(+∞) = ν+.

Proof. By (3.1) we have

|Φ(y)| ≤ K|y| for every |y| ≥ H (3.8)

for some constant K > 0, and H > ν+−ν−

2L . Moreover, by (3.4) there exists a
constant

C > max{Φ−1(
M∗(L)
m∗(L)

Φ(H)),−Φ−1(
M∗(L)
m∗(L)

Φ(−H))} ≥ H

such that ∫ m∗(L)Φ(C)

M∗(L)Φ(H)

τ1− 1
q

θ(τ)
dτ > ‖λ‖q[KM∗(L)(ν+ − ν−)]1−

1
q (3.9)

and ∫ −m∗(L)Φ(−C)

−M∗(L)Φ(−H)

τ1− 1
q

θ(τ)
dτ > ‖λ‖q[KM∗(L)(ν+ − ν−)]1−

1
q . (3.10)

Fix n ∈ N, n > L, and put In := [−n, n]. Consider the truncation operator
T : W 1,1(In) → W 1,1(In) defined by

T (x) := Tx where Tx(t) := max{ν−,min{ν+, x(t)}}. (3.11)

Of course, T is well-defined and T ′x(t) = x′(t) for a.e. t ∈ In such that ν− < x(t) <
ν+, whereas T ′x(t) = 0 for a.e. t such that x(t) ≤ ν− or x(t) ≥ ν+. For every
x ∈ W 1,1

loc (R), put

Qx(t) := max{−NC(t),min{T ′x(t), NC(t)}}. (3.12)

Moreover, for every x ∈ R, put w(x) := max{x − ν+, 0} + min{x − ν−, 0}. Of
course, w(x) = 0 if ν− ≤ x ≤ ν+, w(x) > 0 if x > ν+ and w(x) < 0 if x > ν−.

Let us consider the auxiliary boundary-value problem on the compact interval
In:(

a(t, Tx(t))Φ(x′(t))
)′ = f(t, Tx(t), Qx(t)) + arctan(w(x(t))), a.e. in In

x(−n) = ν−, x(n) = ν+.
(3.13)

Let us now prove that this problem admits solutions for every n > L. To this aim,
let A : C1(In) → C(In), x 7→ Ax, and F : C1(In) → L1(In), x 7→ Fx, be the
functionals defined by

Ax(t) := a(t, Tx(t)), Fx(t) := f(t, Tx(t), Qx(t)) + arctan(w(x(t))).

As it is easy to check, by (3.7) the functionals A,F are well-defined, continuous
and they respectively satisfy assumptions (2.2), (2.3) of Theorem 2.2, taking m :=
m∗(n) and M := M∗(n). Furthermore, by the uniform continuity of a(·, ·) in
[−n, n] × [ν−, ν+], for every ε > 0 there exists δ = δ(ε) > 0 such that |a(t1, ξ1) −
a(t2, ξ2)| < ε whenever |t2 − t1| ≤ δ and |ξ1 − ξ2| < δ. Let D be a bounded subset
of C1(In); i.e., there exists S > 0 such that ‖x‖C1(I) ≤ S for every x ∈ D. Put
ρ := min{δ, δ

S }, if |t1 − t2| < ρ we have

|Tx(t1)− Tx(t2)| ≤ |x(t1)− x(t2)| ≤
∣∣ ∫ t2

t1

|x′(τ)|dτ
∣∣ ≤ S|t1 − t2| < δ

for all x ∈ D and consequently |Ax(t1) − Ax(t2)| < ε for every x ∈ D, whenever
|t1 − t2| < ρ, that is A maps bounded sets of C1(In) into uniformly continuous
sets of C(In). Therefore, we can apply Theorem 2.2 and obtain the existence of
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a function un ∈ C1(In) such that t 7→ a(t, un(t))Φ(u′n(t)) ∈ W 1,1(In), solution of
(3.13).

Now we will show that un is a solution of (2.1), in order to apply Lemma 2.1.
To this aim, split the proof in steps.
Step 1. We have ν− ≤ un(t) ≤ ν+ for all t ∈ In. Indeed, let t0 be such that
un(t0) = mint∈In un(t). If un(t0) < ν−, by the boundary conditions in (3.13), t0
belongs to a compact interval [t1, t2] ⊂ In satisfying un(t1) = un(t2) = ν− and
un(t) < ν− for every t ∈ (t1, t2). Hence, by (3.11) we have Tun(t) ≡ ν− and
Qun(t) ≡ 0 in [t1, t2], and by (3.2) for a.e. t ∈ (t1, t2) we have(

a(t, un(t))Φ(u′n(t))
)′ = f(t, ν−, 0) + arctan(un(t)− ν−) < 0.

Thus, the function t 7→ a(t, un(t))Φ(u′n(t)) is strictly decreasing in (t1, t2) and being
u′n(t0) = 0 we have

a(t, un(t))Φ(u′n(t)) < a(t0, un(t0))Φ(u′n(t0)) = 0 for every t ∈ (t0, t2).

Hence, u′n(t) < 0 in (t0, t2), in contradiction with the definition of t0. Similarly one
can show that un(t) ≤ ν+ for every t ∈ In.
Step 2. The function un is increasing in [−n,−L] and in [L, n]. Moreover, if
u′n(t0) = 0 for some |t0| > L, then u′n(t) = 0 whenever |t| > |t0|. To prove
this claim, first observe that the function t 7→ a(t, un(t))Φ(u′n(t)) is increasing in
[−n,−L] and decreasing in [L, n]. In fact, since un is a solution of (3.13) and
|Qun(t)| ≤ NC(t), using Step 1 and assumption (3.6) for a.e. t ≥ L we have(

a(t, un(t))Φ(u′n(t))
)′ = f(t, un(t), Qun(t)) ≤ −K ′

C(t)Φ(|Qun(t)|)γ ≤ 0 (3.14)

and we obtain the monotonicity in [L, n]. Analogously we can proceed for the
interval [−n,−L].

Suppose now, by contradiction, that u′n(t̄) < 0 for some t̄ ∈ [L, n). Then

a(t, un(t))Φ(u′n(t)) ≤ a(t̄, un(t̄))Φ(u′n(t̄)) < 0 for every t ∈ [t̄, n]

and so u′n(t) < 0 for every t ∈ [t̄, n]. This contradicts what proved in Step 1,
since un(n) = ν+. Hence un is increasing in [L, n]. Similarly we can reason in the
interval [−n,−L]. Finally, if u′n(t0) = 0 for some t0 ∈ [L, n), for every t ∈ (t0, n)
we have a(t, un(t))Φ(u′n(t)) ≤ a(t0, un(t0))Φ(u′n(t0)) = 0, hence u′n(t) ≤ 0 in [t0, n].
Therefore, since un is increasing in the same interval, we deduce that un is constant
in [t0, n].
Step 3. We have |u′n(t)| < C for every t ∈ [−L,L]. As it is easy to check, put
g(t) := a(t, un(t))Φ(u′n(t)), the claim will be proved if we show that

m∗(L)Φ(−C) < g(t) < m∗(L)Φ(C) for every t ∈ [−L,L]. (3.15)

To this aim, note that by the Lagrange Theorem there exists a point τ0 ∈ In such
that

|u′n(τ0)| =
1

2L
|un(L)− un(−L)| ≤ ν+ − ν−

2L
< H < C,

so

m∗(L)Φ(−C) < M∗(L)Φ(−H) < g(τ0) < M∗(L)Φ(H) < m∗(L)Φ(C).

Assume, by contradiction, the existence of an interval (τ1, τ2) ⊂ [−L,L] such that
M∗(L)Φ(H) < g(t) < m∗(L)Φ(C) in (τ1, τ2) and g(τ1) = M∗(L)Φ(H), g(τ2) =
m∗(L)Φ(C) or viceversa.
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Then we have H < u′n(t) < C in (τ1, τ2) and since NC(t) = Φ−1(M∗(L)
m(t) Φ(C)) ≥

C for every t ∈ [−L,L], we have |u′n(t)| < NC(t) for every t ∈ (τ1, τ2). Then, by
Step 1, the definition of (3.13) and assumption (3.3), for a.e. t ∈ (τ1, τ2) we have

|g′(t)| = |f(t, un(t), u′n(t))| ≤ λ(t)θ(g(t)).

Therefore, by the Hölder inequality and (3.8), we obtain∫ m∗(L)Φ(C)

M∗(L)Φ(H)

τ1− 1
q

θ(τ)
dτ ≤

∫ τ2

τ1

g(t)1−
1
q

θ(g(t))
|g′(t)|dt ≤

∫ τ2

τ1

λ(t)g(t)1−
1
q dt

≤ ‖λ‖q

(
M∗(L)

∫ τ2

τ1

|Φ(u′n(t))|dt
)1− 1

q

≤ ‖λ‖q

(
KM∗(L)

∫ τ2

τ1

|u′n(t)|dt
)1− 1

q

≤ ‖λ‖q[KM∗(L)(ν+ − ν−)]1−
1
q

in contradiction with (3.9).
Similarly, assuming that m∗(L)Φ(−C) < g(t) < M∗(L)Φ(−H) in (τ1, τ2) and

g(τ1) = m∗(L)Φ(−C), g(τ2) = M∗(L)Φ(−H) or viceversa, reasoning as above we
obtain a contradiction to (3.10). Thus, (3.15) holds and the claim is proved.
Step 4. We have |u′n(t)| ≤ NC(t) for a.e. t ∈ In. Observe that by virtue of what
we proved in Step 3, for every t ∈ [−L,L] we have |u′n(t)| < C ≤ NC(t). Moreover,
in force of Step 2, we have u′n(t) ≥ 0 for every t ∈ In \ [−L,L]. Hence, in order to
prove the claim, it remains to show that u′n(t) ≤ NC(t) for every t ∈ In \ [−L,L].

To this aim, let t̂ := sup{t > L : u′n(τ) < NC(τ) in [L, t]}. By Step 3, t̂ is well
defined. Assume, by contradiction, t̂ < n. By Step 1 and the definition (3.12) we
have(

a(t, un(t))Φ(u′n(t))
)′ = f(t, Tun(t), Qun(t)) = f(t, un(t), u′n(t)) a.e. in [L, t̂].

Since u′n(t) ≥ 0 in [L, n), by (3.14) we have

(a(t, un(t))Φ(u′n(t)))′ ≤ −K ′
C(t)Φ(u′n(t))γ ≤ −K ′

C(t)
M(t)γ

(a(t, un(t))Φ(u′n(t)))γ

for a.e. t ∈ [L, t̂]. Then

1
1− γ

[(a(t, un(t))Φ(u′n(t)))1−γ − (a(L, un(L))Φ(u′n(L)))1−γ ]

=
∫ t

L

(a(un(s))Φ(u′n(s)))′

(a(un(s))Φ(u′n(s)))γ
ds ≤ −

∫ t

L

K ′
C(s)

M(s)γ
ds = −

∫ t

0

K ′
C(s)

M(s)γ
ds

for every t ∈ [L, t̄]. Therefore,

(a(t, un(t))Φ(u′n(t)))1−γ ≥ (a(L, un(L))Φ(u′n(L)))1−γ + (γ − 1)
∫ t

0

K ′
C(s)

M(s)γ
ds

> (M∗(L)Φ(C))1−γ + (γ − 1)
∫ t

0

K ′
C(s)

M(s)γ
ds

implying that

u′n(t) < Φ−1
( 1

m(t)
{
(M∗(L)Φ(C))1−γ + (γ − 1)

∫ t

0

K ′
C(s)

M(s)γ
ds

} 1
1−γ

)
= NC(t).
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for every t ∈ [L, t̂], a contradiction when t̂ < n. So, t̂ = n and the claim is proved.
The same argument works in the interval [−n,−L] too.

Summarizing, taking account of the properties proved in Steps 1-4, we infer that

(a(t, un(t))Φ(u′n(t)))′ = f(t, un(t), u′n(t)) a.e. t ∈ In

for every n ∈ N. Therefore, by (3.7) the sequence of solutions (un)n satisfies all the
assumptions of Lemma 2.1, applied with H(t) = NC(t) and γ(t) = ηC(t), for t ∈ R,
where C is the constant fixed at the beginning of the proof. So, we obtain the
existence of a solution x of equation (2.1), such that t 7→ a(t, x(t))Φ(x′(t)) belongs
to W 1,1(R), satisfying x(−∞) = ν−, x(+∞) = ν+. �

It is also possible to deal with differential operators having superlinear growth at
infinity, provided that condition (3.4) is strengthened requiring that the Nagumo
function has sublinear growth at infinity, as the following result states.

Theorem 3.2. Suppose that all the assumptions of Theorem 3.1 are satisfied, with
the exception of (3.1), and with (3.4) replaced by

lim
y→+∞

θ(y)
y

= 0. (3.16)

Then the assertion of Theorem 3.1 follows.

Proof. The proof is quite similar to that of the previous theorem. Few modifications
only regard Step 3, the unique part in which we used assumption (3.4). Indeed,
notice that the new assumption (3.16) implies that

lim
ξ→+∞

1

ξ1− 1
q

∫ m∗(L)ξ

M∗(L)Φ(H)

τ1− 1
q

θ(τ)
dτ = +∞;

lim
ξ→−∞

1

|ξ|1−
1
q

∫ −m∗(L)ξ

−M∗(L)Φ(−H)

τ1− 1
q

θ(τ)
dτ = +∞

hence we can choose the constant C in such a way that∫ m∗(L)Φ(C)

M∗(L)Φ(H)

τ1− 1
q

θ(τ)
dτ > ‖λ‖q(2LM∗(L)Φ(C))1−

1
q ,∫ −m∗(L)Φ(−C)

−M∗(L)Φ(−H)

τ1− 1
q

θ(τ)
> ‖λ‖q(−2LM∗(L)Φ(−C))1−

1
q ,

which respectively replace conditions (3.9) and (3.10). From now on the proof
proceeds as in the previous result, with the exception of the last chain of inequalities
of Step 3, which now becomes∫ m∗(L)Φ(C)

M∗(L)Φ(H)

τ1− 1
q

θ(τ)
dτ ≤ ‖λ‖q

(
M∗(L)

∫ τ2

τ1

|Φ(u′n(t))|dt
)1− 1

q

≤ ‖λ‖q(2LM∗(L)Φ(C))1−
1
q . �

The key tools in the previous existence Theorems is the summability of function
NC(t) (condition (3.5)) joined with assumption (3.6). Such conditions are not
improvable in the sense that if (3.6) is satisfied with the reversed inequality and
NC is not summable, then problem (1.1) does not admit solutions, as the following
result states.
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Theorem 3.3. Suppose that there exist two constants ρ > 0, γ > 1 and a positive
strictly increasing function K ∈ W 1,1

loc ([0,+∞)), such that the following pair of
conditions hold:

f(t, x, y) ≥ −K ′(t)Φ(y)γ for a.e. t ≥ 0, every x ∈ [ν−, ν+], y ∈ (0, ρ), (3.17)

f(t, x, y) ≤ K ′(−t)Φ(y)γ for a.e. t ≤ 0, every x ∈ [ν−, ν+], y ∈ (0, ρ) (3.18)

and for every constant C the function

NC(t) := Φ−1
( 1

M(t)

{
C + (γ − 1)

∣∣ ∫ t

0

K ′(|s|)
m(s)γ

ds
∣∣} 1

1−γ
)

(3.19)

does not belong to L1(R).
Moreover, assume that

tf(t, x, y) ≤ 0 for a.e. t ∈ R, every (x, y) ∈ [ν−, ν+]× R (3.20)

and there exist two constants µ,H > 0 such that

a(t, x1) ≤ Ha(t + δ, x2) for every t ≥ 0, x1, x2 ∈ [ν−, ν+], 0 < δ < µ, (3.21)

a(t + δ, x1) ≤ Ha(t, x2) for every t ≤ 0, x1, x2 ∈ [ν−, ν+], 0 < δ < µ. (3.22)

Then, (1.1) does not admit solutions such that ν− ≤ x(t) ≤ ν+; that is, no function
x ∈ C1(R), with t 7→ a(t, x(t))Φ(x′(t)) almost everywhere differentiable and ν− ≤
x(t) ≤ ν+, exists solving problem (1.1).

Proof. Let x ∈ C1(R), with a(t, x(t))Φ(x′(t)) almost everywhere differentiable and
ν− ≤ x(t) ≤ ν+ (not necessarily belonging to W 1,1(R)), be a solution of (1.1).

First of all let us prove that the function x is monotone increasing. Indeed,
notice that by assumption (3.20) we deduce that the function t 7→ a(t, x(t))Φ(x′(t))
is decreasing in [0,+∞) and increasing in (−∞, 0]. Then, if x′(t0) = 0 for some
t0 ≥ 0, we have a(t, x(t))Φ(x′(t)) ≤ a(t0, x(t0))Φ(x′(t0)) = 0 for every t > t0;
hence, x′(t) ≤ 0 for every t ≥ t0. Since ν− ≤ x(t) ≤ ν+ and x(+∞) = ν+, this
implies that x(t) ≡ ν+ in [t0,+∞). Therefore, for every t ≥ 0 we have x′(t) ≥ 0
and x′(t) > 0 whenever x(t) < ν+. Similarly, if x′(t0) = 0 for some t0 ≤ 0, we have
a(t, x(t))Φ(x′(t)) ≤ a(t0, x(t0))Φ(x′(t0)) = 0 for every t < t0; hence, x′(t) ≤ 0 for
every t ≤ t0, implying x′(t) = 0 in (−∞, t0]. Therefore, we have x′(t) ≥ 0 for every
t ∈ R and x′(t) > 0 whenever ν− < x(t) < ν+.

Let us now prove that limt→±∞ x′(t) = 0. Since x is increasing, it suffices to
prove that ` : lim supt→±∞ x′(t) = 0. Assume, by contradiction, that ` > 0. Then
there exists an interval [t1, t2] ⊂ [0,+∞) such that |t1 − t2| < µ, 0 < x′(t) < ρ in
[t1, t2] and Φ(x′(t2)) > HΦ(x′(t1)), where µ and H are the constants appearing in
assumption (3.21). Hence,

Φ(x′(t2)) > HΦ(x′(t1)) ≥
a(t1, x(t1))
a(t2, x(t2))

Φ(x′(t1)

so
a(t2, x(t2))Φ(x′(t2)) > a(t1, x(t1))Φ(x′(t1))

a contradiction, since the function t 7→ a(t, x(t))Φ(x′(t)) is decreasing in [0,+∞).
Similarly, by using (3.22) we obtain lim supt→−∞ x′(t) = 0. Then, limt→±∞ x′(t) =
0.
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Let us now define t∗ := inf{t ≥ 0 : x′(t) < ρ in [t, +∞)} and assume by con-
tradiction that x′(t∗) > 0. Put T := sup{t : x(t) < ν+}, so that 0 < x′(t) < ρ in
(t∗, T ). By (3.17) for every t ∈ (t∗, T ) we obtain

1
1− γ

[(a(t, x(t))Φ(x′(t)))1−γ − (a(t∗, x(t∗))Φ(x′(t∗)))1−γ ]

=
∫ t

t∗

(a(s, x(s))Φ(x′(s)))′

(a(s, x(s))Φ(x′(s)))γ
ds ≥

∫ t

t∗
−K ′(s)

m(s)γ
ds

therefore,

a(t, x(t))Φ(x′(t)) ≥
(
(a(t∗, x(t∗))Φ(x′(t∗)))1−γ + (γ − 1)

∫ t

t∗

K ′(s)
m(s)γ

ds
) 1

1−γ

and finally

x′(t) ≥ Φ−1
( 1

M(t)

{
(a(t∗, x(t∗))Φ(x′(t∗)))1−γ + (γ − 1)

∫ t

t∗

K ′(s)
m(s)γ

ds
} 1

1−γ
)
.

Then, if T < +∞, necessarily we have x′(T ) = 0, in contradiction with the above
inequality. Therefore, T = +∞ and again by the above inequality we deduce
x(+∞) = +∞ since the function on the right side in not summable by assumption
(3.19). Therefore, x′(t∗) = 0, implying t∗ = 0 and x(0) = ν+. Similarly one can
show that x(0) = ν−, a contradiction, by using (3.18). �

Remark 3.4. Assumptions (3.21), (3.22) in the previous non-existence theorem
have been introduced just to deal with non-autonomous differential operators. No-
tice that when dealing with autonomous operators, that is for a(t, x) = a(x), they
are trivially satisfied. However, also in the non-autonomous case they hold in
many relevant situations. For instance, when a(t, x) has the product structure
a(t, x) = α(t)β(x), then it is easy to check that assumptions (3.21) and (3.22) hold
if one the following conditions is satisfied:

• α(t) is decreasing in (−∞, 0) and increasing in (0,+∞);
• α is uniformly continuous in R and inft∈Rα(t) > 0;
• α(t) ∼ |t|−p as |t| → +∞ for some p > 0.

4. Some asymptotic criteria

In this section we present some operative criteria applicable for operators and
right-hand side having the product structure

a(t, x) = α(t)β(x) and f(t, x, y) = b(t, x)c(x, y).

We will focus on the link between the local behaviors of c(x, ·) at y = 0 and of
b(·, x), α(·) at infinity, which play a key role for the existence or non-existence of
solutions.

In what follows we assume that α, β are continuous positive functions, b is a
Carathéodory function and c is a continuous function satisfying

c(x, y) > 0 for every y 6= 0 and x ∈ [ν−, ν+]; c(ν−, 0) = c(ν+, 0) = 0.

In this framework, put m̃ := minx∈[ν−,ν+] β(x) and M̃ := maxx∈[ν−,ν+] β(x), we
have

m(t) = m̃α(t), M(t) = M̃α(t), for every t ∈ R
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where recall that m(t) := minx∈[ν−,ν+] a(t, x) and M(t) := maxx∈[ν−,ν+] a(t, x). We
put

m∞ := inf
t∈R

α(t) ≥ 0. (4.1)

4.1. Case of Φ growing at most linearly. In this subsection we deal with dif-
ferential operators Φ satisfying condition (3.1); that is, such that |Φ(y)| ≤ Λ|y|
whenever every |y| > H, for some H,Λ > 0. With this class of operators we cover
differential equations of the type

(a(t, x(t))x′(t))′ = f(t, x(t), x′(t)).

The first two existence theorems are applications of Theorem 3.1.

Proposition 4.1. Suppose that

t · b(t, x) < 0 for a.e. t such that |t| ≥ L, every x ∈ [ν−, ν+] (4.2)

for some L > 0 and there exists a function λ ∈ Lq
loc(R), 1 ≤ q ≤ +∞, such that

|b(t, x)| ≤ λ(t) for a.e. t ∈ R, every x ∈ [ν−, ν+]. (4.3)

Moreover, assume that there exist real constants γ > 1, p, δ, with p < δ + 1,
satisfying

δ + 1 > pγ (4.4)
such that for every x ∈ [ν−, ν+] we have

h1|t|p ≤ α(t) ≤ h2|t|p, a.e. |t| > L, (4.5)

h1|t|δ ≤ |b(t, x)| ≤ h2|t|δ, a.e. |t| > L. (4.6)

c(x, y) ≥ k1Φ(|y|)γ for every y ∈ R, (4.7)

c(x, y) ≤ k2Φ(|y|)γ , whenever |y| < ρ, (4.8)

c(x, y) ≤ k2|Φ(y)|2−
1
q whenever |y| > H (4.9)

for certain positive constants h1, h2, k1, k2, ρ, H. Let (3.1) be satisfied and assume
that

lim sup
y→0+

Φ(y)
yµ

> 0 (4.10)

for some positive constant µ satisfying

µ <
δ + 1− p

γ − 1
. (4.11)

Then, problem (1.1) admits solutions.

Proof. Without loss of generality we can assume H > max{L, ν+−ν−

2L }. Put θ(r) :=
k2( r

m∗(L) )
2− 1

q for r > 0, from (4.3) and (4.9) it is immediate to verify the validity
of conditions (3.3) and (3.4). Put

K(t) :=

{
k1

∫ t

L
min{minx∈[ν−,ν+] b(−τ, x),−maxx∈[ν−,ν+] b(τ, x)}dτ, t ≥ L

0, 0 ≤ t ≤ L.

By condition (4.3) we have K ∈ W 1,1
loc ([0,+∞)) and by (4.2) we have that K is

strictly increasing for t ≥ L. Observe that by (4.7) it follows that

f(t, x, y) = b(t, x)c(x, y) ≤ k1b(t, x)Φ(|y|)γ ≤ −K ′(t)Φ(|y|)γ
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and
f(−t, x, y) = b(−t, x)c(x, y) ≥ k1 b(−t, x)Φ(|y|)γ ≥ K ′(t)Φ(|y|)γ

for a.e. t ≥ L, every x ∈ [ν−, ν+] and every y ∈ R. Then, condition (3.6) of
Theorem 3.1 holds.

Now, from (4.6) it follows that h1k1t
δ ≤ K ′(t) for a.e. t ≥ L and by (4.5) we

deduce that ∫ t

L

K ′(τ)
α(τ)γ

dτ ≥ h1k1

hγ
2

∫ t

L

τ δ−pγ dτ for every t > L.

Hence, by (4.4) we obtain
∫ t

L
K′(τ)
α(τ)γ dτ → +∞ as t → +∞ and so by condition (4.5)

we deduce that for every fixed C ∈ R the function NC(t) defined in (3.5) satisfies

Φ(NC(t)) ≤ const. t
δ+1−pγ

1−γ −p for t large enough. (4.12)

Since p < δ + 1, we obtain δ+1−pγ
1−γ − p < 0, so NC(t) → 0 as t → +∞. Therefore,

by (4.10) and (4.12) we deduce

NC(t) ≤ const. t
δ+1−pγ
µ(1−γ) −

p
µ for t large enough.

implying that NC(t) ∈ L1(R) by (4.11). Then also (3.5) holds.
Since lim|t|→+∞NC(t) = 0 a constant L∗C > L exists such that NC(t) ≤ ρ for

every |t| ≥ L∗C . Let us define Ĉ := max|t|≤L∗
C
NC(t) and

ηC(t) :=

{
maxx∈[ν−,ν+] |b(t, x)| ·max(x,y)∈[ν−,ν+]×[−Ĉ,Ĉ] c(x, y) if |t| ≤ L∗C
h2k2|t|δΦ(NC(t))γ if |t| > L∗C .

By (4.6) and (4.8), for a.e. t ∈ R, for every x ∈ [ν−, ν+] and every y ∈ R such that
|y| ≤ NC(t) we have

|f(t, x, y)| = |b(t, x)|c(x, y) ≤ ηC(t),

so it remains to prove that ηC ∈ L1(R).
By (4.3) and the continuity of the function c we have ηC ∈ L1([−L∗C , L∗C ]).

Moreover, when |t| > L∗C , by (4.12) we have

ηc(t) ≤ const. |t|δ+γ δ+1−pγ
1−γ −pγ = const. |t|

δ+γ−pγ
1−γ

implying that ηc(t) ∈ L1(R \ [−L∗C , L∗C ]) by condition (4.4). Therefore, Theorem
3.1 applies and guarantees the assertion of the present result. �

Remark 4.2. Notice that γ ≤ 2− 1
q ≤ 2 is a necessary compatibility condition in

order to have both (4.7) and (4.9) for large |y|. But when m∞ > 0 (see (4.1)), then
condition (4.7) can be weakened, requiring that it holds only for |y| small enough,
as the following result states.

Proposition 4.3. Let all the assumptions of Proposition 4.1 be satisfied, with the
exception of (4.7), replaced by

c(x, y) ≥ k1Φ(|y|)γ whenever |y| < ρ. (4.13)

Moreover, assume that m∞ > 0. Then, problem (1.1) admits solutions.
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Proof. For every fixed C > 0 let

ΓC := max
{
ρ,Φ−1

(M∗(L)
m∞

Φ(C)
)}

, m̂C := min
(x,y)∈[ν−ν+]×[ρ,ΓC ]

c(x, y),

hC := min{k1,
m̂C

Φ(ΓC)γ
}.

Note that

c(x, y) ≥ hCΦ(|y|)γ for every x ∈ [ν−, ν+], whenever |y| ≤ ΓC .

So, put

KC(t) := hC

∫ t

L

min{ min
x∈[ν−,ν+]

b(−τ, x),− max
x∈[ν−,ν+]

b(τ, x)}dτ

for t ≥ L (and KC(t) = 0 for t ∈ [0, L]), we deduce that (3.6) holds since NC(t) ≤
ΓC for every t ≥ L. From now on, the proof proceeds as that of Proposition 4.1. �

In view of the proof of Proposition 4.1, condition (4.11) guarantees the summa-
bility of the function NC(t), in the case when (4.4) holds. The following results
cover cases when the reversed inequality holds.

Proposition 4.4. Let all the assumptions of Proposition 4.1 hold, with the excep-
tion of (4.4) and (4.11), replaced by

δ + 1 < pγ; (4.14)

p > µ. (4.15)

Then problem (1.1) admits solutions.

Proof. If K is the function defined in the proof of Proposition 4.1, by (4.14) we
have ∫ t

L

K ′(τ)
α(τ)γ

dτ ≤ const.
∫ t

L

τ δ−pγ dτ ≤ const.

Therefore, Φ(NC(T )) ∼ const.
α(t) as t → +∞ (see (3.5)), hence NC(t) ≤ const.t−p/µ

implying that NC is summable by virtue of (4.15).
Moreover, if ηC is defined as in the proof of Proposition 4.1, then

ηC(t) ≤ const. |t|δ 1
α(t)γ

≤ const. tδ−pγ for t large enough

and we conclude that ηC is summable by condition (4.14). Then, the proof proceeds
as that of Theorem 4.1 �

By the same proof of the previous Proposition one can prove also the following
result, applicable when m∞ > 0.

Proposition 4.5. Let all the assumptions of Proposition 4.3 hold, with the excep-
tion of (4.4) and (4.11), replaced by (4.14) and (4.15). Then problem (1.1) admits
solutions.

We state two non-existence results, obtained by applying Theorem 3.3.
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Proposition 4.6. Suppose that

t · b(t, x) ≤ 0 for a.e. t ∈ R and every x ∈ [ν−, ν+]

and let there exist real constants δ, γ > 1, Λ > 0 and a positive function `(t) ∈
L1([0,Λ]) such that

|b(t, x)| ≤ λ1|t|δ, for every x ∈ [ν−, ν+], a.e. |t| > Λ, (4.16)

|b(t, x)| ≤ `(|t|) for a.e. |t| ≤ Λ, x ∈ [ν−, ν+], (4.17)

c(x, y) ≤ λ2Φ(y)γ , for every x ∈ [ν−, ν+], 0 < y < ρ (4.18)

for some positive constants λ1, λ2, ρ. Moreover, assume that (4.5) holds for some
constants h1, h2, p such that

δ + 1 > pγ. (4.19)
Furthermore, suppose that

lim sup
y→0

Φ(y)
yµ

< +∞ (4.20)

for some positive constant µ satisfying

µ ≥ δ + 1− p

γ − 1
. (4.21)

Also suppose that there exist two constants ε,H > 0 such that

α(t) ≤ Hα(t + r) for every t > 0 and 0 < r < ε, (4.22)

α(t + r) ≤ Hα(t) for every t < 0 and 0 < r < ε. (4.23)

Then, problem (1.1) does not admit solutions.

Proof. Put

K(t) :=

{
λ2

∫ t

0
`(τ) dτ for t ∈ [0,Λ]

λ2

∫ Λ

0
`(τ) dτ + λ1λ2

∫ t

Λ
τ δ dτ for t > Λ

we have that K is a strictly increasing function belonging to W 1,1
loc ([0,+∞) and one

can easily verify that conditions (4.16), (4.17) and (4.18) guarantee the validity of
(3.17) and (3.18). Moreover, by (4.5) we obtain∫ t

L

K ′(τ)
α(τ)γ

dτ ≥ const. tδ−pγ+1 for t large enough,

hence by (4.19) we have
∫ t

L
K′(τ)
α(τ)γ dτ → +∞ as t → +∞. Therefore, by (4.5) and

(4.16), if NC(t) is the function defined in (3.19) we have

Φ(NC(t)) ≥ const. t
δ−pγ+1

1−γ −p for t large enough

implying that

NC(t) ≥ const. t
δ−pγ+1
µ(1−γ) −

p
µ for t large enough

by virtue of (4.20). Finally, assumption (4.21) implies that NC(t) is not summable
in [L,+∞) and the assertion follows as an immediate application of Theorem 3.3.

�

When condition (4.19) does not hold, we can use the following non-existence
result.
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Proposition 4.7. Let all the assumption of Proposition 4.6 be satisfied with the
exception of (4.19) and (4.21), which are replaced by

δ + 1 ≤ pγ, (4.24)

p ≤ µ. (4.25)

Then, problem (1.1) does not admit solutions.

Proof. With the same notation of the proof of Proposition 4.6, notice that un-
der condition (4.24) we have lim supt→+∞

∫ t

L
K′(τ)
α(τ)γ dτ < +∞, hence Φ(NC(t)) ≥

const. t−p, implying that NC(t) ≥ const. t−p/µ. Therefore NC is not summable at
infinity owing to assumption (4.25) and the assertion follows from Theorem 3.3. �

For sufficient conditions ensuring the validity of assumptions (4.22) and (4.23),
see Remark 3.4. As an immediate application of the previous results, the following
operative criteria hold.

Corollary 4.8. Let (3.1) be satisfied. Let f(t, x, y) = h(t)g(x)c(y), where h ∈
Lq

loc(R), for some 1 ≤ q ≤ +∞, c is continuous in R and g is continuous and
positive in [ν−, ν+]. Assume that c(y) > 0 for y 6= 0; t · h(t) ≤ 0 for every t and
suppose that there exist constants C1, . . . , C4 > 0 such that

α(t) ∼ C1|t|p as |t| → +∞, for some p ∈ R, (4.26)

|h(t)| ∼ C2|t|δ as |t| → +∞, for some δ ∈ R, (4.27)

Φ(y) ∼ C3|y|µ as y → 0, for some µ > 0, (4.28)

c(y) ∼ C4|y|β as y → 0, for some β > µ, (4.29)

with

δ + 1 >
pβ

µ
. (4.30)

Then, if conditions (4.22), (4.23) hold and µ ≤ β + p− δ− 1, Problem (1.1) has no
solution.

Viceversa, if p < δ + 1, µ > β + p− δ − 1 and we further assume that

lim sup
|y|→+∞

c(y)|Φ(y)|
1
q−2 < +∞, (4.31)

c(y) ≥ k1Φ(|y|)
β
µ for every y ∈ R (4.32)

for some k1 > 0, then (1.1) admits solutions.

The assertion of the above corollary is an immediate consequence of Propositions
4.1 and 4.6 taking γ = β/µ.

As observed in Remark 4.2, β
µ ≤ 2− 1

q ≤ 2 is a necessary compatibility condition
to have both (4.31) and (4.32), but when m∞ > 0 it can be removed, as we state
in the following result, application of Proposition 4.3.

Corollary 4.9. Let all the assumption of Corollary 4.8 hold, with the exception of
(4.32). Then if m∞ > 0, problem (1.1) admits solutions.

When assumption (4.30) is not satisfied, we can use the following result, conse-
quence of Propositions 4.4 and 4.7.
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Corollary 4.10. Let all the assumptions of Corollary 4.8 be satisfied, with the
exception of (4.30), which is replaced by

δ + 1 <
pβ

µ
. (4.33)

Then, if conditions (4.22), (4.23) hold and p ≤ µ, Problem (1.1) has no solution.
Viceversa, if µ < p and we further assume (4.31) and (4.32), then (1.1) admits

solutions.

Finally, a result analogous to Corollary 4.10 holds when condition (4.32) is re-
moved, provided that m∞ > 0, as in Corollary 4.9.

We provide now an application of the previous results.

Example 4.11. Let Φ(y) := y, α(t) := |t|p, f(t, x, y) = −t|t|s|y|β , for some con-
stants p, s, β (we avoid to introduce a dependence on x since we have showed that
it does not influence the existence or non-existence of solutions). In this case we
have µ = 1. Assume s + 1 ≥ 0 (so we can take q = +∞) and 1 < β ≤ 2 (so that
(4.31) holds).

Then, if s + 2 > pβ, s + 2 > p, problem (1.1) admits solutions (whatever ν−, ν+

may be), if and only if p < s+3−β, as a consequence of Corollary 4.8. Otherwise,
if s + 2 < pβ, problem (1.1) admits solutions if and only if p > 1, as a consequence
of Corollary 4.10.

4.2. Case of Φ having superlinear growth. We now deal with operators Φ
having possibly superlinear growth at infinity, that is we now remove condition
(3.1). The non-existence Propositions 4.6 and 4.7 hold also in this case, since they
do not require condition (3.1). As for the existence results, we now use Theorem
3.2 instead of Theorem 3.1, by assuming (3.16).

As it will be clear later, condition (3.16) is not compatible with (4.7) so from
now on we will assume m∞ > 0. However, in the special case of the p−laplacian,
this condition can be removed, as we will show in a forthcoming paper.

Proposition 4.12. Let all the assumptions of Proposition 4.3 (or Proposition 4.5)
hold, with the exception of (4.9) which is replaced by

lim
|y|→+∞

maxx∈[ν−,ν+] c(x, y)
|Φ(y)|

= 0 (4.34)

Then, problem (1.1) admits solutions.

Proof. Put

θ(r) := max
(t,x)∈[−L,L]×[ν−,ν+]

(
max

{
c(x,Φ−1(

r

a(t, x)
)), c(x,Φ−1(− r

a(t, x)
)
})

,

it is immediate to check that θ is a continuous function on [0,+∞), such that

θ(a(t, x)|Φ(y)|) ≥ c(x, y) for every t ∈ [−L,L], x ∈ [ν−, ν+], y ∈ R,

hence (3.3) holds. Moreover, by (4.34), for every ε > 0 there exists a real cε such
that

c(x, y) ≤ ε|Φ(y)| for every x ∈ [ν−, ν+], |y| ≥ cε.

Hence, for every s ≥ M∗(L) max{Φ(cε),−Φ(−cε)} we have θ(s) ≤ ε
m∗(L)s; that is,

lim
s→+∞

θ(s)
s

= 0.
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Then (3.16) holds and the proof proceeds as that of Proposition 4.3 [or Proposition
4.5], applying Theorem 3.2 instead of Theorem 3.1. �

Note that condition (4.34) is not compatible with (4.7), since γ > 1. As appli-
cations of the previous result, the following operative criteria hold.

Corollary 4.13. Let f(t, x, y) = h(t)g(x)c(y), where h ∈ Lq
loc(R), for some 1 ≤

q ≤ +∞, c is continuous in R and g is continuous and positive in [ν−, ν+]. Assume
that c(y) > 0 for y 6= 0; t ·h(t) ≤ 0 for every t and suppose that there exist constants
C1, . . . , C4 > 0 such that (4.26), (4.27), (4.28), (4.29), (4.30) hold with p < δ + 1.
Moreover, assume that µ > β + p− δ − 1, m∞ > 0 and

lim
|y|→+∞

c(y)
|Φ(y)|

= 0.

Then problem (1.1) admits solutions.

Corollary 4.14. Let all the assumptions of Corollary 4.13 be satisfied, with the
exception of (4.30) which is replaced by (4.33). Then if p ≥ µ, problem (1.1) admits
solutions.
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