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STABILITY FOR LINEAR NEUTRAL INTEGRO-DIFFERENTIAL
EQUATIONS WITH VARIABLE DELAYS

ABDELOUAHEB ARDJOUNI, AHCENE DJOUDI, IMENE SOUALHIA

Abstract. In this article we study a linear neutral integro-differential equa-
tion with variable delays and give suitable conditions to obtain asymptotic
stability of the zero solution, by means of fixed point technique. An asymp-
totic stability theorem with a necessary and sufficient condition is proved,
which improves and generalizes previous results due to Burton [5], Becker and
Burton [4] and Jin and Luo [15]. We provide an example that illustrates our
results.

1. Introduction

Without doubt, Lyapunov’s direct method has been, for more than 100 years,
the main tool for investigating the stability properties of a wide variety of ordi-
nary, functional, partial differential and integro-differential equations. Nevertheless,
the application of this method to problems of stability in differential and integro-
differential equations with delays has encountered serious obstacles if the delays are
unbounded or if the equation has unbounded terms [6]–[8]. In recent years, several
investigators have tried stability by using a new technique. Particularly, Burton,
Furumochi, Becker and others began a study in which they noticed that some of
these difficulties vanish or might be overcome by means of fixed point theory (see
[1]–[18], [20]). The fixed point theory does not only solve the problem on stability
but has other significant advantage over Lyapunov’s. The conditions of the former
are often averages but those of the latter are usually pointwise (see [6]).

In this article we consider the linear neutral integro-differential equation with
variable delays

x′(t) = −
N∑
j=1

∫ t

t−τj(t)

aj(t, s)x(s)ds+
N∑
j=1

cj(t)x′(t− τj(t)), (1.1)

with the initial condition

x(t) = ψ(t) for t ∈ [m(0), 0],

where ψ ∈ C([m(0), 0],R) and

mj(0) = inf{t− τj(t), t ≥ 0}, m(0) = min{mj(0), 1 ≤ j ≤ N}.
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Here C(S1, S2) denotes the set of all continuous functions ϕ : S1 → S2 with
the supremum norm ‖ · ‖. Throughout this paper we assume that aj ∈ C(R+ ×
[m(0),∞),R), cj ∈ C1(R+,R), and τj ∈ C(R+,R+) with t− τj(t) →∞ as t→∞
for j = 1, 2, . . . , N .

Special cases of equation (1.1) have been investigated by many authors. For
example, Burton in [5], Becker and Burton in [4], Jin and Luo in [15] studied the
equation

x′(t) = −
∫ t

t−τ1(t)
a1(t, s)x(s)ds, (1.2)

and proved the following theorems, respectively,

Theorem 1.1 ([5]). Suppose that τ1(t) = r and there exists a constant α < 1 such
that

2
∫ t

t−r
|A(t, s)|ds ≤ α for all t ≥ 0, (1.3)∫ t

0

A(s, s)ds→∞ as t→∞, (1.4)

where

A(t, s) =
∫ r

t−s
a1(u+ s, s)du with A(t, t) =

∫ r

0

a1(u+ t, t)du.

Then the zero solution of (1.2) is asymptotically stable.

Theorem 1.2 ([4]). Suppose that τ1 is differentiable, t−τ1(t) is strictly increasing,
and there exist constants k ≥ 0, α ∈ (0, 1) such that for t ≥ 0,

−
∫ t

0

G(s, s)ds ≤ k, (1.5)∫ t

t−τ1(t)
|G(t, s)|ds+

∫ t

0

e−
R t

s
G(u,u)du|G(s, s)|

( ∫ s

s−τ1(s)
|G(s, u)|du

)
ds ≤ α, (1.6)

with

G(t, s) =
∫ f(s)

t

a1(u, s)du, G(t, t) =
∫ f(t)

t

a1(u, t)du,

where f is the inverse function of t−τ1(t). Then for each continuous initial function
ψ : [m1(0), 0] → R, there is a unique continuous function x : [m1(0),∞) → R with
x(t) = ψ(t) on [m1(0), 0] that satisfies (1.2) on [0,∞). Moreover, x is bounded
on [m1(0),∞). Furthermore, the zero solution of (1.2) is stable at t = 0. If, in
addition, ∫ t

0

G(s, s)ds→∞ as t→∞, (1.7)

then x(t) → 0 as t→∞.

Theorem 1.3 ([15]). Let τ1 be differentiable. Suppose that there exist constants
k ≥ 0, α ∈ (0, 1) and a function h1 ∈ C(R+,R) such that for t ≥ 0,

−
∫ t

0

h1(s)ds ≤ k, (1.8)
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t−τ1(t)
|h1(s) +B1(t, s)|ds

+
∫ t

0

e−
R t

s
h1(u)du|h1(s)|

( ∫ s

s−τ1(s)
|h1(u) +B1(s, u)|du

)
ds

+
∫ t

0

e−
R t

s
h1(u)du|h1(s− τ1(s)) +B1(s, s− τ1(s))||1− τ ′1(s)| ≤ α,

(1.9)

where

B1(t, s) =
∫ s

t

a1(u, s)du with B1(t, t− τ1(t)) =
∫ t−τ1(t)

t

a1(u, t− τ1(t))du.

Then for each continuous initial function ψ : [m1(0), 0] → R, there is an unique
continuous function x : [m1(0),∞) → R with x(t) = ψ(t) on [m1(0), 0] that satisfies
(1.2) on [0,∞). Moreover, x is bounded on [m1(0),∞). Furthermore, the zero
solution of (1.2) is stable at t = 0. If, in addition,∫ t

0

h1(s)ds→∞ as t→∞, (1.10)

then x(t) → 0 as t→∞.

Remark 1.4. The result by Becker and Burton in Theorem 1.2 requires that
t − τ1(t) be strictly increasing. In Theorem 1.3, this condition is clearly removed.
Also, the conditions of stability in Theorem 1.3 are less restrictive than Theorem
1.2. Thus, Theorem 1.3 improves Theorems 1.1 and 1.2.

Our objective here is to improve Theorem 1.3 and extend it to investigate a
wide class of linear integro-differential equation with variable delays of neutral type
presented in (1.1). To do this we define a suitable continuous function H (see
Theorem 2.2 below) and find conditions for H, with no need of further assumptions
on the inverse of delays t− τj(t), so that for a given continuous initial function ψ a
mapping P for (1.1) is constructed in such a way to map a complete metric space
Sψ in itself and in which P possesses a fixed point. This procedure will enable us to
establish and prove an asymptotic stability theorem for the zero solution of (1.1)
with a necessary and sufficient condition and with less restrictive conditions. The
results obtained in this paper improve and generalize the main results in [4, 5, 15].
We provide an example to illustrate our claim.

2. Main results

For each ψ ∈ C([m(0), 0],R), a solution of (1.1) through (0, ψ) is a continuous
function x : [m(0), σ) → R for some positive constant σ > 0 such that x satisfies
(1.1) on [0, σ) and x = ψ on [m(0), 0]. We denote such a solution by x(t) = x(t, 0, ψ).
From the existence theory we can conclude that for each ψ ∈ C([m(0), 0],R), there
exists a unique solution x(t) = x(t, 0, ψ) of (1.1) defined on [0,∞). We define
‖ψ‖ = max{|ψ(t)| : m(0) ≤ t ≤ 0}. Stability definitions may be found in [6], for
example.

Our aim here is to generalize Theorem 1.3 to equation (1.1) by giving a necessary
and sufficient condition for asymptotic stability of the zero solution.

It is known that studying the stability of an equation using a fixed point technic
involves the construction of a suitable fixed point mapping. This can be an arduous
task. So, to construct our mapping, we begin by transforming (1.1) to a more
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tractable, but equivalent, equation, which we then invert to obtain an equivalent
integral equation from which we derive a fixed point mapping. After that, we define
a suitable complete space, depending on the initial condition, so that the mapping is
a contraction. Using Banach’s contraction mapping principle, we obtain a solution
for this mapping, and hence a solution for (1.1), which is asymptotically stable.

First, we have to transform (1.1) into an equivalent equation that possesses the
same basic structure and properties to which we apply the variation of parameters
to define a fixed point mapping.

Lemma 2.1. Equation (1.1) is equivalent to

x′(t) =
N∑
j=1

Bj(t, t− τj(t))(1− τ ′j(t))x(t− τj(t))

+
N∑
j=1

d

dt

∫ t

t−τj(t)

Bj(t, s)x(s)ds+
N∑
j=1

cj(t)x′(t− τj(t)),

(2.1)

where

Bj(t, s) =
∫ s

t

aj(u, s)du and Bj(t, t− τj(t)) =
∫ t−τj(t)

t

aj(u, t− τj(t))du.

Proof. Differentiating the integral term in (2.1), we obtain

d

dt

∫ t

t−τj(t)

Bj(t, s)x(s)ds

= Bj(t, t)x(t)−Bj(t, t− τj(t))(1− τ ′j(t))x(t− τj(t)) +
∫ t

t−τj(t)

∂

∂t
Bj(t, s)x(s)ds.

Substituting this into (2.1), it follows that (2.1) is equivalent to (1.1) provided Bj
satisfies the following conditions

Bj(t, t) = 0 and
∂

∂t
Bj(t, s) = −aj(t, s). (2.2)

This euqality implies

Bj(t, s) = −
∫ t

0

aj(u, s)du+ φ(s), (2.3)

for some function φ, and Bj(t, s) must satisfy

Bj(t, t) = −
∫ t

0

aj(u, t)du+ φ(t) = 0.

Consequently,

φ(t) =
∫ t

0

aj(u, t)du.

Substituting this into (2.3), we obtain

Bj(t, s) = −
∫ t

0

aj(u, s)du+
∫ s

0

aj(u, s)du =
∫ s

t

aj(u, s)du.

This definition of Bj satisfies (2.2). Consequently, (1.1) is equivalent to (2.1). �
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Theorem 2.2. Suppose that τj is twice differentiable and τ ′j(t) 6= 1 for all t ∈ R+,
and there exist continuous functions hj : [mj(0),∞) → R for j = 1, 2, . . . , N and a
constant α ∈ (0, 1) such that for t ≥ 0

lim inf
t→∞

∫ t

0

H(s)ds > −∞, (2.4)

and
N∑
j=1

| cj(t)
1− τ ′j(t)

|+
N∑
j=1

∫ t

t−τj(t)

|hj(s) +Bj(t, s)|ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)du|[hj(s− τj(s)) +B(s, s− τj(s))](1− τ ′j(s))− rj(s)|ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)du|H(s)|(

∫ s

s−τj(s)

|hj(u) +Bj(s, u)|du)ds ≤ α,

(2.5)

where

H(t) =
N∑
j=1

hj(t), rj(t) =
[cj(t)H(t) + c′j(t)](1− τ ′j(t)) + cj(t)τ ′′j (t)

(1− τ ′j(t))2
,

and

Bj(t, s) =
∫ s

t

aj(u, s)du with Bj(t, t− τj(t)) =
∫ t−τj(t)

t

aj(u, t− τj(t))du.

Then the zero solution of (1.1) is asymptotically stable if and only if∫ t

0

H(s)ds→∞ as t→∞. (2.6)

Proof. First, suppose that (2.6) holds. We set

K = sup
t≥0

{e−
R t
0 H(s)ds}. (2.7)

Let ψ ∈ C([m(0), 0],R) be fixed and define

Sψ := {ϕ ∈ C([m(0),∞),R) : ϕ(t) = ψ(t) for t ∈ [m(0), 0] and ϕ(t) → 0 as t→∞}.
Endowed with the supremum norm ‖ · ‖; that is, for φ ∈ Sψ,

‖φ‖ := sup{|φ(t)| : t ∈ [m(0),∞)}.
In other words, we carry out our investigations in the complete metric space (Sψ, ρ)
where ρ is supremum metric

ρ(x, y) := sup
t≥m(0)

|x(t)− y(t)| = ‖x− y‖, for x, y ∈ Sψ.

Rewrite (1.1) in the following equivalent form

x′(t) =
N∑
j=1

Bj(t, t− τj(t))(1− τ ′j(t))x(t− τj(t))

+
N∑
j=1

d

dt

∫ t

t−τj(t)

Bj(t, s)x(s)ds+
N∑
j=1

cj(t)x′(t− τj(t))

(2.8)
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Multiplying both sides of (2.8) by exp
( ∫ t

0
H(u)du

)
and integrating with respect to

s from 0 to t, we obtain

x(t) = ψ(0)e−
R t
0 H(u)du +

∫ t

0

e−
R t

s
H(u)du

N∑
j=1

hj(s)x(s)ds

+
∫ t

0

e−
R t

s
H(u)du

N∑
j=1

d

ds

∫ s

s−τj(s)

Bj(s, u)x(u)du

+
∫ t

0

e−
R t

s
H(u)du

N∑
j=1

Bj(s, s− τj(s))(1− τ ′j(s))x(s− τj(s))ds

+
∫ t

0

e−
R t

s
H(u)du

N∑
j=1

cj(s)x′(s− τj(s))ds.

Thus,

x(t) = ψ(0)e−
R t
0 H(u)du +

N∑
j=1

∫ t

0

e−
R t

s
H(u)duhj(s)x(s)ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)du d

ds

∫ s

s−τj(s)

Bj(s, u)x(u)du

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)duBj(s, s− τj(s))(1− τ ′j(s))x(s− τj(s))ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)ducj(s)x′(s− τj(s))ds.

Performing an integration by parts, we obtain

x(t) = ψ(0)e−
R t
0 H(u)du +

N∑
j=1

∫ t

0

e−
R t

s
H(u)dud

( ∫ s

s−τj(s)

[hj(u) +Bj(s, u)]x(u)du
)

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)du[hj(s− τj(s)) +Bj(s, s− τj(s))]

× (1− τ ′j(s))x(s− τj(s))ds+
N∑
j=1

∫ t

0

cj(s)
1− τ ′j(s)

e−
R t

s
H(u)dudx(s− τj(s))

=
(
ψ(0)−

N∑
j=1

cj(0)
1− τ ′j(0)

ψ(−τj(0))−
N∑
j=1

∫ 0

−τj(0)

[hj(s) +Bj(0, s)]ψ(s)ds
)

× e−
R t
0 H(u)du

+
N∑
j=1

cj(t)
1− τ ′j(t)

x(t− τj(t)) +
N∑
j=1

∫ t

t−τj(t)

[hj(s) +Bj(t, s)]x(s)ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)du{[hj(s− τj(s)) +Bj(s, s− τj(s))]
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× (1− τ ′j(s))− rj(s)}x(s− τj(s))ds

−
N∑
j=1

∫ t

0

e−
R t

s
H(u)duH(s)

( ∫ s

s−τj(s)

[hj(u) +Bj(s, u)]x(u)du
)
ds.

Now use this equality to define the operator P : Sψ → Sψ by (Pϕ)(t) = ψ(t) if
t ∈ [m(0), 0] and for t ≥ 0 we let

(Pϕ)(t) =
(
ψ(0)−

N∑
j=1

cj(0)
1− τ ′j(0)

ψ(−τj(0))

−
N∑
j=1

∫ 0

−τj(0)

[hj(s) +Bj(0, s)]ψ(s)ds
)
e−

R t
0 H(u)du

+
N∑
j=1

cj(t)
1− τ ′j(t)

ϕ(t− τj(t)) +
N∑
j=1

∫ t

t−τj(t)

[hj(s) +Bj(t, s)]ϕ(s)ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)du{[hj(s− τj(s)) +Bj(s, s− τj(s))]

× (1− τ ′j(s))− rj(s)}ϕ(s− τj(s))ds

−
N∑
j=1

∫ t

0

e−
R t

s
H(u)duH(s)

( ∫ s

s−τj(s)

[hj(u) +Bj(s, u)]ϕ(u)du
)
ds.

(2.9)

It is clear that (Pϕ) ∈ C([m(0),∞),R). We will show that (Pϕ)(t) → 0 as t→∞.
To this end, denote the five terms on the right hand side of (2.9) by I1, I2, . . . I5,
respectively. It is obvious that the first term I1 tends to zero as t→∞, by condition
(2.6). Also, due to the facts that ϕ(t) → 0 and t− τj(t) →∞ for j = 1, 2, . . . , N as
t → ∞, the second term I2 in (2.9) tends to zero as t → ∞. What is left to show
is that each of the remaining terms in (2.9) go to zero at infinity.

Let ϕ ∈ Sψ be fixed. For a given ε > 0, we choose T0 > 0 large enough such
that t − τj(t) ≥ T0, j = 1, 2, . . . , N , implies |ϕ(s)| < ε if s ≥ t − τj(t). Therefore,
the third term I3 in (2.9) satisfies

|I3| = |
N∑
j=1

∫ t

t−τj(t)

[hj(s) +Bj(t, s)]ϕ(s)ds|

≤
N∑
j=1

∫ t

t−τj(t)

|hj(s) +Bj(t, s)||ϕ(s)|ds

≤ ε

N∑
j=1

∫ t

t−τj(t)

|hj(s) +Bj(t, s)|ds ≤ αε < ε.

Thus, I3 → 0 as t→∞. Now consider I4. For the given ε > 0, there exists a T1 > 0
such that s ≥ T1 implies |ϕ(s − τj(s))| < ε for j = 1, 2, . . . , N . Thus, for t ≥ T1,
the term I4 in (2.9) satisfies

|I4| =
∣∣∣ N∑
j=1

∫ t

0

e−
R t

s
H(u)du

{
[hj(s− τj(s)) +Bj(s, s− τj(s))](1− τ ′j(s))− rj(s)

}
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× ϕ(s− τj(s))ds
∣∣∣

≤
N∑
j=1

∫ T1

0

e−
R t

s
H(u)du

∣∣[hj(s− τj(s)) +Bj(s, s− τj(s))](1− τ ′j(s))− rj(s)
∣∣

|ϕ(s− τj(s))|ds

+
N∑
j=1

∫ t

T1

e−
R t

s
H(u)du|[hj(s− τj(s)) +Bj(s, s− τj(s))](1− τ ′j(s))− rj(s)

∣∣
|ϕ(s− τj(s))|ds

≤ sup
σ≥m(0)

|ϕ(σ)|
N∑
j=1

∫ T1

0

e−
R t

s
H(u)du

∣∣[hj(s− τj(s)) +Bj(s, s− τj(s))]

× (1− τ ′j(s))− rj(s)
∣∣ds

+ ε

N∑
j=1

∫ t

T1

e−
R t

s
H(u)du|[hj(s− τj(s)) +Bj(s, s− τj(s))](1− τ ′j(s))− rj(s)|ds.

By (2.6), we can find T2 > T1 such that t ≥ T2 implies

sup
σ≥m(0)

|ϕ(σ)|
N∑
j=1

∫ T1

0

e−
R t

s
H(u)du|[hj(s− τj(s)) +Bj(s, s− τj(s))]

× (1− τ ′j(s))− rj(s)|ds

= sup
σ≥m(0)

|ϕ(σ)|e−
R t

T2
H(u)du

N∑
j=1

∫ T1

0

e−
R T2

s
H(u)du|[hj(s− τj(s)) +Bj(s, s− τj(s))]

× (1− τ ′j(s))− rj(s)|ds < ε.

Now, apply (2.5) to have |I4| < ε+αε < 2ε. Thus, I4 → 0 as t→∞. Similarly, by
using (2.5), then, if t ≥ T2 then term I5 in (2.9) satisfies

|I5| =
∣∣ N∑
j=1

∫ t

0

e−
R t

s
H(u)duH(s)

( ∫ s

s−τj(s)

[hj(u) +Bj(s, u)]ϕ(u)du
)
ds

∣∣
≤ sup
σ≥m(0)

|ϕ(σ)|e−
R t

T2
H(u)du

N∑
j=1

∫ T1

0

e−
R T2

s
H(u)du|H(s)|

×
( ∫ s

s−τj(s)

|hj(u) +Bj(s, u)|du
)
ds

+ ε

N∑
j=1

∫ t

T1

e−
R t

s
H(u)du|H(s)|

( ∫ s

s−τj(s)

|hj(u) +Bj(s, u)|du
)
ds

< ε+ αε < 2ε.

Thus, I5 → 0 as t→∞. In conclusion (Pϕ)(t) → 0 as t→∞, as required. Hence
P maps Sψ into Sψ. Also, by condition (2.5), P is a contraction mapping with
contraction constant α. Indeed, for φ, η ∈ Sψ and t > 0

|(Pϕ)(t)− (Pη)(t)|
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≤
N∑
j=1

| cj(t)
1− τ ′j(t)

||ϕ(t− τj(t))− η(t− τj(t))|

+
N∑
j=1

∫ t

t−τj(t)

|hj(s) +Bj(t, s)||ϕ(s)− η(s)|ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)du|[hj(s− τj(s)) +Bj(s, s− τj(s))]

× (1− τ ′j(s))− rj(s)||ϕ(s− τj(s))− η(s− τj(s))|ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)duH(s)

( ∫ s

s−τj(s)

|hj(u) +Bj(s, u)||ϕ(u)− η(u)|du
)
ds

≤
( N∑
j=1

| cj(t)
1− τ ′j(t)

|+
N∑
j=1

∫ t

t−τj(t)

|hj(s) +Bj(t, s)|ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)du|[hj(s− τj(s)) +Bj(s, s− τj(s))](1− τ ′j(s))− rj(s)|ds

+
N∑
j=1

∫ t

0

e−
R t

s
H(u)duH(s)

( ∫ s

s−τj(s)

|hj(u) +Bj(s, u)|du
)
ds

)
‖ϕ− η‖.

By condition (2.5), P is a contraction mapping with constant α. By the con-
traction mapping principle (Smart [19, p. 2]), P has a unique fixed point x in Sψ
which is a solution of (1.1) with x(t) = ψ(t) on [m(0), 0] and x(t) = x(t, 0, ψ) → 0
as t→∞.

To obtain the asymptotic stability, we need to show that the zero solution of (1.1)
is stable. Let ε > 0 be given and choose δ > 0 (δ < ε) satisfying 2δK + αε < ε. If
x(t) = x(t, 0, ψ) is a solution of (1.1) with ‖ψ‖ < δ, then x(t) = (Px)(t) defined in
((2.9). We claim that |x(t)| < ε for all t ≥ t0. Notice that |x(s)| < ε on [m(0), 0].
If there exists t∗ > 0 such that |x(t∗)| = ε and |x(s)| < ε for m(0) ≤ s < t∗, then
it follows from (2.9) that

|x(t∗)|

≤ ‖ψ‖
(
1 +

N∑
j=1

| cj(0)
1− τ ′j(0)

|+
N∑
j=1

∫ 0

−τj(0)

|hj(s) +Bj(0, s)|ds
)
e−

R t∗
0 H(u)du

+ ε

N∑
j=1

| cj(t∗)
1− τ ′j(t∗)

|+ ε

N∑
j=1

∫ t∗

t∗−τj(t∗)

|hj(s) +Bj(t∗, s)|ds

+ ε

∫ t∗

t0

e−
R t∗

s
H(u)du|[hj(s− τj(s)) +Bj(s, s− τj(s))](1− τ ′j(s))− rj(s)|ds

+ ε

N∑
j=1

∫ t∗

t0

e−
R t∗

s
H(u)du|H(s)|(

∫ s

s−τj(s)

|hj(u) +Bj(s, u)|du)ds

≤ 2δK + αε < ε,
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which contradicts the definition of t∗. Thus, |x(t)| < ε for all t ≥ 0, and the zero so-
lution of (1.1) is stable. This shows that the zero solution of (1.1) is asymptotically
stable if (2.6) holds.

Conversely, suppose (2.6) fails. Then, by (2.4) there exists a sequence {tn},
tn → ∞ as n → ∞ such that lim

n→∞

∫ tn
0
H(u)du = l for some l ∈ R. We may also

choose a positive constant J satisfying

−J ≤
∫ tn

0

H(u)du ≤ J,

for all n ≥ 1. To simplify our expressions, we define

ω(s) =
N∑
j=1

|[hj(s− τj(s)) +Bj(s, s− τj(s))](1− τ ′j(s))− rj(s)|

+
N∑
j=1

|H(s)|(
∫ s

s−τj(s)

|hj(u) +B(s, u)|du),

for all s ≥ 0. By (2.5), we have∫ tn

0

e−
R tn

s
H(u)duω(s)ds ≤ α.

This yields ∫ tn

0

e
R s
0 H(u)duω(s)ds ≤ αe

R tn
0 H(u)du ≤ J.

The sequence {
∫ tn
0
e

R s
0 H(u)duω(s)ds} is bounded, so there exists a convergent sub-

sequence. For brevity of notation, we may assume that

lim
n→∞

∫ tn

0

e
R s
0 H(u)duω(s)ds = γ,

for some γ ∈ R+ and choose a positive integer m so large that∫ tn

tm

e
R s
0 H(u)duω(s)ds < δ0/4K,

for all n ≥ m, where δ0 > 0 satisfies 2δ0KeJ + α ≤ 1.
By (2.4), K in (2.7) is well defined. We now consider the solution x(t) =

x(t, tm, ψ) of (1.1) with ψ(tm) = δ0 and |ψ(s)| ≤ δ0 for s ≤ tm. We may choose ψ
so that |x(t)| ≤ 1 for t ≥ tm and

ψ(tm)−
N∑
j=1

[
cj(tm)

1− τ ′j(tm)
ψ(tm − τj(tm))

+
∫ tm

tm−τj(tm)

[hj(s) +Bj(tm, s)]ψ(s)ds]

≥ 1
2
δ0.
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It follows from (2.9) with x(t) = (Px)(t) that for n ≥ m∣∣∣x(tn)− N∑
j=1

[ cj(tn)
1− τ ′j(tn)

x(tn − τj(tn)) +
∫ tn

tn−τj(tn)

[hj(s) +Bj(tn, s)]x(s)ds
]∣∣∣

≥ 1
2
δ0e

−
R tn

tm
H(u)du −

∫ tn

tm

e−
R tn

s
H(u)duω(s)ds

=
1
2
δ0e

−
R tn

tm
H(u)du − e−

R tn
0 H(u)du

∫ tn

tm

e
R s
0 H(u)duω(s)ds

= e−
R tn

tm
H(u)du

(1
2
δ0 − e−

R tm
0 H(u)du

∫ tn

tm

e
R s
0 H(u)duω(s)ds

)
≥ e−

R tn
tm

H(u)du
(1

2
δ0 −K

∫ tn

tm

e
R s
0 H(u)duω(s)ds

)
≥ 1

4
δ0e

−
R tn

tm
H(u)du ≥ 1

4
δ0e

−2J > 0.

(2.10)
On the other hand, if the zero solution of (1.1) is asymptotically stable, then
x(t) = x(t, tm, ψ) → 0 as t→∞. Since tn− τj(tn) →∞ as n→∞ and (2.5) holds,
we have

x(tn)−
N∑
j=1

[ cj(tn)
1− τ ′j(tn)

x(tn − τj(tn)) +
∫ tn

tn−τj(tn)

[hj(s) +Bj(tn, s)]x(s)ds
]
→ 0

as n → ∞, which contradicts (2.10). Hence condition (2.6) is necessary for the
asymptotic stability of the zero solution of (1.1). The proof is complete. �

Remark 2.3. It follows from the first part of the proof of Theorem 2.2 that the
zero solution of (1.1) is stable under (2.4) and (2.5). Moreover, Theorem 2.2 still
holds if (2.5) is satisfied for t ≥ tσ for some tσ ∈ R+.

For the special case N = 1 and c1 = 0, we have the following result.

Corollary 2.4. Suppose that τ1 is differentiable and there exist continuous function
h1 : [m1(0),∞) → R and a constant α ∈ (0, 1) such that for t ≥ 0

lim
t→∞

inf
∫ t

0

h1(s)ds > −∞, (2.11)

and ∫ t

t−τ1(t)
|h1(s) +B1(t, s)|ds

+
∫ t

0

e−
R t

s
h1(u)du|h1(s− τ1(s)) +B1(s, s− τ1(s))||1− τ ′1(s)|ds

+
∫ t

0

e−
R t

s
h1(u)du|h1(s)|(

∫ s

s−τ1(s)
|h1(u) +B1(s, u)|du)ds ≤ α.

(2.12)

Then the zero solution of (1.2) is asymptotically stable if and only if∫ t

0

h1(s)ds→∞ as t→∞. (2.13)
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Obviously, Corollary 2.4 extends Theorem 1.3. Thus, Theorem 2.2 generalizes
Theorem 1.3.

3. An Example

In this section, we give an example to illustrate the applications of Theorem 2.2.

Example 3.1. Consider the linear neutral integro-differential equation with vari-
able delays

x′(t) = −
2∑
j=1

∫ t

t−τj(t)

aj(t, s)x(s)ds+
2∑
j=1

cj(t)x′(t− τj(t)), (3.1)

where τ1(t) = 0.489t, τ2(t) = 0.478t, a1(t, s) = 0.48/(s2+1), a2(t, s) = 0.52/(s2+1),
c1(t) = 0.015, c2(t) = 0.017. Then the zero solution of (3.1) is asymptotically
stable.

Proof. We have

B1(t, s) =
∫ s

t

0.48
s2 + 1

du =
0.48(s− t)
s2 + 1

, B2(t, s) =
∫ s

t

0.52
s2 + 1

du =
0.52(s− t)
s2 + 1

.

Choosing h1(t) = 0.52t/(t2 +1) and h2(t) = 0.48t/(t2 +1) in Theorem 2.2, we have
H(t) = t/(t2 + 1) and

2∑
j=1

| cj(t)
1− τ ′j(t)

| = | 0.015
1− 0.489

|+ | 0.017
1− 0.478

| < 0.062,

2∑
j=1

∫ t

t−τj(t)

|hj(s) +Bj(t, s)| ds

=
∫ t

0.511t

|s− 0.48t
s2 + 1

|ds+
∫ t

0.522t

|s− 0.52t
s2 + 1

|ds

=
∫ t

0.511t

s− 0.48t
s2 + 1

ds+
∫ t

0.522t

s− 0.52t
s2 + 1

ds

= t[0.48 arctan 0.511t+ 0.52 arctan 0.522t− arctan t] + ln(t2 + 1)

− 1
2
[ln(0.5112t2 + 1) + ln(0.5222t2 + 1)]

= ω(t).

Since the function ω is increasing in [0,∞) and

lim
t→∞

ω(t) = 1− 0.48/0.511− 0.52/0.522− ln(0.511× 0.522) ' 0.386,

then
2∑
j=1

∫ t

t−τj(t)

|hj(s) +Bj(t, s)| ds < 0.386,

2∑
j=1

∫ t

0

e−
R t

s
H(u)du|H(s)|

( ∫ s

s−τj(s)

|hj(u) +Bj(s, u)|du
)
ds < 0.386,
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and
2∑
j=1

∫ t

0

e−
R t

s
H(u)du|[hj(s− τj(s)) +B(s, s− τj(s))](1− τ ′j(s))− rj(s)|ds

=
∫ t

0

e
−

R t
s

u
u2+1

du|0.511(
0.52× 0.511s
0.5112s2 + 1

+
0.48(0.511s− s)

0.5112s2 + 1
)− 0.015s

0.511(s2 + 1)
|ds

+
∫ t

0

e
−

R t
s

u
u2+1

du|0.522(
0.48× 0.522s
0.5222s2 + 1

+
0.52(0.522s− s)

0.5222s2 + 1
)− 0.017s

0.522(s2 + 1)
|ds

≤ (1− 0.48
0.511

)
∫ t

0

e
−

R t
s

u
u2+1

du s

s2 + 1/0.5112
ds+

0.015
0.511

∫ t

0

e
−

R t
s

u
u2+1

du s

s2 + 1
ds

+ (1− 0.52
0.522

)
∫ t

0

e
−

R t
s

u
u2+1

du s

s2 + 1/0.5222
ds+

0.017
0.522

∫ t

0

e
−

R t
s

u
u2+1

du s

s2 + 1
ds

< 1− 0.48
0.511

+
0.015
0.511

+ 1− 0.52
0.522

+
0.017
0.522

< 0.127.

It is easy to see that all the conditions of Theorem 2.2 hold for α = 0.062+0.386+
0.386 + 0.127 = 0.961 < 1. Thus, Theorem 2.2 implies that the zero solution of
(3.1) is asymptotically stable. �
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