SUBHARMONIC SOLUTIONS FOR NONAUTONOMOUS SECOND-ORDER HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

Abstract

In this article, we prove the existence of subharmonic solutions for the non-autonomous second-order Hamiltonian system $\ddot{u}(t)+V^{\prime}(t, u(t))=0$. Also we study the minimality of their periods, when the nonlinearity $V^{\prime}(t, x)$ grows faster than $|x|^{\alpha}, \alpha \in[0,1[$ at infinity. The proof is based on the Least Action Principle and the Saddle Point Theorem.

1. Introduction

Consider the non-autonomous second-order Hamiltonian system

$$
\begin{equation*}
\ddot{u}(t)+V^{\prime}(t, u(t))=0, \tag{1.1}
\end{equation*}
$$

where $V: \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R},(t, x) \rightarrow V(t, x)$ is a continuous function, T-periodic $(T>0)$ in the first variable and differentiable with respect to the second variable such that the gradient $V^{\prime}(t, x)=\frac{\partial V}{\partial x}(t, x)$ is continuous on $\mathbb{R} \times \mathbb{R}^{N}$. In this work, we are interested in the existence of subharmonic solutions of (1.1). Assuming that $T>0$ is the minimal period of the time dependence of $V(t, x)$, by subharmonic solution of 1.1 we mean a $k T$-periodic solution, where k is any integer; when moreover the solution is not T-periodic we call it a true subharmonic.

Using variational methods, there have been various types of results concerning the existence of subharmonic solutions to system (1.1). Many solvability conditions are given, such as a convexity condition [4, 12], a super-quadratic condition [7, 11, a subquadratic condition [4, 6], a periodic condition [8, a bounded nonlinearity condition $[1,2,5]$, and a sublinear condition [10]. In particular, under the assumptions that there exists a constant $M>0$ such that

$$
\begin{align*}
& \left|V^{\prime}(x)\right| \leq M, \quad \forall x \in \mathbb{R}^{N} \tag{1.2}\\
& \lim _{|x| \rightarrow \infty}\left(V^{\prime}(x)-\bar{e}\right) x=+\infty \tag{1.3}
\end{align*}
$$

where $e: \mathbb{R} \rightarrow \mathbb{R}^{N}$ is a continuous periodic function having minimal period $T>0$, and \bar{e} is the mean value of e, A. Fonda and Lazer in [2] showed that the system

$$
\begin{equation*}
\ddot{u}(t)+V^{\prime}(u(t))=e(t) \tag{1.4}
\end{equation*}
$$

[^0]admitted periodic solutions with minimal period $k T$, for any sufficiently large prime number k. After that, Tang and Wu in [10 generalized these results without studying the minimality of periods. Precisely, it was assumed that the nonlinearity satisfied the following restrictions:
\[

$$
\begin{gather*}
\left|V^{\prime}(t, x)\right| \leq f(t)|x|^{\alpha}+g(t), \forall x \in \mathbb{R}^{N}, \quad \text { a. e. } t \in[0, T], \tag{1.5}\\
\frac{1}{|x|^{2 \alpha}} \int_{0}^{T} V(t, x) d t \rightarrow+\infty \quad \text { as }|x| \rightarrow+\infty, \tag{1.6}
\end{gather*}
$$
\]

here $f, g \in L^{1}\left(0, T ; \mathbb{R}^{+}\right)$are T-periodic and $\alpha \in[0,1[$.
In [2, 10], the nonlinearity is required to grow at infinity at most like $|x|^{\alpha}$ with $\alpha \in[0,1[$. In this article, we will firstly, establish the existence of subharmonic solutions for the system (1.1) when the nonlinearity $V^{\prime}(t, x)$ is required to have a sublinear growth at infinity faster than $|x|^{\alpha}, \alpha \in[0,1[$. Our first main result is as follows.

Theorem 1.1. Let $\omega \in C\left(\left[0, \infty\left[, \mathbb{R}^{+}\right)\right.\right.$be a nonincreasing positive function with the properties:

$$
\begin{gather*}
\liminf _{s \rightarrow \infty} \frac{\omega(s)}{\omega\left(s^{1 / 2}\right)}>0 \tag{1.7}\\
\omega(s) \rightarrow 0, \quad \omega(s) s \rightarrow \infty \quad \text { as } s \rightarrow \infty \tag{1.8}
\end{gather*}
$$

Assume that V satisfies: There exist two T-periodic functions $f \in L^{2}\left(0, T ; \mathbb{R}^{+}\right)$and $g \in L^{1}\left(0, T ; \mathbb{R}^{+}\right)$such that

$$
\begin{gather*}
\left|V^{\prime}(t, x)\right| \leq f(t) \omega(|x|)|x|+g(t), \quad \forall x \in \mathbb{R}^{N} \text {, a.e. } t \in[0, T] \tag{1.9}\\
\frac{1}{[\omega(|x|)|x|]^{2}} \int_{0}^{T} V(t, x) d t \rightarrow+\infty \quad \text { as }|x| \rightarrow \infty \tag{1.10}
\end{gather*}
$$

There is a subset C of $[0, T]$ with meas $(C)>0$ and $h \in L^{1}(0, T ; \mathbb{R})$ such that

$$
\begin{gather*}
\lim _{|x| \rightarrow \infty} V(t, x)=+\infty, \quad \text { a.e. } t \in C \tag{1.11}\\
V(t, x) \geq h(t) \quad \text { for all } x \in \mathbb{R}^{N} \text {, a.e. } t \in[0, T] \tag{1.12}
\end{gather*}
$$

Then for all positive integer k, the system 1.1) has at least one $k T$-periodic solution u_{k} satisfying

$$
\lim _{k \rightarrow \infty}\left\|u_{k}\right\|_{\infty}=+\infty
$$

where $\|u\|_{\infty}=\sup _{t \in \mathbb{R}}|u(t)|$.
Remark 1.2. Let

$$
V(t, x)=\gamma(t) \frac{|x|^{2}}{\ln \left(2+|x|^{2}\right)}, \quad \forall x \in \mathbb{R}^{N}, \forall t \in \mathbb{R}
$$

where

$$
\gamma(t)= \begin{cases}\sin (2 \pi t / T), & t \in[0, T / 2] \\ 0, & t \in[T / 2, T]\end{cases}
$$

Taking $\omega(s)=\frac{1}{\ln \left(2+s^{2}\right)}, C=\left[0, \frac{T}{2}\right]$. By a simple computation, we prove that $V(t, x)$ satisfies (1.9)-(V3) and does not satisfy the conditions (1.2, (1.3) nor 1.5), 1.6).

Corollary 1.3. Assume that 1.9 holds and there exists a subset C of $[0, T]$ with meas $(C)>0$ and $h \in L^{1}(0, T ; \mathbb{R})$ such that

$$
\begin{gather*}
\lim _{|x| \rightarrow \infty} \frac{V(t, x)}{[\omega(|x|)|x|]^{2}}=+\infty, \quad \text { a.e. } t \in C, \tag{1.13}\\
V(t, x) \geq h(t), \quad \text { for all } x \in \mathbb{R}^{N}, \text { a.e. } t \in[0, T] . \tag{1.14}
\end{gather*}
$$

Then the conclusion of Theorem 1.1 holds.
There are a few results studying the minimality of periods of the subharmonics, see [12] for the case of convexity, and [2] for the case of bounded gradient. We study this problem and obtain the following result.
Theorem 1.4. Assume that V satisfies 1.9 and

$$
\begin{equation*}
\frac{V^{\prime}(t, x) x}{[\omega(|x|)|x|]^{2}} \rightarrow+\infty \quad \text { as }|x| \rightarrow \infty, \text { uniformly for } t \in[0, T] \tag{1.15}
\end{equation*}
$$

Then, for all integer $k \geq 1$, Equation (1.1) possesses a $k T$-periodic solution u_{k} such that $\lim _{k \rightarrow \infty}\left\|u_{k}\right\|_{\infty}=+\infty$. If moreover V satisfies the assumption:

If $u(t)$ is a periodic function with minimal period $r T$ with r rational, and $V^{\prime}(t, u(t))$ is a periodic function with minimal period $r T$, then r is necessarily an integer.
Then, for any sufficiently large prime number $k, k T$ is the minimal period of u_{k}.
As an example of a function V we have

$$
V(t, x)=\left(2+\cos \left(\frac{2 \pi}{T} t\right)\right) \frac{|x|^{2}}{\ln \left(2+|x|^{2}\right)}, \quad \omega(s)=\frac{1}{\ln \left(2+s^{2}\right)}
$$

Then $V(t, x)$ satisfies $1.9,1.15$ and 1.16$)$, Our main tools, for proving our results, are the Least Action Principle and the Saddle Point Theorem.

2. Proof of theorems

Let us fix a positive integer k and consider the continuously differentiable function

$$
\varphi_{k}(u)=\int_{0}^{k T}\left[\frac{1}{2}|\dot{u}(t)|^{2}-V(t, u(t))\right] d t
$$

defined on the space $H_{k T}^{1}$ of $k T$-periodic absolutely continuous vector functions whose derivatives have square-integrable norm. This set is a Hilbert space with the norm

$$
\|u\|_{k}=\left[\int_{0}^{k T}|u(t)|^{2} d t+\int_{0}^{k T}|\dot{u}(t)|^{2} d t\right]^{1 / 2}, \quad u \in H_{k T}^{1}
$$

and the associated inner product

$$
\langle u, v\rangle_{k}=\int_{0}^{k T}[u(t) v(t)+\dot{u}(t) \dot{v}(t)] d t, \quad u, v \in H_{k T}^{1}
$$

For $u \in H_{k T}^{1}$, let $\bar{u}=\frac{1}{k T} \int_{0}^{k T} u(t) d t$ and $\tilde{u}(t)=u(t)-\bar{u}$, then we have Sobolev's inequality,

$$
\begin{equation*}
\|\tilde{u}\|_{\infty}^{2} \leq \frac{k T}{12} \int_{0}^{k T}|\dot{u}(t)|^{2} d t \tag{2.1}
\end{equation*}
$$

and Wirtinger's inequality,

$$
\begin{equation*}
\int_{0}^{k T}|\tilde{u}(t)|^{2} d t \leq \frac{k^{2} T^{2}}{4 \pi^{2}} \int_{0}^{k T}|\dot{u}(t)|^{2} d t \tag{2.2}
\end{equation*}
$$

It is easy to see that the norm $\|u\|_{k}$ is equivalently to the norm

$$
\|u\|=\left[\int_{0}^{k T}|\dot{u}(t)|^{2} d t+|\bar{u}|^{2}\right]^{1 / 2}
$$

In the following, we will use this last norm. It is well known that φ_{k} is continuously differentiable with

$$
\varphi_{k}^{\prime}(u) v=\int_{0}^{k T}\left[\dot{u}(t) \dot{v}(t)-V^{\prime}(t, u(t)) v(t)\right] d t, \quad \forall u, v \in H_{k T}^{1}
$$

and its critical points correspond to the $k T$-periodic solutions of the system (1.1).
Proof of Theorem 1.1. Here, we will show that, for every positive integer k, one can find a $k T$-periodic solution u_{k} of 1.1 in such a way that the sequence $\left(u_{k}\right)$ satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{k} \varphi_{k}\left(u_{k}\right)=-\infty \tag{2.3}
\end{equation*}
$$

This will be done by using some estimates on the critical levels of φ_{k} given by the Saddle Point Theorem. The following lemma will be needed for the study of the geometry of the functionals φ_{k}.
Lemma 2.1. Assume that (1.9), (1.10) hold. Then there exist a nonincreasing positive function $\theta \in C(] 0, \infty\left[, \mathbb{R}^{+}\right)$and a positive constant c_{0} satisfying the following conditions:
(i) $\theta(s) \rightarrow 0, \theta(s) s \rightarrow+\infty$ as $s \rightarrow \infty$,
(ii) $\left\|V^{\prime}(t, u)\right\|_{L^{1}} \leq c_{0}[\theta(\|u\|)\|u\|+1]$, for all $u \in H_{k T}^{1}$,
(iii)

$$
\frac{1}{[\theta(|x|)|x|]^{2}} \int_{0}^{k T} V(t, x) d t \rightarrow+\infty \quad \text { as }|x| \rightarrow+\infty
$$

Proof. For $u \in E$, let $A=\left\{t \in[0, k T] /|u(t)| \geq\|u\|^{1 / 2}\right\}$. By (1.9), we have

$$
\begin{aligned}
& \left\|V^{\prime}(t, u)\right\|_{L^{1}} \\
& \leq \int_{0}^{T}[f(t) \omega(|u(t)|)|u(t)|+g(t)] d t \\
& \leq\|f\|_{L^{2}}\left(\int_{0}^{T}[\omega(|u(t)|)|u(t)|]^{2} d t\right)^{1 / 2}+\|g\|_{L^{1}} \\
& \leq\|f\|_{L^{2}}\left(\int_{A}\left[\omega^{2}\left(\|u\|^{1 / 2}\right)|u(t)|^{2} d t+\int_{[0, k T]-A} \sup _{s \geq 0} \omega^{2}(s)\|u\| d t\right)^{1 / 2}+\|g\|_{L^{1}}\right. \\
& \leq\|f\|_{L^{2}}\left[\omega^{2}\left(\|u\|^{1 / 2}\right)\|u\|_{L^{2}}^{2}+k T \sup _{s \geq 0} \omega^{2}(s)\|u\|\right]^{1 / 2}+\|g\|_{L^{1}} .
\end{aligned}
$$

So there exists a positive constant c_{0} such that

$$
\left\|V^{\prime}(t, u)\right\|_{L^{1}} \leq c_{0}\left(\left[\omega^{2}\left(\|u\|^{1 / 2}\right)\|u\|^{2}+\|u\|\right]^{1 / 2}+1\right)
$$

Take

$$
\begin{equation*}
\theta(s)=\left[\omega^{2}\left(s^{1 / 2}\right)+\frac{1}{s}\right]^{1 / 2}, s>0 \tag{2.4}
\end{equation*}
$$

then θ satisfies (ii) and it is easy to see that θ satisfies (i).
Now, by (a), we have $\rho=\liminf _{s \rightarrow \infty} \frac{\omega^{2}(s)}{\omega^{2}\left(s^{1 / 2}\right)}>0$. By 1.10, for any $\gamma>0$, there exists a positive constant c_{1} such that

$$
\begin{equation*}
\int_{0}^{k T} V(t, x) d t \geq \gamma[\omega(|x|)|x|]^{2}-c_{1} \tag{2.5}
\end{equation*}
$$

Combining 2.4 and 2.5 yields

$$
\begin{equation*}
\frac{\int_{0}^{k T} V(t, x) d t}{[\theta(|x|)|x|]^{2}} \geq \frac{\gamma[\omega(|x|)|x|]^{2}-c_{1}}{\left.\omega^{2}|x|^{1 / 2}\right)|x|^{2}+|x|} \tag{2.6}
\end{equation*}
$$

By the definition of ρ, there exists $R>0$ such that for all $s \geq R$

$$
\begin{equation*}
\frac{\omega^{2}(s) s^{2}}{\omega^{2}\left(s^{1 / 2}\right) s^{2}+s} \geq \frac{\rho}{2} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{c_{1}}{\omega^{2}(s) s^{2}+s} \leq \frac{\gamma \rho}{4} \tag{2.8}
\end{equation*}
$$

Therefore, by (2.6)-(2.8), we have

$$
\frac{\int_{0}^{k T} V(t, x) d t}{[\theta(|x|)|x|]^{2}} \geq \frac{\gamma \rho}{4}, \quad \forall|x| \geq R .
$$

Since γ is arbitrary chosen, condition (iii) holds. The proof of Lemma 2.1 is complete.

Now, we need to show that, for every positive integer k, one can find a critical point u_{k} of the functional φ_{k} in such a way that 2.3 holds. To this aim, we will apply the Saddle Point Theorem to each of the φ_{k} 's. Let us fix k and write $H_{k T}^{1}=\mathbb{R}^{N} \oplus \tilde{H}_{k T}^{1}$ where \mathbb{R}^{N} is identified with the set of constant functions and $\tilde{H}_{k T}^{1}$ consists of functions u in $H_{k T}^{1}$ such that $\int_{0}^{k T} u(t) d t=0$. First, we prove the Palais-Smale condition.

Lemma 2.2. Assume that (1.9) and (1.10) hold. Then φ_{k} satisfies the PalaisSmale condition.

Proof. Let $\left(u_{n}\right)$ be a sequence in $H_{k T}^{1}$ such that $\left(\varphi_{k}\left(u_{n}\right)\right)$ is bounded and $\varphi_{k}^{\prime}\left(u_{n}\right) \rightarrow$ 0 as $n \rightarrow \infty$. In particular, for a positive constant c_{2} we will have

$$
\begin{equation*}
\varphi_{k}^{\prime}\left(u_{n}\right) \tilde{u}_{n}=\int_{0}^{k T}\left[\left|u_{n}(t)\right|^{2}-V^{\prime}\left(t, u_{n}(t)\right) \tilde{u}_{n}(t)\right] d t \leq c_{2}\left\|\tilde{u}_{n}\right\| \tag{2.9}
\end{equation*}
$$

Since θ is non increasing and $\|u\| \geq \max (|\bar{u}|,\|\tilde{u}\|)$, we obtain

$$
\begin{equation*}
\theta(\|u\|) \leq \min (\theta(|\bar{u}|), \theta(\|\tilde{u}\|)) \tag{2.10}
\end{equation*}
$$

Combining Sobolev's inequality, Lemma 2.1 (ii) and 2.10, we can find a positive constant c_{3} such that

$$
\begin{align*}
\left|\int_{0}^{k T} V^{\prime}\left(t, u_{n}\right) \tilde{u}_{n} d t\right| & \leq c_{0}\left\|\tilde{u}_{n}\right\|_{\infty}\left[\theta\left(\left\|u_{n}\right\|\right)\left\|u_{n}\right\|+1\right] \tag{2.11}\\
& \leq c_{0}\left\|\tilde{u}_{n}\right\|_{\infty}\left[\theta\left(\left\|\tilde{u}_{n}\right\|\right)\left\|\tilde{u}_{n}\right\|+\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|+1\right] \\
& \leq c_{3}\left\|\tilde{u}_{n}\right\|\left[\theta\left(\left\|\tilde{u}_{n}\right\|\right)\left\|\tilde{u}_{n}\right\|+\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|+1\right]
\end{align*}
$$

for all $n \in \mathbb{N}$.

From Wirtinger's inequality, there exists a constant $c_{4}>0$ such that

$$
\begin{equation*}
\left\|\dot{u}_{n}\right\|_{L^{2}} \leq\left\|\tilde{u}_{n}\right\| \leq c_{4}^{-1 / 2}\left\|\dot{u}_{n}\right\|_{L^{2}} . \tag{2.12}
\end{equation*}
$$

Therefore, by 2.9 and 2.11, we obtain

$$
\begin{align*}
c_{2}\left\|\tilde{u}_{n}\right\| & \geq \varphi_{k}^{\prime}\left(u_{n}\right) \cdot \tilde{u}_{n}=\int_{0}^{k T}\left|\dot{u_{n}}\right|^{2} d t-\int_{0}^{k T} V^{\prime}\left(t, u_{n}\right) \tilde{u}_{n} d t \tag{2.13}\\
& \geq c_{4}\left\|\tilde{u}_{n}\right\|^{2}-c_{3}\left\|\tilde{u}_{n}\right\|\left[\theta\left(\left\|\tilde{u}_{n}\right\|\right)\left\|\tilde{u}_{n}\right\|+\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|+1\right] .
\end{align*}
$$

Assume that $\left(\left\|\tilde{u}_{n}\right\|\right)$ is unbounded, by going to a subsequence if necessary, we can assume that $\left\|\tilde{u}_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. Since $\theta(s) \rightarrow 0$ as $s \rightarrow \infty$, we deduce from (2.13) that there exists a positive constant c_{5} such that

$$
\begin{equation*}
\left\|\tilde{u}_{n}\right\| \leq c_{5} \theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|=c_{5}\left[\omega^{2}\left(\left|\bar{u}_{n}\right|^{1 / 2}\right)\left|\bar{u}_{n}\right|^{2}+\left|\bar{u}_{n}\right|\right]^{1 / 2} \tag{2.14}
\end{equation*}
$$

for n large enough. Since ω is bounded, it follows that $\left|\bar{u}_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.
Now, by the Mean Value Theorem and Lemma 2.1 (ii), we obtain

$$
\begin{align*}
\left|\int_{0}^{k T}\left(V\left(t, u_{n}\right)-V\left(t, \bar{u}_{n}\right)\right) d t\right| & \left.=\mid \int_{0}^{k T} \int_{0}^{1} V^{\prime}\left(t, \bar{u}_{n}\right)+s \tilde{u}_{n}\right) \tilde{u}_{n} d s d t \mid \\
& \leq\left\|\tilde{u}_{n}\right\|_{\infty} \int_{0}^{1} \int_{0}^{k T}\left|V^{\prime}\left(t, \bar{u}_{n}+s \tilde{u}_{n}\right)\right| d s d t \\
& \leq c_{0}\left\|\tilde{u}_{n}\right\|_{\infty} \int_{0}^{1}\left[\theta\left(\left\|\bar{u}_{n}+s \tilde{u}_{n}\right\|\right)\left\|\bar{u}_{n}+s \tilde{u}_{n}\right\|+1\right] d s \tag{2.15}
\end{align*}
$$

Since $\left\|\bar{u}_{n}+s \tilde{u}_{n}\right\| \geq\left\|\bar{u}_{n}\right\|$ for all $s \in[0,1]$, we deduce from 2.1, 2.14) and 2.15) that there exists a positive constant c_{6} such that

$$
\begin{align*}
& \left|\int_{0}^{k T}\left(V\left(t, u_{n}\right)-V\left(t, \bar{u}_{n}\right)\right) d t\right| \tag{2.16}\\
& \leq c_{6}\left(\left[\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right]^{2}+\theta\left(\left|\bar{u}_{n}\right|\right)\left[\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right]^{2}+\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right) .
\end{align*}
$$

Thus, by 2.14 and 2.16, we obtain for a positive constant c_{7},

$$
\begin{aligned}
& \varphi_{k}\left(u_{n}\right) \\
& =\frac{1}{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}-\int_{0}^{k T}\left(V\left(t, u_{n}\right)-V\left(t, \bar{u}_{n}\right)\right) d t-\int_{0}^{k T} V\left(t, \bar{u}_{n}\right) d t \\
& \leq c_{7}\left(\left[\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right]^{2}+\theta\left(\left|\bar{u}_{n}\right|\right)\left[\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right]^{2}+\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right)-\int_{0}^{k T} V\left(t, \bar{u}_{n}\right) d t \\
& =c_{7}\left[\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right]^{2}\left[1+\theta\left(\left|\bar{u}_{n}\right|\right)+\frac{1}{\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|}-\frac{1}{c_{7}\left[\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right]^{2}} \int_{0}^{k T} V\left(t, \bar{u}_{n}\right) d t\right]
\end{aligned}
$$

so $\varphi_{k}\left(u_{n}\right) \rightarrow-\infty$ as $n \rightarrow \infty$. This contradicts the boundedness of $\left(\varphi_{k}\left(u_{n}\right)\right)$. Therefore $\left(\left\|\tilde{u}_{n}\right\|\right)$ is bounded.

It remains to prove that $\left(\left|\bar{u}_{n}\right|\right)$ is bounded. Assume the contrary. By taking a subsequence, if necessary, we can assume that $\left\|\bar{u}_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. By the preceding calculus, we obtain for some positive constants c_{8}, c_{9} such that
$\varphi_{k}\left(u_{n}\right)$

$$
\begin{aligned}
& \leq c_{8}\left[\left\|\tilde{u}_{n}\right\|^{2}+\left\|\tilde{u}_{n}\right\| \theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|+\theta\left(\left|\bar{u}_{n}\right|\right)\left\|\tilde{u}_{n}\right\|+1\right]-\int_{0}^{k T} V\left(t, \bar{u}_{n}\right) d t \\
& \leq c_{9}\left[1+\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|+\theta\left(\left|\bar{u}_{n}\right|\right)\right]-\int_{0}^{k T} V\left(t, \bar{u}_{n}\right) d t \\
& \leq c_{9}\left[\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right]^{2}\left[\frac{1+\theta\left(\left|\bar{u}_{n}\right|\right)}{\left[\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right]^{2}}+\frac{1}{\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|}-\frac{1}{c_{9}\left[\theta\left(\left|\bar{u}_{n}\right|\right)\left|\bar{u}_{n}\right|\right]^{2}} \int_{0}^{k T} V\left(t, \bar{u}_{n}\right) d t\right]
\end{aligned}
$$

so $\varphi_{k}\left(u_{n}\right) \rightarrow-\infty$ as $n \rightarrow \infty$, which also contradicts the boundedness of $\left(\varphi_{k}\left(u_{n}\right)\right)$. So $\left(\left|\bar{u}_{n}\right|\right)$ is bounded and then $\left(\left\|u_{n}\right\|\right)$ is also bounded. By a standard argument, we conclude that $\left(u_{n}\right)$ possesses a convergent subsequence and the proof is complete.

Now, it is easy to show that 1.10 yields

$$
\begin{equation*}
\varphi_{k}(u)=-\int_{0}^{k T} V(t, u) d t \rightarrow-\infty \quad \text { as }|u| \rightarrow \infty \text { in } \mathbb{R}^{N} \tag{2.17}
\end{equation*}
$$

On the other hand, by the Mean Value Theorem, 1.9 and Hölder's inequality, for all $u \in \tilde{H}_{k T}^{1}$ and $a \in \mathbb{R}^{N}|a|>0$, we have

$$
\begin{aligned}
& \left|\int_{0}^{k T}(V(t, u)-V(t, a)) d t\right| \\
& =\left|\int_{0}^{k T} \int_{0}^{1} V^{\prime}(t, a+s(u-a))(u-a) d s d t\right| \\
& \leq\|u-a\|_{\infty} \int_{0}^{1} \int_{0}^{k T}\left|V^{\prime}(t, a+s(u-a))\right| d t d s \\
& \leq\|u-a\|_{\infty} \int_{0}^{1} \int_{0}^{k T}[f(t) \omega(|a+s(u-a)|)|a+s(u-a)|+g(t)] d t \\
& \leq\|u-a\|_{\infty}\left(\|f\|_{L^{2}} \int_{0}^{1}\left[\int_{0}^{k T}(\omega(|a+s(u-a)|)|a+s(u-a)|)^{2} d t\right]^{\frac{1}{2}} d s+\|g\|_{L^{1}}\right)
\end{aligned}
$$

For $s \in[0,1]$, take

$$
A(s)=\{t \in[0, k T] /|a+s(u(t)-a)| \geq|a|\}
$$

By a classical calculation as in the proof of Lemma 2.1, we obtain some positive constants c_{10} and $c(a)$ such that

$$
\left|\int_{0}^{k T}(V(t, u)-V(t, a)) d t\right| \leq c_{10} \omega(a)\|u\|^{2}+c(a)(\|u\|+1)
$$

Since $\omega(|a|) \rightarrow 0$ as $|a| \rightarrow \infty$, there exists $|a|>0$ such that $c_{10} \omega(|a|) \leq \frac{1}{4} c_{4}^{2}$ and then we obtain

$$
\left|\int_{0}^{k T}(V(t, u)-V(t, a)) d t\right| \leq \frac{1}{4} c_{4}^{2}\|u\|^{2}+c(a)(\|u\|+1)
$$

which implies that

$$
\begin{equation*}
\varphi_{k}(u) \geq \frac{1}{4} c_{4}^{2}\|u\|^{2}-c(a)(\|u\|+1)-\int_{0}^{k T} V(t, a) d t \rightarrow \infty \quad \text { as }\|u\| \rightarrow \infty \tag{2.18}
\end{equation*}
$$

We deduce from Lemma 2.2 and (2.17, 2.18) that all the Saddle Point Theorem's assumptions are satisfied. Therefore the functional φ_{k} possesses at least a critical point u_{k} satisfying

$$
\begin{equation*}
-\infty<\inf _{\tilde{H}_{k T}^{1}} \varphi_{k} \leq \varphi_{k}\left(u_{k}\right) \leq \sup _{\mathbb{R}^{N}+e_{k}} \varphi_{k} \tag{2.19}
\end{equation*}
$$

where $e_{k}(t)=k \cos \left(\frac{\sigma t}{k}\right) x_{0}$ for $t \in \mathbb{R}, \sigma=\frac{2 \pi}{T}$ and some $x_{0} \in \mathbb{R}^{N}$ with $\left|x_{0}\right|=1$. The first part of Theorem 1.1 is proved.

Next, we will prove that the sequence $\left(u_{k}\right)_{k \geq 1}$ obtained above satisfies 2.3). For this aim, the following two lemmas will be needed.

Lemma 2.3 (9). If 1.11) holds, then for every $\delta>0$ there exists a measurable subset C_{δ} of C with meas $\left(C-C_{\delta}\right)<\delta$ such that

$$
V(t, x) \rightarrow+\infty \quad \text { as }|x| \rightarrow \infty, \text { uniformly in } t \in C_{\delta}
$$

Lemma 2.4. Suppose that V satisfies (1.11) - 1.12), then

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sup _{x \in \mathbb{R}^{N}} \frac{1}{k} \varphi_{k}\left(x+e_{k}\right)=-\infty \tag{2.20}
\end{equation*}
$$

Proof. Let $x \in \mathbb{R}^{N}$, we have

$$
\varphi_{k}\left(x+e_{k}\right)=\frac{1}{4} k T \sigma^{2}-\int_{0}^{k T} V\left(t, x+e_{k}(t)\right) d t
$$

By 1.11) and Lemma 2.3 for $\delta=\frac{1}{2}$ meas (C) and all $\gamma>0$, there exist a measurable subset $C_{\delta} \subset C$ with meas $\left(C-C_{\delta}\right)<\delta$ and $r>0$ such that

$$
\begin{equation*}
V(t, x) \geq \gamma, \quad \forall|x| \geq r \forall t \in C_{\delta} \tag{2.21}
\end{equation*}
$$

Let

$$
B_{k}=\left\{t \in[0, k T]:\left|x+e_{k}(t)\right| \leq r\right\} .
$$

Then we have

$$
\begin{equation*}
\operatorname{meas}\left(B_{k}\right) \leq \frac{k \delta}{2} \tag{2.22}
\end{equation*}
$$

In fact, if meas $\left(B_{k}\right)>k \delta / 2$, there exists $t_{0} \in B_{k}$ such that

$$
\begin{gather*}
\frac{k \delta}{8} \leq t_{0} \leq \frac{k T}{2}-\frac{k \delta}{8} \tag{2.23}\\
\frac{k T}{2}+\frac{k \delta}{8} \leq t_{0} \leq k T-\frac{k \delta}{8} \tag{2.24}
\end{gather*}
$$

and there exists $t_{1} \in B_{k}$ such that

$$
\begin{gather*}
\left|t_{1}-t_{0}\right| \geq \frac{k \delta}{8} \tag{2.25}\\
\left|t_{1}-\left(k T-t_{0}\right)\right| \geq \frac{k \delta}{8} \tag{2.26}
\end{gather*}
$$

It follows from 2.26 that

$$
\begin{equation*}
\left|\frac{t_{0}+t_{1}}{2 k}-\frac{T}{2}\right| \geq \frac{\delta}{16} . \tag{2.27}
\end{equation*}
$$

By 2.23 and 2.24, one has

$$
\begin{equation*}
\frac{\delta}{16} \leq \frac{t_{0}+t_{1}}{2 k} \leq T-\frac{\delta}{16} . \tag{2.28}
\end{equation*}
$$

Combining 2.27) and 2.28, yields

$$
\begin{equation*}
\left|\sin \left(\frac{t_{0}+t_{1}}{2 k} \sigma\right)\right| \geq \sin \left(\frac{\sigma \delta}{16}\right) \tag{2.29}
\end{equation*}
$$

On the other hand, by 2.25 we have

$$
\left|\cos \left(\frac{\sigma t_{0}}{k}\right)-\cos \left(\frac{\sigma t_{1}}{k}\right)\right|=2\left|\sin \left(\frac{t_{0}+t_{1}}{2 k} \sigma\right)\right|\left|\sin \left(\frac{t_{0}-t_{1}}{2 k} \sigma\right)\right| \geq 2 \sin ^{2}\left(\frac{\sigma \delta}{16}\right),
$$

and

$$
\left|\cos \left(\frac{\sigma t_{0}}{2 k}\right)-\cos \left(\frac{\sigma t_{1}}{2 k}\right)\right|=\frac{1}{k}\left|\left(x+e_{k}\left(t_{1}\right)\right)-\left(x+e_{k}\left(t_{0}\right)\right)\right| \leq \frac{2 r}{k},
$$

which is impossible for large k. Hence 2.22 holds.
Now, let $C_{k}=\cup_{j=0}^{k-1}\left(j T+C_{\delta}\right)$. It follows from 2.22 that for all k,

$$
\operatorname{meas}\left(C_{k}-B_{k}\right) \geq \frac{k \delta}{2}
$$

By 2.21, we have

$$
\begin{aligned}
k^{-1} \varphi_{k}\left(x+e_{k}\right) & =\frac{1}{4} T \sigma^{2}-k^{-1} \int_{0}^{k T} V\left(t, x+e_{k}(t)\right) d t \\
& \leq \frac{1}{4} T \sigma^{2}-k^{-1} \int_{[0, k T]-\left(C_{k}-B_{k}\right)} h(t) d t-k^{-1} \gamma \operatorname{meas}\left(C_{k}-B_{k}\right) \\
& \leq \frac{1}{4} T \sigma^{2}-\int_{0}^{T}|h(t)| d t-\frac{\delta \gamma}{2}
\end{aligned}
$$

for all large k, which implies

$$
\limsup _{k \rightarrow \infty} \sup _{x \in \mathbb{R}^{N}} k^{-1} \varphi_{k}\left(x+e_{k}\right) \leq \frac{1}{4} T \sigma^{2}+\int_{0}^{T}|h(t)| d t-\frac{\delta \gamma}{2} .
$$

By the arbitrariness of γ, we obtain

$$
\limsup _{k \rightarrow \infty} \sup _{x \in \mathbb{R}^{N}} k^{-1} \varphi_{k}\left(x+e_{k}\right)=-\infty
$$

The proof of Lemma 2.4 is complete.
It remains to prove that the sequence $\left(\left\|u_{k}\right\|_{\infty}\right)$ of solutions of 1.1) obtained above, is unbounded. Arguing by contradiction, assume that $\left(\left\|u_{k}\right\|_{\infty}\right)$ is bounded, then there exists $R>0$ such that $\left(\left\|u_{k}\right\|_{\infty}\right) \leq R$ for all $k \geq 1$. We have

$$
\begin{equation*}
k^{-1} \varphi_{k}\left(u_{k}\right) \geq-k^{-1} \int_{0}^{k T} V\left(t, u_{k}\right) d t \tag{2.30}
\end{equation*}
$$

Since V is T-periodic in t and continuous, then there exists a constant $\rho>0$ such that

$$
|V(t, x)| \leq \rho, \quad \forall x \in \mathbb{R}^{N},|x| \leq R, \text { a.e. } t \in \mathbb{R} .
$$

Therefore,

$$
\begin{equation*}
k^{-1} \varphi_{k}\left(u_{k}\right) \geq-\rho T \tag{2.31}
\end{equation*}
$$

which contradicts 2.19 with 2.20 . The proof of Theorem 1.1 is complete.

Proof of Theorem 1.4. The following lemma will be needed.
Lemma 2.5. Let 1.9, 1.15 hold. Then for all $\rho>0$, there exists a constant $c_{\rho} \geq 0$ such that for all $x \in \mathbb{R}^{N},|x|>1$ and for a.e. $t \in[0, T]$,

$$
\begin{equation*}
V(t, x) \geq V(t, 0)+\frac{\rho}{2}[\omega(|x|)|x|]^{2}\left(1-\frac{1}{|x|^{2}}\right)-c_{\rho} \ln (|x|)-\frac{1}{2} a \sup _{r \geq 0} \omega(r)-g(t) \tag{2.32}
\end{equation*}
$$

Proof. For $x \in \mathbb{R}^{N},|x|>1$, we have

$$
\begin{align*}
V(t, x) & =V(t, 0)+\int_{0}^{1} V^{\prime}(t, s x) x d s \\
& =V(t, 0)+\int_{0}^{\frac{1}{|x|}} V^{\prime}(t, s x) x d s+\int_{\frac{1}{|x|}}^{1} V^{\prime}(t, s x) x d s \tag{2.33}
\end{align*}
$$

By (1.9), we have

$$
\begin{align*}
\left|\int_{0}^{\frac{1}{|x|}} V^{\prime}(t, s x) x d s\right| & \leq|x| \int_{0}^{\frac{1}{|x|}}[f(t) \omega(|s x|)|s x|+g(t)] d t \\
& \leq|x|\left[f(t) \sup _{r \geq 0} \omega(r)|x| \int_{0}^{\frac{1}{|x|}} s d s+g(t) \frac{1}{|x|}\right] \tag{2.34}\\
& \leq \frac{1}{2} f(t) \sup _{r \geq 0} \omega(r)+g(t)
\end{align*}
$$

Let $\rho>0$, then by 1.15 , there exists a positive constant c_{ρ} such that

$$
\begin{equation*}
V^{\prime}(t, x) x \geq \rho[\omega(|x|)|x|]^{2}-c_{\rho} \tag{2.35}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\int_{\frac{1}{|x|}}^{1} V^{\prime}(t, s x) x d s & =\int_{\frac{1}{|x|}}^{1} V^{\prime}(t, s x) s x \frac{d s}{s} \\
& \geq \int_{\frac{1}{|x|}}^{1}\left(\rho[\omega(|s x|)|s x|]^{2}-c_{\rho}\right) \frac{d s}{s} \tag{2.36}\\
& \geq \frac{\rho}{2}[\omega(|x|)|x|]^{2}\left(1-\frac{1}{|x|^{2}}\right)-c_{\rho} b(t) \ln (|x|)
\end{align*}
$$

Combining (2.33), 2.34) and 2.36, we obtain 2.32 and Lemma 2.5 is proved.
Now, since $a_{0}=\liminf _{s \rightarrow \infty} \frac{\omega(s)}{\omega\left(s^{\frac{1}{2}}\right)}>0$, for s large enough, we have

$$
\begin{equation*}
\frac{1}{\omega(s)} \leq \frac{1}{a_{0} \omega\left(s^{1 / 2}\right)} \tag{2.37}
\end{equation*}
$$

which implies that for $|x|$ large enough

$$
\begin{equation*}
\frac{\ln (|x|)}{[\omega(|x|)|x|]^{2}} \leq \frac{\ln (|x|)}{|x|} \frac{1}{a_{0}^{2}\left[\omega\left(|x|^{1 / 2}\right)|x|^{1 / 2}\right]^{2}} \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{2.38}
\end{equation*}
$$

Combining 2.32, 2.38 we obtain $\left(V_{4}\right)$. By applying Corollary 1.3, we obtain a sequence $\left(u_{k}\right)$ of $k T$-periodic solutions of (1.1) such that $\lim _{k \rightarrow \infty}\left\|u_{k}\right\|_{\infty}=+\infty$.

It remains to analyst the minimal periods of the subharmonic solutions found with the previous results. For this, we will split the problem into two parts. Firstly, we claim that for a sufficiently large integer k, the subharmonic solution u_{k} is not
T-periodic. In fact, let S_{T} be the set of T-periodic solutions of 1.1, we will show that S_{T} is bounded in H_{T}^{1}. Assume by contradiction that there exists a sequence $\left(u_{n}\right)$ in S_{T} such that $\left\|u_{n}\right\|_{1} \rightarrow \infty$ as $n \rightarrow \infty$. Let us write $u_{n}(t)=\bar{u}_{n}+\tilde{u}_{n}(t)$, where \bar{u}_{n} is the mean value of u_{n}. Multiplying both sides of the identity

$$
\begin{equation*}
\ddot{u}_{n}(t)+V^{\prime}\left(t, u_{n}(t)\right)=0 \tag{2.39}
\end{equation*}
$$

by $\tilde{u}_{n}(t)$ and integrating, we obtain by (1.9) and Hölder's inequality

$$
\begin{align*}
\int_{0}^{T}\left|\dot{u}_{n}\right|^{2} d t & =-\int_{0}^{T} \ddot{u}_{n} \tilde{u}_{n} d t \\
& =\int_{0}^{T} V^{\prime}\left(t, u_{n}\right) \tilde{u}_{n} d t \tag{2.40}\\
& \leq\left\|\tilde{u}_{n}\right\|_{\infty} \int_{0}^{T}\left[f(t) \omega\left(\left|u_{n}(t)\right|\right)\left|u_{n}(t)\right|+g(t)\right] d t \\
& \leq\left\|\tilde{u}_{n}\right\|_{\infty}\left[\|f\|_{L^{2}}\left(\int_{0}^{T}\left[\omega\left(\left|u_{n}(t)\right|\right)\left|u_{n}(t)\right|\right]^{2} d t\right)^{1 / 2}+\|g\|_{L^{1}}\right]
\end{align*}
$$

By (2.1), 2.2 and 2.40, there exists a positive constant c_{11} such that

$$
\begin{equation*}
\left\|\tilde{u}_{n}\right\|_{1} \leq c_{11}\left[\left(\int_{0}^{T}\left[\omega\left(\left|u_{n}(t)\right|\right)\left|u_{n}(t)\right|\right]^{2} d t\right)^{1 / 2}+1\right] \tag{2.41}
\end{equation*}
$$

Let $\rho>0$ and let c_{ρ} be a constant satisfying 2.35). Multiplying both sides of the identity (2.39) by $u_{n}(t)$ and integrating

$$
\begin{align*}
\int_{0}^{T}\left|\dot{u}_{n}\right|^{2} d t & =-\int_{0}^{T} \ddot{u}_{n} u_{n} d t \\
& =\int_{0}^{T} V^{\prime}\left(t, u_{n}\right) u_{n} d t \tag{2.42}\\
& \geq \rho \int_{0}^{T}\left[\omega\left(\left|u_{n}(t)\right|\right)\left|u_{n}(t)\right|\right]^{2} d t-c_{\rho} T
\end{align*}
$$

We deduce from (2.42) and Wirtinger inequality that there exists a positive constant c_{12} such that

$$
\begin{equation*}
\left\|\tilde{u}_{n}\right\|_{1}^{2} \geq c_{12}\left[\rho \int_{0}^{T}\left[\omega\left(\left|u_{n}(t)\right|\right)\left|u_{n}(t)\right|\right]^{2} d t-c_{\rho} T\right] . \tag{2.43}
\end{equation*}
$$

Combining 2.41 with 2.43, we can find a positive constant c_{13} such that

$$
\begin{equation*}
\rho \int_{0}^{T}\left[\omega\left(\left|u_{n}(t)\right|\right)\left|u_{n}(t)\right|\right]^{2} d t-c_{\rho} T \leq c_{13}\left[\int_{0}^{T}\left[\omega\left(\left|u_{n}(t)\right|\right)\left|u_{n}(t)\right|\right]^{2} d t+1\right] \tag{2.44}
\end{equation*}
$$

Since ρ is arbitrary chosen,

$$
\begin{equation*}
\left(\int_{0}^{T}\left[\omega\left(\left|u_{n}(t)\right|\right)\left|u_{n}(t)\right|\right]^{2} d t\right) \quad \text { is bounded. } \tag{2.45}
\end{equation*}
$$

Combining 2.41 and 2.45 yields $\left(\tilde{u}_{n}\right)$ is bounded in H_{T}^{1} and then $\left|\bar{u}_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Since the embedding $H_{T}^{1} \rightarrow L^{2}\left(0, T ; \mathbb{R}^{N}\right), u \rightarrow u$ is compact, then we can assume, by going to a subsequence if necessary, that $\tilde{u}_{n}(t) \rightarrow \tilde{u}(t)$ as $n \rightarrow \infty$, a.e. $t \in[0, T]$. We deduce that

$$
\begin{equation*}
\left|u_{n}(t)\right| \rightarrow \infty \quad \text { as } n \rightarrow \infty, \text { a.e. } t \in[0, T] \tag{2.46}
\end{equation*}
$$

Fatou's lemma and 2.46 imply

$$
\begin{equation*}
\overline{\int_{0}^{T}}\left[\omega\left(\left|u_{n}(t)\right|\right)\left|u_{n}(t)\right|\right]^{2} d t \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{2.47}
\end{equation*}
$$

which contradicts 2.45). Therefore S_{T} is bounded in H_{T}^{1}. As a consequence, $\varphi_{1}\left(S_{T}\right)$ is bounded, and since for any $u \in S_{T}$ one has $\varphi_{k}(u)=k \varphi_{1}(u)$, then there exists a positive constant c_{14} such that

$$
\begin{equation*}
\frac{1}{k}\left|\varphi_{k}(u)\right| \leq c_{14}, \quad \forall u \in S_{T}, \quad \forall k \geq 1 \tag{2.48}
\end{equation*}
$$

Consequently by 2.3, for k large enough, $u_{k} \notin S_{T}$. Finally, assumption 1.16) requires that the minimal period of each solution u_{k} of (1.1) is an integer multiple of T. So if k is chosen to be a prime number, the minimal period of u_{k} has to be $k T$. The proof of Theorem 1.4 is complete.

Acknowledgments. I wish to thank the anonymous referee for his/her suggestions and interesting remarks.

References

[1] N .P. Cac, A. C. Lazer; On second order, periodic, symmetric, differential systems having subharmonics of all sufficiently large orders, J. Diff. Eq. 127 (1996) 426-438.
[2] A. Fonda, A. C. Lazer; Subharmonic solutions of conservative systems with nonconvex potentials, Proc. Amer. Math. Soc. 115 (1992) 183-190.
[3] A. Fonda, M. Ramos; Large amplitude subharmonic oscillations for scalar second order differential equations with asymmetric nonlinearities, J. Diff. Eq. 109 (1994) 354-372.
[4] A. Fonda, M. Ramos, M. Willem; Subharmonic solutions for second-order differential equations, Topol. Meth. Nonl. Anal. 1 (1993) 49-66.
[5] F. Giannini; Periodic solutions of dynamical systems by a saddle point theorem of Rabinowitz, Nonl. Anal. 13 (1989) 707-719.
[6] M. Y. Jiang; Subharmonic solutions of second order subquadratic Hamiltonian systems with potential changing sign, J. Math. Anal. Appl. 244 (2000) 291-303.
[7] P. H. Rabinowitz; On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33 (1980) 609-633.
[8] E. Serra, M. Tarallo, S. Terracini; Subhamonic solutions to second order differential equations with periodic nonlinearities, Nonl. Anal. 41 (2000) 649-667.
[9] C. L. Tang, X. P. Wu; Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001) 386-397.
[10] C. L. Tang, X. P. Wu; Subharmonic solutions for nonautonomous sublinear second order Hamiltonian systems, J. Math. Anal. Appl. 304 (2005) 383-393.
[11] Z. L. Tao, C. L. Tang; Periodic and subharmonic solutions of second order Hamiltonian systems, J. Math. Anal. Appl. 293 (2004) 435-445.
[12] M. Willem; Subharmonic oscillations of convex Hamiltonian systems, Nonl. Anal. Vol 9, No 11 (1995) 1303-1311.

Mohsen Timoumi
Department of Mathematics, Faculty of Sciences, 5000 Monastir, Tunisia
E-mail address: m_timoumi@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 34C25.
 Key words and phrases. Hamiltonian systems; subharmonics; minimal periods; saddle point theorem.
 (C) 2012 Texas State University - San Marcos.

 Submitted March 9, 2012. Published October 12, 2012.

