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SUBHARMONIC SOLUTIONS FOR NONAUTONOMOUS
SECOND-ORDER HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

Abstract. In this article, we prove the existence of subharmonic solutions for
the non-autonomous second-order Hamiltonian system ü(t) + V ′(t, u(t)) = 0.
Also we study the minimality of their periods, when the nonlinearity V ′(t, x)
grows faster than |x|α, α ∈ [0, 1[ at infinity. The proof is based on the Least
Action Principle and the Saddle Point Theorem.

1. Introduction

Consider the non-autonomous second-order Hamiltonian system

ü(t) + V ′(t, u(t)) = 0, (1.1)

where V : R × RN → R, (t, x) → V (t, x) is a continuous function, T -periodic
(T > 0) in the first variable and differentiable with respect to the second variable
such that the gradient V ′(t, x) = ∂V

∂x (t, x) is continuous on R × RN . In this work,
we are interested in the existence of subharmonic solutions of (1.1). Assuming that
T > 0 is the minimal period of the time dependence of V (t, x), by subharmonic
solution of (1.1) we mean a kT -periodic solution, where k is any integer; when
moreover the solution is not T -periodic we call it a true subharmonic.

Using variational methods, there have been various types of results concerning
the existence of subharmonic solutions to system (1.1). Many solvability conditions
are given, such as a convexity condition [4, 12], a super-quadratic condition [7, 11], a
subquadratic condition [4, 6], a periodic condition [8], a bounded nonlinearity con-
dition [1,2,5], and a sublinear condition [10]. In particular, under the assumptions
that there exists a constant M > 0 such that

|V ′(x)| ≤ M, ∀x ∈ RN , (1.2)

lim
|x|→∞

(V ′(x)− ē)x = +∞, (1.3)

where e : R → RN is a continuous periodic function having minimal period T > 0,
and ē is the mean value of e, A. Fonda and Lazer in [2] showed that the system

ü(t) + V ′(u(t)) = e(t) (1.4)
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admitted periodic solutions with minimal period kT , for any sufficiently large prime
number k. After that, Tang and Wu in [10] generalized these results without
studying the minimality of periods. Precisely, it was assumed that the nonlinearity
satisfied the following restrictions:

|V ′(t, x)| ≤ f(t)|x|α + g(t), ∀x ∈ RN , a. e. t ∈ [0, T ], (1.5)

1
|x|2α

∫ T

0

V (t, x)dt → +∞ as |x| → +∞, (1.6)

here f, g ∈ L1(0, T ; R+) are T -periodic and α ∈ [0, 1[.
In [2, 10], the nonlinearity is required to grow at infinity at most like |x|α with

α ∈ [0, 1[. In this article, we will firstly, establish the existence of subharmonic
solutions for the system (1.1) when the nonlinearity V ′(t, x) is required to have a
sublinear growth at infinity faster than |x|α, α ∈ [0, 1[. Our first main result is as
follows.

Theorem 1.1. Let ω ∈ C([0,∞[, R+) be a nonincreasing positive function with the
properties:

lim inf
s→∞

ω(s)
ω(s1/2)

> 0, (1.7)

ω(s) → 0, ω(s)s →∞ as s →∞. (1.8)

Assume that V satisfies: There exist two T -periodic functions f ∈ L2(0, T ; R+) and
g ∈ L1(0, T ; R+) such that

|V ′(t, x)| ≤ f(t)ω(|x|)|x|+ g(t), ∀x ∈ RN , a.e. t ∈ [0, T ]; (1.9)

1
[ω(|x|)|x|]2

∫ T

0

V (t, x)dt → +∞ as |x| → ∞; (1.10)

There is a subset C of [0, T ] with meas(C) > 0 and h ∈ L1(0, T ; R) such that

lim
|x|→∞

V (t, x) = +∞, a.e. t ∈ C, (1.11)

V (t, x) ≥ h(t) for all x ∈ RN , a.e. t ∈ [0, T ]. (1.12)

Then for all positive integer k, the system (1.1) has at least one kT -periodic solution
uk satisfying

lim
k→∞

‖uk‖∞ = +∞,

where ‖u‖∞ = supt∈R |u(t)|.

Remark 1.2. Let

V (t, x) = γ(t)
|x|2

ln(2 + |x|2)
, ∀x ∈ RN , ∀t ∈ R,

where

γ(t) =

{
sin(2πt/T ), t ∈ [0, T/2]
0, t ∈ [T/2, T ].

Taking ω(s) = 1
ln(2+s2) , C = [0, T

2 ]. By a simple computation, we prove that V (t, x)
satisfies (1.9)–(V3) and does not satisfy the conditions (1.2), (1.3) nor (1.5), (1.6).



EJDE-2012/178 SUBHARMONIC SOLUTIONS 3

Corollary 1.3. Assume that (1.9) holds and there exists a subset C of [0, T ] with
meas(C) > 0 and h ∈ L1(0, T ; R) such that

lim
|x|→∞

V (t, x)
[ω(|x|)|x|]2

= +∞, a.e. t ∈ C, (1.13)

V (t, x) ≥ h(t), for allx ∈ RN , a.e. t ∈ [0, T ]. (1.14)

Then the conclusion of Theorem 1.1 holds.

There are a few results studying the minimality of periods of the subharmonics,
see [12] for the case of convexity, and [2] for the case of bounded gradient. We
study this problem and obtain the following result.

Theorem 1.4. Assume that V satisfies (1.9) and

V ′(t, x)x
[ω(|x|)|x|]2

→ +∞ as |x| → ∞, uniformly for t ∈ [0, T ]. (1.15)

Then, for all integer k ≥ 1, Equation (1.1) possesses a kT -periodic solution uk such
that limk→∞ ‖uk‖∞ = +∞. If moreover V satisfies the assumption:

If u(t) is a periodic function with minimal period rT with r
rational, and V ′(t, u(t)) is a periodic function with minimal
period rT , then r is necessarily an integer.

(1.16)

Then, for any sufficiently large prime number k, kT is the minimal period of uk.

As an example of a function V we have

V (t, x) = (2 + cos(
2π

T
t))

|x|2

ln(2 + |x|2)
, ω(s) =

1
ln(2 + s2)

.

Then V (t, x) satisfies (1.9) (1.15) and (1.16), Our main tools, for proving our results,
are the Least Action Principle and the Saddle Point Theorem.

2. Proof of theorems

Let us fix a positive integer k and consider the continuously differentiable func-
tion

ϕk(u) =
∫ kT

0

[
1
2
|u̇(t)|2 − V (t, u(t))]dt

defined on the space H1
kT of kT -periodic absolutely continuous vector functions

whose derivatives have square-integrable norm. This set is a Hilbert space with the
norm

‖u‖k =
[ ∫ kT

0

|u(t)|2dt +
∫ kT

0

|u̇(t)|2dt
]1/2

, u ∈ H1
kT

and the associated inner product

〈u, v〉k =
∫ kT

0

[u(t)v(t) + u̇(t)v̇(t)]dt, u, v ∈ H1
kT .

For u ∈ H1
kT , let ū = 1

kT

∫ kT

0
u(t)dt and ũ(t) = u(t) − ū, then we have Sobolev’s

inequality,

‖ũ‖2
∞ ≤ kT

12

∫ kT

0

|u̇(t)|2dt, (2.1)
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and Wirtinger’s inequality,∫ kT

0

|ũ(t)|2dt ≤ k2T 2

4π2

∫ kT

0

|u̇(t)|2dt . (2.2)

It is easy to see that the norm ‖u‖k is equivalently to the norm

‖u‖ =
[ ∫ kT

0

|u̇(t)|2dt + |ū|2
]1/2

.

In the following, we will use this last norm. It is well known that ϕk is continuously
differentiable with

ϕ′k(u)v =
∫ kT

0

[u̇(t)v̇(t)− V ′(t, u(t))v(t)]dt, ∀u, v ∈ H1
kT

and its critical points correspond to the kT -periodic solutions of the system (1.1).

Proof of Theorem 1.1. Here, we will show that, for every positive integer k, one
can find a kT -periodic solution uk of (1.1) in such a way that the sequence (uk)
satisfies

lim
k→∞

1
k

ϕk(uk) = −∞. (2.3)

This will be done by using some estimates on the critical levels of ϕk given by the
Saddle Point Theorem. The following lemma will be needed for the study of the
geometry of the functionals ϕk.

Lemma 2.1. Assume that (1.9), (1.10) hold. Then there exist a nonincreasing pos-
itive function θ ∈ C(]0,∞[, R+) and a positive constant c0 satisfying the following
conditions:

(i) θ(s) → 0, θ(s)s → +∞ as s →∞,
(ii) ‖V ′(t, u)‖L1 ≤ c0[θ(‖u‖)‖u‖+ 1], for all u ∈ H1

kT ,
(iii)

1
[θ(|x|)|x|]2

∫ kT

0

V (t, x)dt → +∞ as |x| → +∞.

Proof. For u ∈ E, let A = {t ∈ [0, kT ]/|u(t)| ≥ ‖u‖1/2}. By (1.9), we have

‖V ′(t, u)‖L1

≤
∫ T

0

[
f(t)ω(|u(t)|)|u(t)|+ g(t)

]
dt

≤ ‖f‖L2

( ∫ T

0

[ω(|u(t)|)|u(t)|]2dt
)1/2 + ‖g‖L1

≤ ‖f‖L2

( ∫
A

[ω2(‖u‖1/2)|u(t)|2dt +
∫

[0,kT ]−A

sup
s≥0

ω2(s)‖u‖dt
)1/2

+ ‖g‖L1

≤ ‖f‖L2

[
ω2(‖u‖1/2)‖u‖2

L2 + kT sup
s≥0

ω2(s)‖u‖
]1/2 + ‖g‖L1 .

So there exists a positive constant c0 such that

‖V ′(t, u)‖L1 ≤ c0

([
ω2(‖u‖1/2)‖u‖2 + ‖u‖

]1/2 + 1
)
.

Take
θ(s) =

[
ω2(s1/2) +

1
s

]1/2
, s > 0, (2.4)
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then θ satisfies (ii) and it is easy to see that θ satisfies (i).
Now, by (a), we have ρ = lim infs→∞

ω2(s)
ω2(s1/2)

> 0. By (1.10), for any γ > 0,
there exists a positive constant c1 such that∫ kT

0

V (t, x)dt ≥ γ[ω(|x|)|x|]2 − c1. (2.5)

Combining (2.4) and (2.5) yields∫ kT

0
V (t, x)dt

[θ(|x|)|x|]2
≥ γ[ω(|x|)|x|]2 − c1

ω2|x|1/2)|x|2 + |x|
. (2.6)

By the definition of ρ, there exists R > 0 such that for all s ≥ R

ω2(s)s2

ω2(s1/2)s2 + s
≥ ρ

2
, (2.7)

and
c1

ω2(s)s2 + s
≤ γρ

4
, (2.8)

Therefore, by (2.6)-(2.8), we have∫ kT

0
V (t, x)dt

[θ(|x|)|x|]2
≥ γρ

4
, ∀|x| ≥ R.

Since γ is arbitrary chosen, condition (iii) holds. The proof of Lemma 2.1 is com-
plete. �

Now, we need to show that, for every positive integer k, one can find a critical
point uk of the functional ϕk in such a way that (2.3) holds. To this aim, we
will apply the Saddle Point Theorem to each of the ϕk’ s. Let us fix k and write
H1

kT = RN ⊕ H̃1
kT where RN is identified with the set of constant functions and

H̃1
kT consists of functions u in H1

kT such that
∫ kT

0
u(t)dt = 0. First, we prove the

Palais-Smale condition.

Lemma 2.2. Assume that (1.9) and (1.10) hold. Then ϕk satisfies the Palais-
Smale condition.

Proof. Let (un) be a sequence in H1
kT such that (ϕk(un)) is bounded and ϕ′k(un) →

0 as n →∞. In particular, for a positive constant c2 we will have

ϕ′k(un)ũn =
∫ kT

0

[|u̇n(t)|2 − V ′(t, un(t))ũn(t)]dt ≤ c2‖ũn‖. (2.9)

Since θ is non increasing and ‖u‖ ≥ max(|ū|, ‖ũ‖), we obtain

θ(‖u‖) ≤ min(θ(|ū|), θ(‖ũ‖)). (2.10)

Combining Sobolev’s inequality, Lemma 2.1 (ii) and (2.10), we can find a positive
constant c3 such that

|
∫ kT

0

V ′(t, un)ũndt| ≤ c0‖ũn‖∞[θ(‖un‖)‖un‖+ 1]

≤ c0‖ũn‖∞
[
θ(‖ũn‖)‖ũn‖+ θ(|ūn|)|ūn|+ 1

]
≤ c3‖ũn‖

[
θ(‖ũn‖)‖ũn‖+ θ(|ūn|)|ūn|+ 1

] (2.11)

for all n ∈ N.
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From Wirtinger’s inequality, there exists a constant c4 > 0 such that

‖u̇n‖L2 ≤ ‖ũn‖ ≤ c
−1/2
4 ‖u̇n‖L2 . (2.12)

Therefore, by (2.9) and (2.11), we obtain

c2‖ũn‖ ≥ ϕ′k(un).ũn =
∫ kT

0

|u̇n|2dt−
∫ kT

0

V ′(t, un)ũndt

≥ c4‖ũn‖2 − c3‖ũn‖[θ(‖ũn‖)‖ũn‖+ θ(|ūn|)|ūn|+ 1].
(2.13)

Assume that (‖ũn‖) is unbounded, by going to a subsequence if necessary, we can
assume that ‖ũn‖ → ∞ as n → ∞. Since θ(s) → 0 as s → ∞, we deduce from
(2.13) that there exists a positive constant c5 such that

‖ũn‖ ≤ c5θ(|ūn|)|ūn| = c5

[
ω2(|ūn|1/2)|ūn|2 + |ūn|

]1/2 (2.14)

for n large enough. Since ω is bounded, it follows that |ūn| → ∞ as n →∞.
Now, by the Mean Value Theorem and Lemma 2.1 (ii), we obtain

|
∫ kT

0

(V (t, un)− V (t, ūn))dt| = |
∫ kT

0

∫ 1

0

V ′(t, ūn) + sũn)ũn ds dt|

≤ ‖ũn‖∞
∫ 1

0

∫ kT

0

|V ′(t, ūn + sũn)| ds dt

≤ c0‖ũn‖∞
∫ 1

0

[
θ(‖ūn + sũn‖)‖ūn + sũn‖+ 1

]
ds.

(2.15)

Since ‖ūn + sũn‖ ≥ ‖ūn‖ for all s ∈ [0, 1], we deduce from (2.1), (2.14) and (2.15)
that there exists a positive constant c6 such that

|
∫ kT

0

(V (t, un)− V (t, ūn))dt|

≤ c6

(
[θ(|ūn|)|ūn|]2 + θ(|ūn|)[θ(|ūn|)|ūn|]2 + θ(|ūn|)|ūn|

)
.

(2.16)

Thus, by (2.14) and (2.16), we obtain for a positive constant c7,

ϕk(un)

=
1
2
‖u̇n‖2

L2 −
∫ kT

0

(V (t, un)− V (t, ūn))dt−
∫ kT

0

V (t, ūn)dt

≤ c7

(
[θ(|ūn|)|ūn|]2 + θ(|ūn|)[θ(|ūn|)|ūn|]2 + θ(|ūn|)|ūn|

)
−

∫ kT

0

V (t, ūn)dt

= c7[θ(|ūn|)|ūn|]2
[
1 + θ(|ūn|) +

1
θ(|ūn|)|ūn|

− 1
c7[θ(|ūn|)|ūn|]2

∫ kT

0

V (t, ūn)dt
]

so ϕk(un) → −∞ as n → ∞. This contradicts the boundedness of (ϕk(un)).
Therefore (‖ũn‖) is bounded.

It remains to prove that (|ūn|) is bounded. Assume the contrary. By taking
a subsequence, if necessary, we can assume that ‖ūn‖ → ∞ as n → ∞. By the
preceding calculus, we obtain for some positive constants c8, c9 such that

ϕk(un)
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≤ c8

[
‖ũn‖2 + ‖ũn‖θ(|ūn|)|ūn|+ θ(|ūn|)‖ũn‖+ 1

]
−

∫ kT

0

V (t, ūn)dt

≤ c9

[
1 + θ(|ūn|)|ūn|+ θ(|ūn|)

]
−

∫ kT

0

V (t, ūn)dt

≤ c9[θ(|ūn|)|ūn|]2
[ 1 + θ(|ūn|)
[θ(|ūn|)|ūn|]2

+
1

θ(|ūn|)|ūn|
− 1

c9[θ(|ūn|)|ūn|]2

∫ kT

0

V (t, ūn)dt
]

so ϕk(un) → −∞ as n →∞, which also contradicts the boundedness of (ϕk(un)).
So (|ūn|) is bounded and then (‖un‖) is also bounded. By a standard argument, we
conclude that (un) possesses a convergent subsequence and the proof is complete.

�

Now, it is easy to show that (1.10) yields

ϕk(u) = −
∫ kT

0

V (t, u)dt → −∞ as |u| → ∞ in RN . (2.17)

On the other hand, by the Mean Value Theorem, (1.9) and Hölder’s inequality, for
all u ∈ H̃1

kT and a ∈ RN |a| > 0, we have

|
∫ kT

0

(V (t, u)− V (t, a))dt|

= |
∫ kT

0

∫ 1

0

V ′(t, a + s(u− a))(u− a) ds dt|

≤ ‖u− a‖∞
∫ 1

0

∫ kT

0

|V ′(t, a + s(u− a))| dt ds

≤ ‖u− a‖∞
∫ 1

0

∫ kT

0

[
f(t)ω(|a + s(u− a)|)|a + s(u− a)|+ g(t)

]
dt

≤ ‖u− a‖∞
(
‖f‖L2

∫ 1

0

[ ∫ kT

0

(ω(|a + s(u− a)|)|a + s(u− a)|)2dt
] 1

2 ds + ‖g‖L1

)
.

For s ∈ [0, 1], take

A(s) = {t ∈ [0, kT ]/|a + s(u(t)− a)| ≥ |a|}.

By a classical calculation as in the proof of Lemma 2.1, we obtain some positive
constants c10 and c(a) such that

|
∫ kT

0

(V (t, u)− V (t, a))dt| ≤ c10ω(a)‖u‖2 + c(a)(‖u‖+ 1).

Since ω(|a|) → 0 as |a| → ∞, there exists |a| > 0 such that c10ω(|a|) ≤ 1
4c2

4 and
then we obtain

|
∫ kT

0

(V (t, u)− V (t, a))dt| ≤ 1
4
c2
4‖u‖2 + c(a)(‖u‖+ 1)

which implies that

ϕk(u) ≥ 1
4
c2
4‖u‖2 − c(a)(‖u‖+ 1)−

∫ kT

0

V (t, a)dt →∞ as ‖u‖ → ∞. (2.18)
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We deduce from Lemma 2.2 and (2.17), (2.18) that all the Saddle Point Theorem’s
assumptions are satisfied. Therefore the functional ϕk possesses at least a critical
point uk satisfying

−∞ < inf
H̃1

kT

ϕk ≤ ϕk(uk) ≤ sup
RN+ek

ϕk (2.19)

where ek(t) = k cos(σt
k )x0 for t ∈ R, σ = 2π

T and some x0 ∈ RN with |x0| = 1. The
first part of Theorem 1.1 is proved.

Next, we will prove that the sequence (uk)k≥1 obtained above satisfies (2.3). For
this aim, the following two lemmas will be needed.

Lemma 2.3 ([9]). If (1.11) holds, then for every δ > 0 there exists a measurable
subset Cδ of C with meas(C − Cδ) < δ such that

V (t, x) → +∞ as |x| → ∞, uniformly in t ∈ Cδ.

Lemma 2.4. Suppose that V satisfies (1.11) - (1.12), then

lim sup
k→∞

sup
x∈RN

1
k

ϕk(x + ek) = −∞. (2.20)

Proof. Let x ∈ RN , we have

ϕk(x + ek) =
1
4
kTσ2 −

∫ kT

0

V (t, x + ek(t))dt.

By (1.11) and Lemma 2.3, for δ = 1
2 meas(C) and all γ > 0, there exist a measurable

subset Cδ ⊂ C with meas(C − Cδ) < δ and r > 0 such that

V (t, x) ≥ γ, ∀|x| ≥ r ∀t ∈ Cδ. (2.21)

Let
Bk = {t ∈ [0, kT ] : |x + ek(t)| ≤ r}.

Then we have

meas(Bk) ≤ kδ

2
. (2.22)

In fact, if meas(Bk) > kδ/2, there exists t0 ∈ Bk such that

kδ

8
≤ t0 ≤

kT

2
− kδ

8
, (2.23)

kT

2
+

kδ

8
≤ t0 ≤ kT − kδ

8
, (2.24)

and there exists t1 ∈ Bk such that

|t1 − t0| ≥
kδ

8
, (2.25)

|t1 − (kT − t0)| ≥
kδ

8
. (2.26)

It follows from (2.26) that

| t0 + t1
2k

− T

2
| ≥ δ

16
. (2.27)

By (2.23) and (2.24), one has

δ

16
≤ t0 + t1

2k
≤ T − δ

16
. (2.28)
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Combining (2.27) and (2.28), yields

| sin(
t0 + t1

2k
σ)| ≥ sin(

σδ

16
). (2.29)

On the other hand, by (2.25) we have

| cos(
σt0
k

)− cos(
σt1
k

)| = 2| sin(
t0 + t1

2k
σ)|| sin(

t0 − t1
2k

σ)| ≥ 2 sin2(
σδ

16
),

and

| cos(
σt0
2k

)− cos(
σt1
2k

)| = 1
k
|(x + ek(t1))− (x + ek(t0))| ≤

2r

k
,

which is impossible for large k. Hence (2.22) holds.
Now, let Ck = ∪k−1

j=0 (jT + Cδ). It follows from (2.22) that for all k,

meas(Ck −Bk) ≥ kδ

2
.

By (2.21), we have

k−1ϕk(x + ek) =
1
4
Tσ2 − k−1

∫ kT

0

V (t, x + ek(t))dt

≤ 1
4
Tσ2 − k−1

∫
[0,kT ]−(Ck−Bk)

h(t)dt− k−1γ meas(Ck −Bk)

≤ 1
4
Tσ2 −

∫ T

0

|h(t)|dt− δγ

2

for all large k, which implies

lim sup
k→∞

sup
x∈RN

k−1ϕk(x + ek) ≤ 1
4
Tσ2 +

∫ T

0

|h(t)|dt− δγ

2
.

By the arbitrariness of γ, we obtain

lim sup
k→∞

sup
x∈RN

k−1ϕk(x + ek) = −∞.

The proof of Lemma 2.4 is complete. �

It remains to prove that the sequence (‖uk‖∞) of solutions of (1.1) obtained
above, is unbounded. Arguing by contradiction, assume that (‖uk‖∞) is bounded,
then there exists R > 0 such that (‖uk‖∞) ≤ R for all k ≥ 1. We have

k−1ϕk(uk) ≥ −k−1

∫ kT

0

V (t, uk)dt. (2.30)

Since V is T -periodic in t and continuous, then there exists a constant ρ > 0 such
that

|V (t, x)| ≤ ρ, ∀x ∈ RN , |x| ≤ R, a.e. t ∈ R.

Therefore,
k−1ϕk(uk) ≥ −ρT (2.31)

which contradicts (2.19) with (2.20). The proof of Theorem 1.1 is complete.
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Proof of Theorem 1.4. The following lemma will be needed.

Lemma 2.5. Let (1.9), (1.15) hold. Then for all ρ > 0, there exists a constant
cρ ≥ 0 such that for all x ∈ RN , |x| > 1 and for a.e. t ∈ [0, T ],

V (t, x) ≥ V (t, 0) +
ρ

2
[ω(|x|)|x|]2(1− 1

|x|2
)− cρln(|x|)− 1

2
a sup

r≥0
ω(r)− g(t). (2.32)

Proof. For x ∈ RN , |x| > 1, we have

V (t, x) = V (t, 0) +
∫ 1

0

V ′(t, sx)x ds

= V (t, 0) +
∫ 1

|x|

0

V ′(t, sx)x ds +
∫ 1

1
|x|

V ′(t, sx)x ds.

(2.33)

By (1.9), we have

|
∫ 1

|x|

0

V ′(t, sx)x ds| ≤ |x|
∫ 1

|x|

0

[f(t)ω(|sx|)|sx|+ g(t)]dt

≤ |x|[f(t) sup
r≥0

ω(r)|x|
∫ 1

|x|

0

s ds + g(t)
1
|x|

]

≤ 1
2
f(t) sup

r≥0
ω(r) + g(t).

(2.34)

Let ρ > 0, then by (1.15), there exists a positive constant cρ such that

V ′(t, x)x ≥ ρ[ω(|x|)|x|]2 − cρ. (2.35)

Therefore, ∫ 1

1
|x|

V ′(t, sx)x ds =
∫ 1

1
|x|

V ′(t, sx)sx
ds

s

≥
∫ 1

1
|x|

(ρ[ω(|sx|)|sx|]2 − cρ)
ds

s

≥ ρ

2
[ω(|x|)|x|]2(1− 1

|x|2
)− cρb(t)ln(|x|).

(2.36)

Combining (2.33), (2.34) and (2.36), we obtain (2.32) and Lemma 2.5 is proved. �

Now, since a0 = lim infs→∞
ω(s)

ω(s
1
2 )

> 0, for s large enough, we have

1
ω(s)

≤ 1
a0ω(s1/2)

(2.37)

which implies that for |x| large enough

ln(|x|)
[ω(|x|)|x|]2

≤ ln(|x|)
|x|

1
a2
0[ω(|x|1/2)|x|1/2]2

→ 0 as |x| → ∞. (2.38)

Combining (2.32), (2.38) we obtain (V4). By applying Corollary 1.3, we obtain a
sequence (uk) of kT -periodic solutions of (1.1) such that limk→∞ ‖uk‖∞ = +∞.

It remains to analyst the minimal periods of the subharmonic solutions found
with the previous results. For this, we will split the problem into two parts. Firstly,
we claim that for a sufficiently large integer k, the subharmonic solution uk is not
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T -periodic. In fact, let ST be the set of T -periodic solutions of (1.1), we will show
that ST is bounded in H1

T . Assume by contradiction that there exists a sequence
(un) in ST such that ‖un‖1 → ∞ as n → ∞. Let us write un(t) = ūn + ũn(t),
where ūn is the mean value of un. Multiplying both sides of the identity

ün(t) + V ′(t, un(t)) = 0 (2.39)

by ũn(t) and integrating, we obtain by (1.9) and Hölder’s inequality∫ T

0

|u̇n|2dt = −
∫ T

0

ünũndt

=
∫ T

0

V ′(t, un)ũndt

≤ ‖ũn‖∞
∫ T

0

[
f(t)ω(|un(t)|)|un(t)|+ g(t)

]
dt

≤ ‖ũn‖∞
[
‖f‖L2

( ∫ T

0

[ω(|un(t)|)|un(t)|]2dt
)1/2 + ‖g‖L1

]
.

(2.40)

By (2.1), (2.2) and (2.40), there exists a positive constant c11 such that

‖ũn‖1 ≤ c11

[( ∫ T

0

[ω(|un(t)|)|un(t)|]2dt
)1/2 + 1

]
. (2.41)

Let ρ > 0 and let cρ be a constant satisfying (2.35). Multiplying both sides of the
identity (2.39) by un(t) and integrating∫ T

0

|u̇n|2dt = −
∫ T

0

ünundt

=
∫ T

0

V ′(t, un)undt

≥ ρ

∫ T

0

[ω(|un(t)|)|un(t)|]2dt− cρT.

(2.42)

We deduce from (2.42) and Wirtinger inequality that there exists a positive constant
c12 such that

‖ũn‖2
1 ≥ c12

[
ρ

∫ T

0

[ω(|un(t)|)|un(t)|]2dt− cρT
]
. (2.43)

Combining (2.41) with (2.43), we can find a positive constant c13 such that

ρ

∫ T

0

[ω(|un(t)|)|un(t)|]2dt− cρT ≤ c13

[ ∫ T

0

[ω(|un(t)|)|un(t)|]2dt + 1
]
. (2.44)

Since ρ is arbitrary chosen,

(
∫ T

0

[ω(|un(t)|)|un(t)|]2dt) is bounded. (2.45)

Combining (2.41) and (2.45) yields (ũn) is bounded in H1
T and then |ūn| → ∞ as

n →∞. Since the embedding H1
T → L2(0, T ; RN ), u → u is compact, then we can

assume, by going to a subsequence if necessary, that ũn(t) → ũ(t) as n → ∞, a.e.
t ∈ [0, T ]. We deduce that

|un(t)| → ∞ as n →∞, a.e. t ∈ [0, T ]. (2.46)
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Fatou’s lemma and (2.46) imply∫ T

0

[ω(|un(t)|)|un(t)|]2dt →∞ as n →∞ (2.47)

which contradicts (2.45). Therefore ST is bounded in H1
T . As a consequence,

ϕ1(ST ) is bounded, and since for any u ∈ ST one has ϕk(u) = kϕ1(u), then there
exists a positive constant c14 such that

1
k
|ϕk(u)| ≤ c14, ∀u ∈ ST , ∀k ≥ 1. (2.48)

Consequently by (2.3), for k large enough, uk /∈ ST . Finally, assumption (1.16)
requires that the minimal period of each solution uk of (1.1) is an integer multiple
of T . So if k is chosen to be a prime number, the minimal period of uk has to be
kT . The proof of Theorem 1.4 is complete.

Acknowledgments. I wish to thank the anonymous referee for his/her suggestions
and interesting remarks.
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