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OPTIMAL DESIGN OF A BAR WITH AN ATTACHED MASS
FOR MAXIMIZING THE HEAT TRANSFER

BORIS P. BELINSKIY, JAMES W. HIESTAND, MAEVE L. MCCARTHY

Abstract. We maximize, with respect to the cross sectional area, the rate
of heat transfer through a bar of given mass. The bar serves as an extended
surface to enhance the heat transfer surface of a larger heated known mass to
which the bar is attached. In this paper we neglect heat transfer from the sides
of the bar and consider only conduction through its length. The rate of cooling
is defined by the first eigenvalue of the corresponding Sturm-Liouville problem.
We establish existence of an optimal design via rearrangement techniques. The
necessary conditions of optimality admit a unique optimal design. We compare
the rate of heat transfer for that bar with the rate for the bar of the same mass
but of a constant cross-section area.

1. Introduction

Materials are often cooled by convection to a surrounding ambient medium such
as the atmosphere. For example, the heat generated in an automobile engine is
transferred first to the cooling water that circulates through the engine and then
to the atmosphere through the radiator. Convective heat transfer is described by
the equation

Q̇ = hAs(T − T∞) (1.1)

where Q̇ is the heat transfer rate, h is an empirical heat transfer coefficient, As is the
surface area, T is the temperature of the surface and T∞ is the temperature of the
surrounding medium. We want to maximize the surface area since the convective
heat transfer rate is proportional to this area. On the other hand, we want to
minimize the volume of the heat transfer region, in order to keep its weight and
hence material cost as low as possible. Thus we seek to maximize the surface to
volume ratio of the heat transfer surface.

Extended surfaces attached to a given base mass, M0, are frequently used in
commercial applications to increase the heat transfer surface area without signif-
icantly increasing the associated mass and hence the material cost of the device.
The additional surface might be in the form of thin donuts around a central pipe,
parallel plates attached to the surface as in small engines or automobile radiators,
or fins extending outward like hairs from a surface. The mass of the added extended
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surface is small compared to the base mass M0. For this reason a high surface-to-
volume ratio for the extended surface is sought. Such mass additions to enhance
heat transfer are referred to as fins.

Nature also “designs” according to this criterion. The ears of an elephant have
large surface area compared to their volume which allows the blood passing through
them to be efficiently cooled. Likewise members of species like deer that live near
the equator must be able to dissipate heat efficiently. They achieve this desirable
ratio by being smaller than their counterparts that live towards the poles (think of
a sphere where the surface to volume is inversely proportional to r).

Engineering heat transfer texts sometimes consider fins of variable cross-section
[13, pp. 124-126] but the cross-section is assumed to be for a regular shape, e.g. a
cylinder with variable radius. Or the optimization of a fin with a given cross-section
(e.g. a rectangle) is optimized with respect to the length and thickness [22, pp. 74].
However, a general variation of shape to maximize the heat transfer from the fin is
not considered.

Heat transfer within the surface is by conduction and the rate is given by the
equation

Q̇ = −kA∆T

l
(1.2)

where k is the thermal conductivity of the material, A is the cross-sectional area, and
l is the length of the material. Here ∆T is the temperature difference between the
end points of the heat transfer. The equations above, along with the corresponding
physical background, may be found in [13, pp. 110-114].

If an energy balance is performed for the region of the bar between x and x+∆x,
energy enters by conduction at x and leaves by conduction at x+∆x and also from
the side by convection (see Equation (1.1)). The difference is the rate of change of
the energy content of that region of the bar

rate of change of energy = energy in− energy out or

ρcA∆x
∆T

∆t
= −kA

∆T

∆x

∣∣∣
x

+ kA
∆T

∆x

∣∣∣
x+∆x

− hAs(T − T∞). (1.3)

Here T (x, t) is the temperature distribution. The surface area is As = P∆x, where
P (x) is the perimeter of the cross-section at the point x. The ratio ∆T

∆t is the rate
of change of temperature with time and ∆T

∆x is the local temperature gradient. The
following bar material parameters are introduced, the density ρ, the specific heat
capacity c, the thermal conductivity k, and the convective heat transfer coefficient
h. It is assumed that ρ, c, k, h are positive constants.

Dividing by ∆x, and taking the limit as ∆x and ∆t approach zero, yields the
partial differential equation

A
∂T

∂t
=

k

ρc

∂

∂x

(
A

∂T

∂x

)
− hP

ρc
(T − T∞), (x, t) ∈ (0, l)× (0,∞). (1.4)

We discuss a particular case of this general equation when convective heat transfer
from the side of the bar is neglected, i.e., the limiting case h → 0 is considered.
It is the purpose of this paper to find the optimal distribution of the cross-section
area, A, of a surface of revolution of a given mass such that the heat transfer rate
is a maximum. This will produce a maximum cooling per unit mass and may be
considered the optimum.
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Detailed discussion of techniques and results in structural optimization can be
found in [9, 27] and the references therein. We mention in particular the maxi-
mization of a column’s buckling load [24, 25], the minimization of the mass of an
oscillating bar [23, 26] or a rotating rod [1, 2], the maximization of a column’s
height [14] and the minimization of the moment of inertia of an oscillating turbine
[4]. If the design variable tapers too rapidly, the eigenvalue being optimized is not
isolated from the remainder of the spectrum [14, 8, 1]. In these cases optimality
conditions can be derived using non-smooth analysis in conjunction with the more
classical Calculus of Variations techniques [16, 17].

The complexity of the Sturm-Liouville problem also increases if the boundary
conditions contain an eigenparameter. This is due to the fact the the Sturm-
Liouville operator is not self-adjoint with respect to the usual L2(0, l) inner product.
The spectral properties of the Sturm-Liouville problems that arise from diverse
mechanical models and contain the spectral parameter in the boundary condition(s)
have been studied in [28, 10, 12, 5, 3]. Numerical schemes for the inverse problem
were developed by [18]. Design problems of this type have been considered by
[26, 4]. In the latter, existence of an optimal design was treated seriously, as it will
be here.

In the design problem considered here, we encounter a spectral parameter in
a boundary condition. In Section 2 we give the mathematical description of the
model, apply separation of variables and formulate the spectral properties of the
corresponding Sturm-Liouville problem. We also give the solution for an elementary
case of the problem when the cross-section area is constant, which we need later for
comparison with the solution in case of variable cross-section area. In Section 3 we
derive the necessary conditions of optimality and hence find an optimal form of the
bar. In Section 4 we use a rearrangement technique to prove that the optimal design
is increasing and maximizes the first eigenvalue of the Sturm-Liouville problem. In
Section 5 we give the numerical comparison of cooling properties for the bar of
optimal shape and a bar having the same mass but with the constant cross-section
area. In the Appendix, we prove that the rate of cooling for the bar with the
optimal cross-section area is greater than for a bar of the same mass but with
constant cross-section area.

2. Heat transfer of a bar of a variable cross-section area:
separation of variables and the Sturm-Liouville problem

We consider the heat transfer in a bar {0 < x < l} with a base mass M0 attached
at the end point x = 0. The temperature distribution T : [0, l]×[0,∞) → R satisfies
the transient one-dimensional conduction equation

A
∂T

∂t
=

k

ρc

∂

∂x

(
A

∂T

∂x

)
, (x, t) ∈ (0, l)× (0,∞) (2.1)

that is the limiting case of Equation (1.4) as h → 0. Here the cross-section area
A(x) : [0, l] → R+ is a continuous differentiable positive function. As was mentioned
in the Introduction, parameters k, ρ, c are positive constants. The end point x = l
is kept at the (constant) temperature of the surrounding medium,

T (l, t) = T∞, t ∈ [0,∞). (2.2)

The rate of change of the energy content of the base is given by the difference
between the energy flow into and out of it, as in the derivation of (1.3). For energy
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flow only by conduction outward at x = 0 this becomes

cM0
∆T

∆t
= kA

∆T

∆x

∣∣
x=0

.

In the limit as ∆t and ∆x → 0 this becomes

cM0
∂T

∂t
(0, t) = kA(0)

∂T

∂x
(0, t) t ∈ [0,∞). (2.3)

The initial distribution T0 : [0, l] → R of the temperature is given,

T (x, 0) = T0(x). (2.4)

It is well known that the initial boundary value problem (2.1)-(2.4) has a unique
solution [21, 15]. It is convenient to extract the term T∞ from the solution,

τ(x, t) ≡ T (x, t)− T∞. (2.5)

The new unknown function τ : [0, l] × [0,∞) → R is the unique solution of the
initial boundary value problem

A
∂τ

∂t
=

k

ρc

∂

∂x

(
A

∂τ

∂x

)
, (x, t) ∈ (0, l)× (0,∞), (2.6)

τ(l, t) = 0, t ∈ [0,∞), (2.7)

cM0
∂τ

∂t
(0, t) = kA(0)

∂τ

∂x
(0, t), t ∈ [0,∞), (2.8)

τ(x, 0) = τ0(x), ∈ [0, l]; where τ0(x) ≡ T0(x)− T∞. (2.9)

If we use the standard procedure of separation of variables

τ(x, t) ≡ e−σtu(x) (2.10)

and introduce the notation
ρc

k
σ ≡ λ so that

cσ

k
=

λ

ρ
, (2.11)

then the function u : [0, l] → R satisfies the following Sturm-Liouville problem

(Au′)′ + λAu = 0, x ∈ (0, l);

u(l) = 0, A(0)u′(0) +
M0

ρ
λu(0) = 0.

(2.12)

As we see, the spectral parameter λ appears in the second boundary condition.
The general theory for Sturm-Liouville problems of this type developed in [28, 10,
12, 5, 3] may be used. It can be verified that the conditions of the corresponding
theorems are satisfied. In particular, by Walter [28, Theorem 1], we know that
the eigenparameter dependent Sturm-Liouville problem (2.12) has a pure discrete
positive real spectrum with the only point of accumulation at +∞. The set of
eigenfunctions satisfies the orthogonality relation∫ l

0

Aunujdx +
M0

ρ
un(0)uj(0) = 0 if n 6= j (2.13)

which allows us to define an inner product over which our Sturm-Liouville problem
is self-adjoint. The Rayleigh quotient

λn =
ρ

∫ l

0
Au′2n dx

ρ
∫ l

0
Au2

ndx + M0u2
n(0)

(2.14)
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immediately follows.
Existence and uniqueness of the solution of the initial boundary value problem

(2.6)-(2.9) follow from known techniques, [15]. Its series representation is given by

τ(x, t) ≡
∑
n≥1

cne−σntun(x) (2.15)

where

σn ≡
k

ρc
λn

and

cn =
ρ

∫ l

0
Aτ0undx + M0τ0(0)un(0)

ρ
∫ l

0
Au2

ndx + M0u2
n(0)

. (2.16)

We note that if the cross-section area is constant, A(x) = A, the mass of the bar
is M = ρAl, and the exact solution of the problem (2.6)-(2.9) is given by

τ(x, t) ≡
∑
n≥1

cne−σnt sin
√

λn(x− l).

Here λn are the positive solutions of the transcendental equation

tan(
√

λnl) =
M

M0

√
λnl

, n = 1, 2, . . . (2.17)

and

cn =
ρA

∫ l

0
τ0(x) sin

√
λn(x− l)dx−M0τ0(0) sin

√
λnl

ρA
∫ l

0
sin2

√
λn(x− l)dx + M0 sin2

√
λnl

. (2.18)

3. Heat transfer of a bar of a variable cross-section area:
optimality conditions

The representation (2.15)-(2.16), and (2.5) for the solution shows that the tem-
perature T (x, t) approaches the level T∞ exponentially fast, and the rate of ap-
proach is determined by the first eigenvalue λ1. We now formulate the problem of
optimal design and consider the variational problem:

Find the form of the cross–section A(x) ∈ (0,∞) that yields the maximum to the
functional

λ1 = min
u∈H1[0,l]

∫ l

0
A(x)(u′(x))2dx∫ l

0
A(x)(u(x))2dx + M0

ρ u2(0)
(3.1)

given ∫ l

0

A(x) =
M

ρ
. (3.2)

We note here that for any û ∈ H1[0, l]

λ1(A) ≤
∫ l

0
A(x)(û′(x))2dx∫ l

0
A(x)(û(x))2dx + M0

ρ û2(0)
(3.3)

In particular, if we choose u(x) = l − x, it follows that λ1(A) is bounded because

λ1(A) ≤
∫ l

0
A(x)dx∫ l

0
A(x)(l − x)2dx + M0

ρ l2
≤ ρM

M0l2
. (3.4)
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It is well-known that the variational problem of the minimization of the ratio
above is equivalent to the following problem: Find the function u ∈ H1[0, l] that
yields the minimum to the functional

L =
∫ l

0

A(x)(u′(x))2dx (3.5)

subject to the constraint∫ l

0

A(x)(u(x))2dx +
M0

ρ
u2(0) = 1. (3.6)

Hence, we come to the following variational problem:
Find the form of the cross–section A(x) ∈ (0,∞) that yields the maximum to

the functional

L1 = min
u∈H1[0,l]

∫ l

0

A(x)(u′(x))2dx (3.7)

subject to the constraints∫ l

0

A(x)(u(x))2dx +
M0

ρ
u2(0) = 1,

∫ l

0

A(x) =
M

ρ
. (3.8)

Using the Lagrange method, we introduce the new functional

F [A;u] =
∫ l

0

A(x)(u′(x))2dx− µ1

( ∫ l

0

A(x)u2(x)dx +
M0

ρ
u2(0)

)
− µ2

( ∫ l

0

A(x)dx− M

ρ

) (3.9)

where µ1, µ2 are Lagrange multipliers. The necessary condition of the extremum
in terms of the first variation of the functional F [A;u] has the form δF [A;u] = 0.
Using the boundary condition

u(l) = 0, (3.10)

this can be written as∫ l

0

(u′)2δAdx +
∫ l

0

2Au′δu′dx− µ1

∫ l

0

u2δAdx

− µ1

∫ l

0

2Auδudx− µ1
M0

ρ
2u(0)δu(0)− µ2

∫ l

0

δAdx = 0.

The variations δu(0), δu(x), δA(x) are independent. Equating the correspond-
ing parts of the variation of F [A;u] to zero yields a boundary condition and two
differential equations

(Au′)(0) + µ1
M0

ρ
u(0) = 0, (3.11)

(Au′)′ + µ1Au = 0, 0 < x < l, (3.12)

(u′)2 − µ1u
2 − µ2 = 0. (3.13)

We observe that the differential equation (3.12) subject to the boundary condi-
tions (3.10), (3.11) yields u(x) to be the first eigenfunction and µ1 to be the first
eigenvalue, µ1 = λ1, of the original Sturm-Liouville problem (2.12). The optimality
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conditions represented by the nonlinear differential equation (3.13) subject to the
boundary condition (3.10) may be solved explicitly,

u(x) =
√

µ2

λ1
sinh

√
λ1(l − x). (3.14)

Substituting u(x) from (3.14) into the Sturm-Liouville equation (3.12) yields the
following differential equation for A(x)(

A cosh
√

λ1(l − x)
)′ − λ1A

1√
λ1

sinh
√

λ1(l − x) = 0 (3.15)

which also may be solved explicitly

A(x) =
C

cosh2√λ1(x− l)
. (3.16)

The boundary condition (3.11) yields

C =
M0

√
λ1

2ρ
sinh(2

√
λ1l). (3.17)

Using Conditions (3.2) yields finally

M0 sinh2(
√

λ1l) = M. (3.18)

Solving (3.18) for λ1 finally yields the optimal rate of cooling for the bar with
the given mass

λ1 =
(1

l
ln

(√
M

M0
+

√
M

M0
+ 1

))2

. (3.19)

We introduce the dimensionless parameter

zopt ≡
√

λ1l = ln
(√

M

M0
+

√
M

M0
+ 1

)
. (3.20)

It is of interest to compare it with the similar parameter z for the constant cross-
section. From the transcendental equation (2.17), our dimensionless parameter
satisfies

z tan z =
M

M0
. (3.21)

In the Appendix, we show that the inequality

zopt > z (3.22)

holds for any positive ratio M/M0. This is confirmed by our numerical results in
Section 5.

4. The Optimal Design is Increasing

We prove here that the heat transfer rate λ1(A) can be increased through the
use of increasing rearrangements of the cross-sectional area A(x). This is achieved
through the use of an alternative characterization of λ1(A). We begin by defin-
ing decreasing and increasing rearrangements, and stating some of their relevant
properties.
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Definition 4.1. The decreasing rearrangement of a nonnegative function, f , on
(a, b) is simply

f∗(x) ≡ sup{t > 0 : µf (t) > x},
where µf is the distribution function of f ,

µf (t) = |{x ∈ (a, b) : f(x) > t}| t ≥ 0.

The increasing rearrangement of f is f∗(x) ≡ f∗(b− x).

If g and h are nonnegative functions on (a, b), with g increasing and h decreasing,
then ∫ b

a

fdx =
∫ b

a

f∗dx =
∫ b

a

f∗dx, (4.1)

By (4.1), if we replace a particular design A ∈ ad by either its increasing or de-
creasing rearrangements A∗ or A∗ then the new design has the same integral. Fur-
thermore, ∫ b

a

f∗gdx ≤
∫ b

a

fgdx,

∫ b

a

f∗hdx ≤
∫ b

a

fhdx. (4.2)

These results are a special case of those established in [19, pp. 153].

Theorem 4.2. For any cross-sectional area A satisfying

0 < A(x) < ∞, x ∈ [0, l],
∫ l

0

A(x)dx =
M

ρ
,

its increasing rearrangement A∗ satisfies

λ1(A) ≤ λ1(A∗).

Proof. Using variation of parameters, as in [12, 5] we find that if u(x) is a solution
of (2.12) corresponding to A(x), then v(x) =

√
A(x)u(x) satisfies

v(x) = λ[φA(x) + (GAv) (x)]

for 0 < x < l, where

φA(x) =
√

A(x)
M0

ρ

( ∫ l

x

dx

A(x)

)
, (4.3)

(GAv)(x) =
∫ l

0

gA(x, t)v(t)dt, (4.4)

gA(x, s) =
√

A(x)
√

A(s)
∫ l

x∧s

dy

A(y)
(4.5)

and x∧s = max {x, s}. If 〈u, v〉 denotes the L2(0, l) inner product and ‖ · ‖ denotes
its associated norm, then this can be written as

‖v‖2 = λ[〈φA, v〉+ 〈GAv, v〉].
Thus, our second characterization is a variational characterization similar to that
of Porter and Stirling, [20, Lemma 5.1],

1
λ1(A)

= max
‖v‖=1

[〈φA, v〉+ 〈GAv, v〉]. (4.6)

The maximum is attained at v1(x) =
√

A(x)u1(x) where u1(x) is the first eigen-
function of the Sturm-Liouville Problem (2.12) associated with A(x) for which∫ l

0
u2

1(x)A(x)dx = 1.
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Let u1 be the first eigenfunction of the Sturm-Liouville Problem (2.12) associated
with A∗. Using v(x) =

√
A(x)u(x) in (4.6) and integrating by parts, we find

1
λ1(A)

= max
‖u‖A=1

[M0

ρ

∫ l

0

( ∫ x

0

A(y)u(y)dy
) dx

A(x)
+

∫ l

0

( ∫ x

0

A(y)u(y)dy
)2 dx

A(x)

]
where ‖ · ‖A denotes the norm associated with the L2(0, l;A(x)) inner product. In-
tegrating (2.12) with u1 and A∗ between 0 and x, and using the boundary condition
at x = 0 yields

u′1(x) =
−λ1(A∗)
A∗(x)

[ ∫ x

0

A∗u1dr +
M0

ρ
u1(0)

]
.

Binding, Browne and Seddighi established oscillation results for Sturm-Liouville
problems with eigenparameter dependent boundary conditions in [5]. In particular,
their Corollary 5.2 implies that our first eigenfunction has no interior zeros. We
assume without loss of generality that u1 > 0. Since λ1(A∗),M0, ρ, u1(x), A(x) > 0,
this implies that u1 is decreasing. The second part of (4.2) implies that

∫ x

0
Au1dy ≥∫ x

0
A∗u1dy and so

1
λ1(A)

≥ M0

ρ

∫ l

0

(∫ x

0

A∗(y)u1(y)dy

)
dx

A(x)
+

∫ l

0

(∫ x

0

A∗(y)u1(y)dy

)2
dx

A(x)
.

Clearly, the functions (
∫ x

0
A∗u1dy) and (

∫ x

0
A∗u1dy)2 are nonnegative increasing

functions of x. Once again (4.2) yields

1
λ1(A)

≥ M0

ρ

∫ l

0

( ∫ x

0

A∗(y)u1(y)dy
)( 1

A(x)

)∗
dx

+
∫ l

0

( ∫ x

0

A∗(y)u1(y)dy
)2( 1

A(x)

)∗
dx.

If f is decreasing on the range of g then the composition (f ◦ g)∗ = f ◦ g∗, see [7],
which implies that

1
λ1(A)

≥ M0

ρ

∫ l

0

( ∫ x

0

A∗(y)u1(y)dy
) dx

A∗(x)
+

∫ l

0

( ∫ x

0

A∗(y)u1(y)dy
)2 dx

A∗(x)

=
1

λ1(A∗)
. �

Theorem 4.3. The design satisfying the first order optimality conditions (3.10)-
(3.13)

A(x) =
M
√

λ1 coth(
√

λ1l)
ρ cosh2(

√
λ1(x− l))

maximizes the functional A 7→ λ1(A) on the set

ad =
{
A : 0 < A(r) < ∞, x ∈ [0, l],

∫ l

0

A(r)dr =
M

ρ

}
Proof. By (3.4) we know that λ1(A) is bounded. A is the unique solution of the
optimality system given by (3.10)-(3.13). Suppose that A is not a maximizer.
By Theorem 4.2, the associated design can be improved and the first eigenvalue
increased by replacing A with its increasing rearrangement A∗. Since A is already
an increasing function of x, the design cannot be improved. Hence A maximizes
the functional. �
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5. Numerical comparison of cooling properties

The product z =
√

λl is a function of the ratio M/M0 in both the constant area
case (3.21) and the optimal case (3.19). The equation (3.21) was solved numerically.
Similar to the presentation of [2], a comparison of constant and variable cross-
section is shown in Figure 1 as a function of M/M0. Extended surfaces with more
mass, M , than the base mass, M0, are not used in engineering practice, and hence
values of M/M0 > 1 in the graph are shown for illustrative purposes only.

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Mass Ratio M/M
0

z

Constant Area z

Optimal Design zopt

Figure 1. Comparision of optimal design and constant area design

Numerical results show that the advantage of the optimum cross-section over the
constant cross-section is small and becomes less so as the base mass, M0, increases.
This is physically reasonable. Indeed, recall that convective heat transfer from
the side of the area has been neglected. Hence addition of the extended surface
does little but move the boundary condition at x = l that distance from M0.
Furthermore, as M becomes small compared to M0, its very presence becomes
negligible and hence its shape does not matter.

In each case zopt ≥ z, as shown in the Appendix. This numerical observation
is certainly in agreement with the general results of Sections 3 and 4. However,
the effect is not large because of the physical reasons explained above. Moreover,
for M/M0 → 0 the optimum and constant area results merge. This numerical
observation is in agreement with the asymptotic formula (7.5).

6. Conclusion

We have found the optimal distribution of the cross-section area of a bar in the
form of a surface of revolution of a given total mass with a point mass attached at the
end such that the heat transfer rate is a maximum. That rate is defined by the least
eigenvalue of the corresponding Sturm-Liouville problem. This is of independent
interest because the spectral parameter appears not only in the differential equation
but also in the boundary condition. The bar will produce the maximum cooling per
unit mass and may be considered the optimum. The optimal distribution coincides
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with one found by Taylor [24] and M.J. Turner [26] for the design of a bar having a
maximum lowest eigenfrequency with the given mass. Numerical results show that
the advantage of the optimal design over the constant cross-section is small and
decreases as the base mass increases. We believe this to be a result of the fact that
our model neglects heat transfer from the side of the bar.

We should emphasize that we have considered a special case of the heat transfer
assuming that convective heat transfer from the side of the bar is neglected and
only conduction through the length of the bar is considered (see Section 1).

We expect that the solution of the optimal design problem for the more general
problem will show a more noticeable difference between the optimal design and the
constant case. If we were to include the heat transfer phenomenon from the sides
of the bar, we would have to consider the partial differential equation

a2(x)
∂T

∂t
=

k

ρc

∂

∂x

(
a2(x)

∂T

∂x

)
−

ha(x)
√

1 + (a′(x)2

ρc
(T − T∞), (6.1)

where (x, t) ∈ (0, l)×(0,∞), and a(x) would be the radius of the body of revolution
that represents the bar. The corresponding Sturm-Liouville problem has a discrete
spectrum and a complete set of eigenfunctions. We could derive a Rayleigh-Ritz
ratio for the least eigenvalue similar to expression (2.14). But the technique of
the Calculus of Variations used in Section 3 will not lead to an explicit form of
the cross-section area and the least eigenvalue. For that problem, we had hoped
to use a numerical approach based on the discretization of our bar that would
reduce the problem of the optimal design to the problem of optimization for a
function of several variables (this idea was developed for the optimal design of
mechanical systems in [6]). We have recently learned that an equation with similar
appearance of the function a(x) is optimized in [11]. The techniques used there
may be applicable when we consider the more general heat transfer model. This
will be will be considered in a future paper.

7. Appendix

Having derived an explicit formula for the optimal rate of cooling and an equation
for the rate for the bar with the constant cross-section area, we may compare them
directly. We prove below that the optimal rate is greater than the rate for the bar
of the same mass but with the constant cross-section area. This inequality clearly is
demonstrated in our numerical results above, but is proven here for completeness.

Lemma 7.1. The inequality
zopt > z (7.1)

where
zopt = ln

(
µ +

√
µ2 + 1

)
(7.2)

and z is the minimal positive root of the equation

z tan z = µ2 (7.3)

holds for any positive quantity

µ ≡
√

M

M0
. (7.4)
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Proof. We consider both zopt and z as functions of µ > 0. Note first that zopt(µ) �
µ, z(µ) � µ, and hence

lim
µ→0

zopt(µ) = lim
µ→0

z(µ) = 0. (7.5)

Hence the inequality (7.1) holds if the derivative of zopt(µ) is greater or equal to
the derivative of z(µ). It is easy to prove that the first positive solution of (7.3) is
a uniquely defined function on z ∈ (0, π/2) with the derivative

z′(µ) =
2µ

tan z + z
cos2 z

=
2µ

µ2

z + z + µ4

z

(7.6)

where we used (7.3) to get the final form. The derivative of zopt can be easily found
from (7.2). We finally come up with the necessity to prove the following inequality

F (µ) ≡ 1√
1 + µ2

− 2µz

µ2 + µ4 + z2
≥ 0. (7.7)

We find first
µ2 + µ4 + z2 ≥ 2

√
µ2 + µ4z = 2µ

√
1 + µ2z. (7.8)

Hence

F (µ) ≥ 1√
1 + µ2

− 2µz

2µ
√

1 + µ2z
= 0 (7.9)

which proves (7.7) and, along with (7.5), proves (7.1). �
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