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EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR
FRACTIONAL DIFFERENTIAL INCLUSIONS WITH M-POINT
BOUNDARY CONDITIONS AND TWO FRACTIONAL ORDERS

NEMAT NYAMORADI, MOHAMAD JAVIDI

Abstract. We study boundary-value problems of nonlinear fractional differ-
ential equations and inclusions with m-point boundary conditions. Several
results are obtained by using suitable fixed point theorems when the right
hand side has convex or non convex values.

1. Introduction

Fractional calculus is the field of mathematical analysis which deals with the
investigation and applications of integrals and derivatives of arbitrary order, the
fractional calculus may be considered an old and yet novel topic.

Recently, fractional differential equations have been of great interest. This is
because of both the intensive development of the theory of fractional calculus it-
self and its applications in various sciences, such as physics, mechanics, chemistry,
engineering, etc. For example, for fractional initial value problems, the existence
and multiplicity of solutions were discussed in [3, 13, 43, 44], moreover, fractional
derivative arises from many physical processes,such as a charge transport in amor-
phous semiconductors [42], electrochemistry and material science are also described
by differential equations of fractional order [14, 17, 18, 30, 31].

The existence of solutions of initial value problems for fractional order differential
equations have been studied in the literature [1, 26, 34, 35, 36, 37, 38, 40, 41] and the
references therein. The study of fractional differential inclusions was initiated by
El-Sayed and Ibrahim [21]. Also, recently several qualitative results for fractional
differential inclusions were obtained in [5, 9, 33, 39] and the references therein.

Bai and Lü [4] considered the boundary-value problem of fractional-order differ-
ential equation

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative of order 1 < α ≤

2 and f : [0, 1]× [0,∞) → [0,∞) is continuous.
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Hussein [20] considered the nonlinear m-point boundary-value problem of frac-
tional type

Dα
0+x(t) + q(t)f(t, x(t)) = 0, a.e. on [0, 1], α ∈ (n− 1, n], n ≥ 2

x(0) = x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, x(1) =
m−2∑
i=1

ξix(ηi)

where 0 < η1 < · · · < ηm−2 < 1, ξi > 0 with
∑m−2

i=1 ξiη
α−1
i < 1, q is a real-valued

continuous function and f is a nonlinear Pettis integrable function.
In the past few decades, many important results relative to equation (1.1) with

certain boundary value conditions have been obtained. we refer the reader to
[10, 22, 28, 29, 45] and the references therein.

Motivated by the mentioned works, our purpose in the first part of this paper is
to show the existence and multiplicity of positive solutions for the boundary-value
problem of the fractional differential equation

Dβ
0+(Dα

0+u)(t) = f(t, u(t)), t ∈ (0, 1),

Dα
0+u(0) = Dα

0+u(1) = 0, u(0) = 0, u(1)−
m−2∑
i=1

ai u(ξi) = λ,
(1.1)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α, m > 2, 1 <

α, β ≤ 2, 2 < α + β ≤ 4, 0 < ξj1 < ξj2 < · · · < ξjm−2 < 1, ai > 0 for i =
1, 2, . . . ,m− 2 and

∑m−2
i=1 aiξ

α−1
i < 1, λ > 0 is a parameter and f : [0, 1]× R → R

is a given continuous function.
In the second part of this paper, we consider a nonlinear fractional differential

inclusion of an arbitrary order with multi-strip boundary conditions

Dβ
0+(Dα

0+u)(t) ∈ F (t, u(t)), t ∈ (0, 1),

Dα
0+u(0) = Dα

0+u(1) = 0, u(0) = 0, u(1)−
m−2∑
i=1

ai u(ξi) = λ,
(1.2)

whereDα
0+ is the standard Riemann-Liouville fractional derivative and F : [0,+∞)×

R× R → P(R) is a set-valued map.
The aim here is to establish existence results for the problem (1.1), when the

right-hand side is convex as well as nonconvex valued. In the first result (Theorem
4.11) we consider the case when the right hand side has convex values, and prove an
existence result via Nonlinear alternative for Kakutani maps. In the second result
(Theorem 4.16), we shall combine the nonlinear alternative of Leray-Schauder type
for single-valued maps with a selection theorem due to Bressan and Colombo for
lower semicontinuous multivalued maps with nonempty closed and decomposable
values, while in the third result (Theorem 4.20), we shall use the fixed point theorem
for contraction multivalued maps due to Covitz and Nadler.

The rest of the article is organized as follows: in Section 2, we present some
preliminaries that will be used in Sections 3 and 4. In Section 3, we give the
existence of one and three positive solutions for the problem (1.1) by using the
Leray-Schauder Alternative, Leggett-Williams fixed point theorem and nonlinear
contractions. The main result and proof for the problem (1.2) will be given in
Section 4. Finally, in Section 4, an example is given to demonstrate the application
of one our main result.
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2. Preliminaries

In this section, we present some notation and preliminary lemmas that will be
used in the Sections 3 and 4.

Definition 2.1 ([40]). The Riemann-Liouville fractional integral operator of order
α > 0, of function f ∈ L1(R+) is defined as

Iα
0+f(t) =

1
Γ(α)

∫ t

0

(t− s)α−1f(s) ds,

where Γ(·) is the Euler gamma function.

Definition 2.2 ([25]). The Riemann-Liouville fractional derivative of order α > 0,
n− 1 < α < n, n ∈ N is defined as

Dα
0+f(t) =

1
Γ(n− α)

( d

dt

)n
∫ t

0

(t− s)n−α−1f(s)ds,

where the function f(t) has absolutely continuous derivatives up to order (n− 1).

Lemma 2.3 ([25]). The equality Dγ
0+I

γ
0+f(t) = f(t), γ > 0 holds for f ∈ L1(0, 1).

Lemma 2.4 ([15, 25]). Let α > 0 and u ∈ C(0, 1)∩L1(0, 1). Then the differential
equation

Dα
0+u(t) = 0

has a unique solution u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, ci ∈ R, i = 1, . . . , n,

where n− 1 < α < n.

Lemma 2.5 (([25]). Let α > 0. Then the following equality holds for u ∈ L1(0, 1),
Dα

0+u ∈ L1(0, 1);

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

ci ∈ R, i = 1, . . . , n, where n− 1 < α ≤ n.

In the following, we present the Green function of fractional differential equation
boundary value problem. Let

y(t) = −(Dα
0+u)(t), (2.1)

then, the problem

Dβ
0+(Dα

0+u)(t) = h(t), 1 < β ≤ 2, t ∈ (0, 1),

Dα
0+u(0) = Dα

0+u(1) = 0,

where f ∈ C[0, 1], is transformed into the problem

Dβ
0+y(t) + h(t) = 0, 1 < β ≤ 2, t ∈ (0, 1),

y(0) = y(1) = 0,
(2.2)

Lemma 2.6. Suppose that h ∈ C[0, 1], then the boundary-value problem (2.2) has
a unique solution

y(t) =
∫ 1

0

H(t, s)h(s)ds, (2.3)

where

H(t, s) =

{
tβ−1(1−s)β−1−(t−s)β−1

Γ(β) , 0 ≤ s ≤ t ≤ 1,
tβ−1(1−s)β−1

Γ(β) , 0 ≤ t ≤ s ≤ 1.
(2.4)
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The proof of the above lemma is similar to that of [4, Lemma 2.3], so we omit it
here.

Lemma 2.7. Let ∆ =
∑m−2

i=1 aiξ
α−1
i 6= 1. Then, for y ∈ C[0, 1], the boundary-

value problem
Dα

0+u(t) + y(t) = 0, t ∈ (0, 1), 1 < α ≤ 2,

u(0) = 0, u(1)−
m−2∑
i=1

aiu(ξi) = λ,
(2.5)

has a unique solution

u(t) =
∫ 1

0

G(t, s)y(s) ds+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)y(s) ds+
λtα−1

(1−∆)
, (2.6)

where

G(t, s) =

{
tα−1(1−s)α−1−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,
tα−1(1−s)α−1

Γ(α) , 0 ≤ t ≤ s ≤ 1,
(2.7)

Proof. By applying lemma (2.4), equation (2.5) is equivalent to the integral equa-
tion

u(t) = − 1
Γ(α)

∫ t

0

(t− s)α−1y(s)ds− c1t
α−1 − c2t

α−2,

for some arbitrary constants c1, c2 ∈ R. By the boundary condition (2.5), one can
get c2 = 0 and

c1 = − 1
Γ(α)(1−∆j)

∫ 1

0

(1− s)α−1y(s))ds

+
1

Γ(α)(1−∆)

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)α−1
y(s)ds − λj

1−∆
.

Then, the unique solution of (2.5) is given by the formula

u(t)

= − 1
Γ(α)

∫ t

0

(t− s)α−1
y(s) ds+

1
Γ(α)(1−∆)

∫ 1

0

tα−1(1− s)α−1
y(s) ds

− tα−1

Γ(α)(1−∆)

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)α−1
y(s) ds+

λtα−1

(1−∆)

= − 1
Γ(α)

∫ t

0

(t− s)α−1
y(s) ds

+
1

Γ(α)

∫ 1

0

tα−1(1− s)α−1
y(s) ds+

∆
Γ(α)(1−∆)

∫ 1

0

tα−1(1− s)α−1
y(s) ds

− tα−1

Γ(α)(1−∆)

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)α−1
y(s) ds+

λtα−1

(1−∆)

=
1

Γ(α)

[ ∫ t

0

(
tα−1(1− s)α−1 − (t− s)α−1

)
y(s) ds +

∫ 1

t

tα−1(1− s)α−1
y(s) ds

]
+

tα−1

Γ(α)(1−∆)

m−2∑
i=1

ai

∫ 1

0

ξα−1
i (1− s)α−1

y(s) ds
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− tα−1

Γ(α)(1−∆)

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)α−1
y(s) ds+

λtα−1

(1−∆j)

=
1

Γ(α)

[ ∫ t

0

(
tα−1(1− s)α−1 − (t− s)α−1

)
y(s) ds +

∫ 1

t

tα−1(1− s)α−1
y(s) ds

]
+

tα−1

Γ(α)(1−∆)

m−2∑
i=1

aji

[ ∫ ξi

0

(
ξi

α−1(1− s)α−1 − (ξi − s)α−1
)
y(s)ds

+
∫ 1

ξi

ξi
α−1(1− s)α−1y(s)ds

]
+

λtα−1

(1−∆)

=
∫ 1

0

G(t, s)y(s)ds+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)v(s)ds+
λtα−1

(1−∆)
.

Thus, the proof is complete. �

Lemma 2.8. The functions H(t, s) and G(t, s) defined by (2.4) and (2.7), respec-
tively satisfies the following conditions:

(i) G(t, s) ≥ 0, G(t, s) ≤ G(s, s) ≤ 1
Γ(α) for any t, s ∈ [0, 1];

(ii) H(t, s) ≥ 0, H(t, s) ≤ H(s, s) ≤ 1
Γ(α) for any t, s ∈ [0, 1];

(iii) there exists a positive function g ∈ C(0, 1) such that minγ≤t≤δ G(t, s) ≥
g(s)G(s, s), s ∈ (0, 1), where 0 < γ < δ < 1 and

g(s) =

{
δα−1(1−s)α−1−(δ−s)α−1

sα−1(1−s)α−1 s ∈ (0,m1]

(γ
s )α−1 s ∈ [m1, 1)

(2.8)

with γ < m1 < δ.

Proof. First, we define

g1(t, s) =
tα−1(1− s)α−1 − (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

g2(t, s) =
tα−1(1− s)α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

One can obtain

g1(t, s) ≥
1

Γ(α)

[
tα−1(1− s)α−1 − (t− ts)α−1

]
=

1
Γ(α)

[
tα−1

(
(1− s)α−1 − (1− s)α−1

)]
= 0,

On the other hand, it is obvious that g2(t, s) ≥ 0, 0 ≤ t ≤ s ≤ 1. Thus, G(t, s) ≥ 0
for any t, s ∈ [0, 1].

Now, we show that G(t, s) ≤ G(s, s) for any t, s ∈ [0, 1]. Also, we have

∂g1(t, s)
∂t

=
1

Γ(α)

[
(α− 1)tα−2(1− s)α−1 − (α− 1)(t− s)α−2

]
=

1
Γ(α)

(α− 1)tα−2
[
(1− s)α−1 − (1− s

t
)α−2

]
≤ 1

Γ(α)
(α− 1)tα−2

[
(1− s)α−1 − (1− s)α−2

]
≤ 0,
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then, g1(t, s) is non-increasing with respect to t on [s, 1], hence, we obtain

g1(t, s) ≤ g1(s, s) ∀0 ≤ s ≤ t ≤ 1.

On the other hand, we obtain
∂g2(t, s)

∂t
=

1
Γ(α)

[
(α− 1)tα−2(1− s)α−1

]
≥ 0,

then g2(t, s) is increasing with respect to t on [0, s], therefore,

g2(t, s) ≤ g2(s, s) ∀0 ≤ t ≤ s ≤ 1.

Then, we have
G(t, s) ≤ G(s, s) ∀t, s ∈ [0, 1]. (2.9)

(ii) Since g1(., s) is non-increasing and g2(., s) is non-decreasing, for all s, t ∈
[0, 1], we have

min
γ≤t≤δ

G(t, s) =


minγ≤t≤δ g1(t, s) s ∈ [0, γ]
minγ≤t≤δ{g1(t, s), g2(t, s)} s ∈ [γ, δ]
minγ≤t≤δ g2(t, s) s ∈ [δ, 1]

=

{
minγ≤t≤δ g1(t, s) s ∈ [0,m1]
minγ≤t≤δ g2(t, s) s ∈ [m1, 1]

≥

{
g1(δ, s) s ∈ [0,m1]
g2(γ, s) s ∈ [m1, 1]

=

{
δα−1(1− s)α−1 − (δ − s)α−1 s ∈ [0,m1]
γα−1(1− s)α−1 s ∈ [m1, 1]

where γ < m1 < δ is the solution of

δα−1(1−m1)α−1 − (δ −m1)α−1 = γα−1(1−m1)α−1.

It follows from the monotonicity of g1 and g2 that

max
0≤t≤1

G(t, s) = G(s, s) =
(s(1− s))α−1

Γ(α)
s ∈ (0, 1),

The proof is complete. �

Remark 2.9. If γ ∈ (0, 1/4) and δ = 1− γ, then Lemma 2.8 holds.

In this article, we assume that γ ∈ (0, 1/4) and δ = 1− γ. Now, we consider the
system (1.1). By applying lemmas 2.6 and 2.7, u ∈ C(0, 1) is a solution of (1.1) if
and only if u ∈ C[0, 1] is a solution of the nonlinear integral equation

u(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds,

(2.10)

where λtα−1/(1−∆). Let z(t) = λtα−1

1−∆ and C := supt∈I |z(t)| = ‖z‖.

3. Main result for the single-valued case

Now we are able to present the existence results for problem (1.1).
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3.1. Existence result via Leray-Schauder alternative.

Theorem 3.1 (Nonlinear alternative for single valued maps [19]). Let X be a
Banach space, C a closed convex subset of X, U an open subset of D and 0 ∈ U .
Suppose that T : U → D is a continuous, compact (that is, F (U) is a relatively
compact subsets of D) map. Then either

(i) T has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λT (u).

Theorem 3.2. If the continuous function f : I × R → R satisfies:
(B1) There exist a function ϕ ∈ L1(I,R+) and a continuous nondecreasing func-

tion ψ : [0,+∞) → (0,+∞) such that

|f(t, x)| ≤ ϕ(t)ψ(‖x‖), for all (t, x) ∈ I × R.

(B2) There exists a constant M > 0 such that

M
[
C + ψ(M)

[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]]−1

> 1.

(3.1)

Then (1.1) has at least one solution on I.

Proof. Consider F : E → E with u = F (u), where

(Tu)(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds,

for all t ∈ I. We show that T maps bounded sets into bounded sets in C([0, 1],R).
For a positive number r, let Br = {u ∈ C([0, 1],R) : ‖u‖ ≤ r} be a bounded set in
C([0, 1],R). Then

|(Tu)(t)| ≤ |z(t)|+ ψ(‖u‖)
[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]
.

Consequently,

‖Tu‖ ≤ C + ψ(r)
[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]
.

Next we show that T maps bounded sets into equi-continuous sets of C([0, 1],R).
Let t1, t2 ∈ [0, 1] with t1 < t2 and x ∈ Br, where Br is a bounded set of C([0, 1],R).
Then we obtain

|(Tu)(t1)− (Tu)(t2)|

≤
∫ 1

0

|G(t1, s)−G(t2, s)|
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds
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+
∑m−2

i=1 ai

1−∆
|tα−1

1 − tα−1
2 |

∫ 1

0

G1(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

≤
∫ 1

0

|G(t1, s)−G(t2, s)|
( ∫ 1

0

H(s, r)ψ(r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

1−∆
|tα−1

1 − tα−1
2 |

∫ 1

0

G1(ξi, s)
( ∫ 1

0

H(s, r)ψ(r)ϕ(r)dr
)
ds

On the other hand,∫ 1

0

|G(t1, s)−G(t2, s)|
( ∫ 1

0

H(s, r)ψ(r)ϕ(r)dr
)
ds

≤
( ∫ t1

0

+
∫ t2

t1

+
∫ 1

t2

)
|G(t1, s)−G(t2, s)|

( ∫ 1

0

H(s, r)ψ(r)ϕ(r)dr
)
ds

≤ ψ(r)
∫ t1

0

[(tα−1
2 − tα−1

1 )(1− s)α−1 + ((t2 − s)α−1 − (t1 − s)α−1)]

×
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+ ψ(r)
∫ t2

t1

[(tα−1
2 − tα−1

1 )(1− s)α−1 + (t2 − s)α−1]
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+ ψ(m)
∫ 1

t2

[(tα−1
2 − tα−1

1 )(1− s)α−1]
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

→ 0 uniformly as t1 → t2.

Therefore,

|(Tu)(t1)− (Tu)(t2)| → 0 uniformly as t1 → t2, for u ∈ Br.

As F satisfies the above assumptions, it follows by the Arzelá-Ascoli theorem that
T : C([0, 1],R) → C([0, 1],R) is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Theorem
3.1) once we have proved the boundendness of the set of all solutions to equations
u = λFu for λ ∈ [0, 1].

Let u be a solution. Then, for t ∈ [0, 1], and using the computations in proving
that T is bounded, we have

|u(t)| = |λ(Tu)(t)| ≤ |z(t)|+ ψ(‖u‖)
[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]
.

Consequently,

‖u‖
[
C + ψ(‖u‖)

[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]]−1

≤ 1.

In view of (B2), there exists M such that ‖u‖ 6= M . Let us set

U := {u ∈ C(I,R) : ‖u‖ < M}.
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Note that the operator T : U → C([0, 1],R is continuous and completely continuous.
From the choice of U , there is no u ∈ ∂U such that u = λT (u) for some λ ∈ (0, 1).
Consequently, by the nonlinear alternative of Leray-Schauder type (Theorem 3.1),
we deduce that has a fixed point u ∈ U which is a solution of the problem (1.1).
This completes the proof. �

3.2. Existence result via Leggett-Williams fixed point theorem. In this
section, we assume that γ ∈ (0, 1/4) and δ = 1 − γ. To establish the existence
of three positive solutions to system (1.1), we use the following Leggett-Williams
fixed point theorem. For the convenience of the reader, we present here the Leggett-
Williams fixed point theorem [27].

Given a cone K in a real Banach space E, a map α is said to be a nonnegative
continuous concave (resp. convex) functional on K provided that α : K → [0.+∞)
is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y),

(resp. α(tx+ (1− t)y) ≤ tα(x) + (1− t)α(y)),

for all x, y ∈ K and t ∈ [0, 1]. Let 0 < a < b be given and let α be a nonnegative
continuous concave functional on K. Define the convex sets Pr and P (α, a, b) by

Pr = {x ∈ K|‖x‖ < r},
P (α, a, b) = {x ∈ K|a ≤ α(x), ‖x‖ ≤ b}.

Theorem 3.3 (Leggett-Williams fixed point theorem). Let A : Pc → Pc be a com-
pletely continuous operator and let α be a nonnegative continuous concave functional
on K such that α(x) ≤ ‖x‖ for all x ∈ Pc. Suppose there exist 0 < a < b < d ≤ c
such that

(A1) {x ∈ P (α, b, d)|α(x) > b} 6= ∅, and α(Ax) > b for x ∈ P (α, b, d),
(A2) ‖Ax‖ < a for ‖x‖ ≤ a, and
(A3) α(Ax) > b for x ∈ P (α, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, and x3 and such that ‖x1‖ < a,
b < α(x2) and ‖x3‖ > a, with α(x3) < b.

Also, we introduce the following notation. Define

η = min
γ≤t≤δ

{g(t)}, σ = min{η, γα−1},

and

M =
∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)dr
)
ds

+
1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)dr
)
ds,

m = min
γ≤t≤δ

{∫ δ

γ

G(t, s)
( ∫ δ

γ

H(s, r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ δ

γ

G(ξi, s)
( ∫ δ

γ

H(s, r)dr
)
ds

}
.
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Note that 0 < m < M . The basic space used in this paper is a real Banach space
E = C([0, 1],R) with the norm ‖u‖ := maxt∈[0,1] |u(t)|. Then, we define a cone
K ⊂ E, by

K = {u ∈ E : u(t) ≥ 0 min
γ≤t≤δ

(u(t)) ≥ σ

3
‖u‖},

and an operator T : E → E by

T (u)(t) =
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λtα−1

1−∆
.

(3.2)

Lemma 3.4. The operator T is defined from K to K; i.e., T (K) ⊆ K.

Proof. For any u ∈ K, by Lemma 2.8, T (u)(t) ≥ 0, t ∈ [0, 1], and it follows from
(3.2) that

‖T (u)‖

≤
∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λ

(1−∆)

=
( ∫ γ

0

+
∫ δ

γ

+
∫ 1

δ

)(
G(s, s)

( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

)
+

1
(1−∆)

m−2∑
i=1

ai

( ∫ γ

0

+
∫ δ

γ

+
∫ 1

δ

)(
G(ξi, s)

( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

)
+

λ

(1−∆)

≤ 3
[ ∫ δ

γ

G(s, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
1

(1−∆)

m−2∑
i=1

ai

∫ δ

γ

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λ

3(1−∆)

]
.

(3.3)

Thus, for any u ∈ K, it follows from Lemma 2.8 and (3.2) that

min
γ≤t≤δ

T (u)(t)

= min
γ≤t≤δ

{∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
tα−1

(1−∆1)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λtα−1

(1−∆)

}
≥

∫ 1

0

g(s)G(s, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds
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+
γα−1

(1−∆1)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λγα−1

3(1−∆)

≥ η

∫ δ

γ

G(s, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
γα−1

(1−∆1)

m−2∑
i=1

ai

∫ δ

γ

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λγα−1

3(1−∆)

≥ σ
[ ∫ δ

γ

G(s, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
1

(1−∆)

m−2∑
i=1

ai

∫ δ

γ

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λ

3(1−∆)

]

≥ σ

3
‖T (u)‖.

Therefore, from the above, we conclude that T (u)(t) ∈ K; that is, T (K) ⊂ K. This
completes the proof. �

It is clear that the existence of a positive solution for (1.1) is equivalent to the
existence of a nontrivial fixed point of T in K.

Next, we define the nonnegative continuous concave functional on K by

α(u) = min
γ≤t≤δ

(u(t)).

It is obvious that, for each u ∈ K, α(u) ≤ ‖u‖.
Throughout this section, we assume that p, q, are two positive numbers satisfying

1
p + 1

q ≤ 1. Now, we can state our main result in this section.

Theorem 3.5. Assume that there exist nonnegative numbers a, b, c such that 0 <
a < b ≤ σ

3 c, and f(t, u), j = 1, 2, satisfy the following conditions:

(H1) f(t, u) ≤ 1
p ·

c
M , for all t ∈ [0, 1], u ∈ [0, c];

(H2) f(t, u) ≤ 1
p ·

a
M , for all t ∈ [0, 1], u ∈ [0, a];

(H3) (i) f(t, u) > b
m for all t ∈ [γ, δ], u ∈ [b, 3b

σ ].

Then, for

0 < λ <
c(1−∆)

q
, (3.4)

problem (1.1) has at least three positive solutions u1, u2, u3 such that ‖u1‖ < a,
b < minγ≤t≤δ(u2(t)), and ‖u3‖ > a, with minγ≤t≤δ(u3(t)) < b.

Proof. First, we show that T : Pc → Pc is a completely continuous operator. If
u ∈ Pc, then ‖u‖ ≤ c. Then, by applying condition (H1), we have

‖T (u)‖ = max
0≤t≤1

|T (u)(t)|

= max
0≤t≤1

{∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds
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+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λtα−1

(1−∆)

}
≤ 1
p
· c
M

{∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)dr
)
ds

+
1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)dr
)
ds

}
+

λ

(1−∆)

≤ 1
p
· c+

1
q
· c ≤ c.

Therefore, ‖T (u)‖ ≤ c, that is, T : Pc → Pc. The operator T is completely
continuous by an application of the Ascoli-Arzela theorem.

In the same way, condition (H2) implies that condition (A2) of Theorem 3.3 is
satisfied. We now show that condition (A1) of Theorem 3.3 is satisfied. Clearly
{u ∈ P (α, b, 3b

σ )|α(u) > b} 6= ∅. If u ∈ P (α, b, 3b
σ ), then b ≤ u(s) ≤ 3b

σ , s ∈ [γ, δ].
By condition (H3), we obtain

α(T (u)(t))

= min
γ≤t≤δ

(T (u)(t))

= min
γ≤t≤δ

{∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
tα−1

(1−∆1)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λtα−1

(1−∆)

}
=

b

m
m = b.

Therefore, condition (A1) of Theorem 3.3 is satisfied.
Finally, we show that the condition (A3) of Theorem 3.3 is also satisfied. If

u ∈ P (α, b, c), and ‖T (u)‖ > 3b/σ, then

α(T (u)(t)) = min
γ≤t≤δ

(T (u)(t)) ≥ σ

3
‖T (u)‖ > b.

Therefore, condition (A3) of Theorem 3.3 is also satisfied. By Theorem 3.3, there
exist three positive solutions u1, u2, u3 such that ‖u1‖ < a, b < minγ≤t≤δ(u2(t)),
and ‖u3‖ > a, with minγ≤t≤δ(u3(t)) < b. we have the conclusion. �

3.3. Existence result via nonlinear contractions. Now we present the exis-
tence results for problem (1.1).

Definition 3.6. Let X be a Banach space and let T : X → X be a mapping. T is
said to be a nonlinear contraction if there exists a continuous nondecrasing function
ψ : R+ → R+ such that ψ(0) = 0 and ψ(ξ) < ξ for all ξ > 0 with the property:

‖T (u)− T (v)‖ ≤ ψ(‖u− v‖), ∀u, v ∈ X.

Lemma 3.7 (Boyd and Wong [6]). Let X be a Banach space and let T : X → X
be a nonlinear contraction. Then T has a unique fixed point in X.

Theorem 3.8. Assume that f satisfy the following conditions:
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(H4) |f(t, u)− f(t, v)| ≤ h(t) |u−v|
θ+|u−v| for all t ∈ [0, 1], u, v ≥ 0, where h : [0, 1] →

R+ is continuous and

θ =
∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)h(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)h(r)dr
)
ds, t ∈ [0, 1].

(3.5)

AUTHORS: IT SEEMS THAT PART OF THE THEOREM IS MISSING ???

Proof. We define the operator T : (E = C([0, 1],R)) → E by

T (u)(t) =
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r, u(r))dr
)
ds+

λtα−1

1−∆
,

for t ∈ [0, 1]. Let ψ : R+ → R+ a continuous nondecreasing function such that
ψ(0) = 0 and ψ(ξ) < ξ for all ξ > 0 be defined by

ψ(ξ) =
θξ

θ + ξ
, ∀ξ ≥ 0.

Let u, v ∈ E. Then

|f(s, u(s))− f(s, v(s))| ≤ h(s)
θ
ψ(‖u− v‖).

Thus

|T (u)(t)− T (v)(t)| ≤
∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)h(r)
|u(r)− v(r)|

θ + |u(r)− v(r)|
dr

)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)
|u(r)− v(r)|

θ + |u(r)− v(r)|
dr

)
ds,

for all t ∈ [0, 1]. In view of (3.5), it follows that ‖T (u) − T (v)‖ ≤ ψ(‖u − v‖) and
hence T is a nonlinear contraction. Thus, by Lemma 3.7, the operator T has a
unique fixed point in E, which in turn is a unique solution of problem (1.1). �

4. Existence results of the multi-valued case

4.1. The upper semi-continuous case. To obtain the complete continuity of
existence solutions operator, the following lemmas and definitions are needed.

Let (X, d) be a metric space with the corresponding norm ‖ · ‖ and let I = [0, 1].
Denoted by L(I) the σ-algebra of all Lebesgue measurable subsets of I, by B(X)
the family of all nonempty subsets of X and by P(X) the family of all Borel subsets
of X. If A ⊂ I then χA : I → {0, 1} denotes the characteristic function of A. For
any subset A ⊂ X we denote by A the closure of A.

Recall that the Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ X is
defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B), a ∈ A},
where d(x,B) = infy∈B d(x, y). Define

P(X) = {Y ⊂ X : Y 6= ∅},
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Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcl(X) = {Y ∈ P(X) : Y is closed},
Pcp(X) = {Y ∈ P(X) : Y is compact},
Pcv(X) = {Y ∈ P(X) : Y is convex}.

Also, we denote C(I,X) the Banach space of all continuous functions x : I → X
endowed with the norm |x|c = supt∈I |x(t)| and by L1(I,X) the Banach space of
all (Bochner) integrable functions x : [0, 1] → X endowed with the norm |x|1 =∫

I
|x(t)|dt.
A subset D ⊂ L1(I,X) is said to be decomposable if for any x, y ∈ D and any

subset A ∈ L(I) one has xχA + yχB ∈ D, where B = I \A.
Let (X, d1) and (Y, d2) be two metric spaces. If T : X → P(X) a set-valued

map, then a point x ∈ X is called a fixed point for T if x ∈ T (x). T is said to be
bounded on bounded sets if T (B) := ∪x∈BT (x) is a bounded subset of X for all
bounded sets B in X. T is said to be compact if T (B) is relatively compact for
any bounded sets B in X. T is said to be totally compact if T (X) is a compact
subset of X. T is said to be upper semi-continuous if for any open set D ⊂ X,
the set {x ∈ X : T (x) ⊂ D} is open in X. T is called completely continuous
if it is upper semi-continuous and and, for every bounded subset A ⊂ X, T (A)
is relatively compact. It is well known that a compact set-valued map T with
nonempty compact values is upper semi-continuous if and only if T has a closed
graph.

We define the graph of T to be the set Gr(T ) = {(x, y) ∈ X × Y, y = T (x)}
and recall a useful result regarding connection between closed graphs and upper
semi-continuity.

Lemma 4.1 ([12, Proposition 1.2]). If T : X → Pcl(Y ) is upper semi-continuous,
then Gr(T ) is a closed subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X
and {yn}n∈N ⊂ Y , if when n → ∞, xn → x∗, yn → y∗ and yn ∈ T (xn), then
y∗ ∈ T (x∗). Conversely, if T is completely continuous and has a closed graph, then
it is upper semi-continuous.

For convenience of the reader, we present here the following nonlinear alternative
of Leray-Schauder type and its consequences.

Theorem 4.2 (Nonlinear alternative for Kakutani maps [19]). Let X be a Banach
space, C a closed convex subset of X, U an open subset of C and 0 ∈ U . Suppose
that T : U → Pcl,cv(C) is a upper semi-continuous compact map; here Pcl,cv(C)
denotes the family of nonempty, compact convex subsets of C. Then either

(i) T has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λT (u).

Definition 4.3. The multifunction T : X → P(X) is said to be lower semi-
continuous if for any closed subset C ⊂ X, the subset {s ∈ X : T (s) ⊂ C} is
closed.

If F : I×R×R → P(R) is a set-valued map with compact values and x ∈ C(I,R)
we define

SF (x) := {f ∈ L1(I,R) : f(t) ∈ F (t, x(t)) a.e. I}.
Then F is of lower semi-continuous type if SF (·) is lower semi-continuous with
closed and decomposable values.
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Theorem 4.4 ([7]). Let S be a separable metric space and G : S → P(L1(I,R)) be
a lower semi-continuous set-valued map with closed decomposable values. Then G
has a continuous selection (i.e., there exists a continuous mapping g : S → L1(I,R)
such that g(s) ∈ G(s) for all s ∈ S).

Definition 4.5. (i) A set-valued map G : I → P(R) with nonempty compact
convex values is said to be measurable if for any x ∈ R the function t→ d(x,G(t))
is measurable.

(ii) A set-valued map F : I×R → P(R) is said to be Carathéodory if t→ F (t, x)
is measurable for all x ∈ R and x→ F (t, x) is upper semi-continuous for almost all
t ∈ I.

(iii) F is said to be L1-Carathéodory if for any l > 0 there exists hl ∈ L1(I,R)
such that sup{|v| : v ∈ F (t, x)} ≤ hl(t) a.e. I for all x ∈ R.

The following results are easily deduced from the theoretical limit set properties.

Lemma 4.6 ([2, Lemma 1.1.9]). Let {Kn}n∈N ⊂ K ⊂ X be a sequence of subsets
where K is a compact subset of a separable Banach space X. Then

co(lim sup
n→∞

Kn) = ∩N>0co
(
∪n≥N Kn

)
,

where co(A) refers to the closure of the convex hull of A.

Lemma 4.7 ([2, Lemma 1.4.13]). Let X and Y be two metric spaces. If G : X →
Pcp(Y ) is upper semi-continuous, then for each x0 ∈ X,

lim sup
x→x0

G(x) = G(x0).

Definition 4.8. Let X be a Banach space. A sequence {xn}n∈N ⊂ L1([a, b], X) is
said to be semi-compact if

(a) it is integrably bounded; i.e., there exists q ∈ L1([a, b],R+) such that

|xn(t)|E ≤ q(t), for a.e. t ∈ [a, b] and every n ∈ N,
(b) the image sequence {xn(t)}n∈N is relatively compact in E for a.e. t ∈ [a, b].

The following important result follows from the Dunford-Pettis theorem (see [23,
Proposition 4.2.1]).

Lemma 4.9. Every semi-compact sequence L1([a, b], X) is weakly compact in the
space L1([a, b], X).

When the nonlinearity takes convex values, Mazur’s Lemma may be useful:

Lemma 4.10 ([32, Theorem 21.4]). Let E be a normed space and {xk}k∈N ⊂ E
a sequence weakly converging to a limit x ∈ E. Then there exists a sequence of
convex combinations ym =

∑m
k=1 αmkxk with αmk > 0 for k = 1, 2, . . . ,m and∑m

k=1 αmk = 1 which converges strongly to x.

Theorem 4.11. The Carathéodory multivalued map F : I × R → P(R) has non-
empty, compact, convex values and satisfies:

(H5) There exist a continuous nondecreasing function ψ : [0,+∞) → (0,+∞)
and ϕ ∈ L1(I,R+) such that

‖F (t, x)‖P := sup
{
|v(t)| : v ∈ F (t, x)

}
≤ ϕ(t)ψ(‖x‖),

for a.e. t ∈ I and each x ∈ R.
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(H6) There exists a constant M > 0 such that

M
[
C + ψ(M)

[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]]−1

> 1.

(4.1)

Then problem (1.2) has at least one solution.

Proof. Let X = E and consider M > 0 as in (3.1). It is obvious that the existence
of solutions to problem (1.2) reduces to the existence of the solutions of the integral
inclusion

u(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)F (r, u(r))dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)F (r, u(r))dr
)
ds.

u(t) ∈ z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)F (r, u(r))dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)F (r, u(r))dr
)
ds, t ∈ I,

(4.2)

where G(t, s) and H(t, s) defined by (2.4) and (2.7), respectively. Consider the
set-valued map T : E → P(X) defined by

T (u) :=
{
v ∈ X; v(t) = z(t) +

∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds, f ∈ SF (u)

}
.

(4.3)

We show that T satisfies the hypotheses of the Theorem 4.2.
Claim 1. We show that T (u) ⊂ X is convex for any u ∈ X. If v1, v2 ∈ T (u)

then there exist f1, f2 ∈ SF (u) such that for any t ∈ I one has

vi(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)fi(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)fi(r)dr
)
ds, i = 1, 2.

(4.4)

Let 0 ≤ λ ≤ 1. Then for any t ∈ I we have

(λv1 + (1− λ)v2)(t)

= z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)[λf1(r) + (1− λ)f2(r)]dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)[λf1(r) + (1− λ)f2(r)]dr
)
ds.

The values of F are convex, thus SF (u) is a convex set and hence λv1 +(1−λ)v2 ∈
T (u).
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Claim 2. we show that T is bounded on bounded sets of X. Let B be any
bounded subset of X. Then there exist m > 0 such that ‖u‖ ≤ m for all u ∈ B. If
v ∈ T (u) there exists f ∈ SF (u) such that

v(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds.

(4.5)

One may write for any t ∈ I,

|v(t)| ≤ |z(t)|+
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)|f(r)|dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)|f(r)|dr
)
ds

≤ |z(t)|+
∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)ψ(‖u‖)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)ψ(‖u‖)dr
)
ds

≤ |z(t)|+ ψ(‖u‖)
[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]
.

Therefore,

‖v‖ = max
t∈I

|v(t)|

≤ C + ψ(m)
[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]
,

for all v ∈ T (u); i.e., T (B) is bounded.
Claim 3. We show that T maps bounded sets into equi-continuous sets. Let

B be any bounded subset of X as before and v ∈ T (u) for some u ∈ B. Then,
there exists f ∈ SF (u) such that v(t) is defined as (4.5). So, for any t1, t2 ∈ [0, 1],
without loss of generality we may assume that t2 > t1 and one can get

|v(t1)− v(t2)| ≤
∫ 1

0

|G(t1, s)−G(t2, s)|
( ∫ 1

0

H(s, r)f(r)dr
)
ds

+
∑m−2

i=1 ai

1−∆
|tα−1

1 − tα−1
2 |

∫ 1

0

G1(ξi, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds

≤
∫ 1

0

|G(t1, s)−G(t2, s)|
( ∫ 1

0

H(s, r)ψ(m)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

1−∆
|tα−1

1 − tα−1
2 |

∫ 1

0

G1(ξi, s)
( ∫ 1

0

H(s, r)ψ(m)ϕ(r)dr
)
ds
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On the other hand,∫ 1

0

|G(t1, s)−G(t2, s)|
( ∫ 1

0

H(s, r)ψ(m)ϕ(r)dr
)
ds

≤
( ∫ t1

0

+
∫ t2

t1

+
∫ 1

t2

)
|G(t1, s)−G(t2, s)|

( ∫ 1

0

H(s, r)ψ(m)ϕ(r)dr
)
ds

≤ ψ(m)
∫ t1

0

[(tα−1
2 − tα−1

1 )(1− s)α−1 + ((t2 − s)α−1 − (t1 − s)α−1)]

×
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+ ψ(m)
∫ t2

t1

[(tα−1
2 − tα−1

1 )(1− s)α−1 + (t2 − s)α−1]
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+ ψ(m)
∫ 1

t2

[(tα−1
2 − tα−1

1 )(1− s)α−1]
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

→ 0 uniformly as t1 → t2.

(4.6)

Thus,

|v(t1)− v(t2)| → 0 uniformly as t1 → t2. (4.7)

Therefore, T (B) is an equi-continuous set in X. As satisfies the above Claims 2
and 3, therefore it follows by the Arzelá-Ascoli theorem that T : C([0, 1],R) →
P(C([0, 1],R)) is completely continuous.

Claim 5. T is upper semi-continuous. To this end, it is sufficient to show that T
has a closed graph. Let vn ∈ T (un) be such that vn → v and un → u, as n→ +∞.
Then there exists m > 0 such that ‖un‖ ≤ m. We shall prove that v ∈ T (u) means
that there exists fn ∈ SF (un) such that, for a.e. t ∈ I, we have

vn(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)fn(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)fn(r)dr
)
ds.

The condition (H5) implies that fn(t) ∈ ϕ(t)ψ(m)B1(0). Then {fn}n∈N is inte-
grable bounded in L1(I,R). Since F has compact values, we deduce that {fn}n is
semi-compact. By Lemma 4.9, there exists a subsequence, still denoted {fn}n∈N,
which converges weakly to some limit f ∈ L1(I,R). Moreover, the mapping
Γ : L1(I,R) → X = E defined by

Γ(g)(t) =
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)g(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)g(r)dr
)
ds

is a continuous linear operator. Then it remains continuous if these spaces are
endowed with their weak topologies [24, 32]. Moreover for a.e. t ∈ I, un(t) converges
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to u(t). Then we have

v(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds.

It remains to prove that f ∈ F (t, u(t)), a.e. t ∈ I. Mazur’s Lemma 4.10 yields the
existence of αn

i ≥ 0, i = n, . . . , k(n) such that
∑k(n)

i=1 αn
i = 1 and the sequence of

convex combinations gn(·) =
∑k(n)

i=1 αn
i fi(·) converges strongly to f in L1. Using

Lemma 4.6, we obtain that

v(t) ∈ ∩n≥1{gn(t)}, a.e. t ∈ I
⊂ ∩n≥1co{fk(t), k ≥ n}

⊂ ∩n≥1co
{
∪n≥1 F (t, uk(t))

}
= co

(
lim sup
k→+∞

F (t, uk(t))
)
.

(4.8)

The fact that the multivalued function x → F (., x) is upper semi-continuous and
has compact values, together with Lemma 4.7, implies that

lim sup
n→+∞

F (t, un(t)) = F (t, u(t)), a.e. t ∈ I.

This with (4.8) yields that f(t) ∈ coF (t, u(t)). Finally F (·, ·) has closed, convex
values; hence f(t) ∈ F (t, u(t)), a.e. t ∈ I. Thus v ∈ T (u), proving that T has a
closed graph. Finally, with Lemma 4.1 and the compactness of T , we conclude that
T is upper semi-continuous.

Claim 6. A priori bounds of solutions. Let u be a solution of (1.2). Then there
exists f ∈ L1(I,R) with f ∈ SF (u) such that

u(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds.

In view of (H5), and using the computations in the Clime 2 above, for each t ∈ I,
we obtain

|u(t)| ≤ |z(t)|+ ψ(‖u‖)
[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]
.

Consequently,

‖u‖
[
C + ψ(‖u‖)

[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)ϕ(r)dr
)
ds

]]−1

≤ 1.
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In view of (H6), there exists M such that ‖u‖ 6= M . Let us set

U := {u ∈ C(I,R) : ‖u‖ < M}.

Note that the operator T : U → P(C([0, 1],R) is upper semi-continuous and com-
pletely continuous. From the choice of U , there is no u ∈ ∂U such that u = λT (u)
for some λ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder
type (Theorem 4.2), we deduce that has a fixed point u ∈ U which is a solution of
the problem (1.2). This completes the proof. �

4.2. The lower semi-continuous case. Here, we study the case when T is not
necessarily convex valued. Our strategy to deal with this problems is based on the
nonlinear alternative of Leray-Schauder type together with the selection theorem
of Bressan and Colombo [7] for lower semi-continuous maps with decomposable
values. Consider a Banach space Y and I = [a, b] an interval of the real line.

Definition 4.12. A subset A ⊂ L1(I, Y ) is decomposable if for all u, v ∈ A and
for every Lebesgue measurable subset I ′ ⊂ I, we have uχI′ + vχI\I′ ∈ A, where χA

stands for the characteristic function of the set A.

Let F : I × R → P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0,+∞),R) → P(L1([0,+∞),R)) associated
with F as

F(u) :=
{
w ∈ L1(I,R)) : w(t) ∈ F (t, u(t)), a.e. t ∈ I

}
, (4.9)

which is called the Nemytskii operator associated with F .

Definition 4.13. Let F : I × Y → P(Y ) be a multivalued map with nonempty
compact values. We say that F is of lower semi-continuous type if its associated
Nemytskii operator F : C(I, Y ) → P(L1(I, Y )) defined by F(y) = SF (y) is lower
semi-continuous and has nonempty, closed, and decomposable values.

Definition 4.14. Let A be a subset of I ×R. A is L⊗B measurable if A belongs
to the σ-algebra generated by all sets of the form J × D, where J is Lebesgue
measurable in I and D is Borel measurable in R.

Next, we state the celebrated selection theorem of Bressan and Colombo [7].

Lemma 4.15. Let X be a separable metric space and let Y be a Banach space.
Then every lower semi-continuous multivalued operator T : X → Pcl(L1(I, Y ))
with nonempty closed decomposable values has a continuous selection; i.e., there
exists a continuous single-valued function f : X → L1(I, Y ) such that f(x) ∈ T (x)
for every x ∈ X.

Theorem 4.16. Assume that (H5) and the following condition holds:

(H7) F : I × R → P(R) is a nonempty compact-valued multivalued map such
that:
(a) (t, x) → F (t, x) is L ⊗ B measurable,
(b) x→ F (t, x) is lower semi-continuous for each t ∈ I.

Then boundary value problem (1.2) has at least one solution on I.
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Proof. We note first that if (H5) and (H7) are satisfied then F is of lower semi-
continuous type (e.g., [16]). Then, by Lemma 4.15, there exists a continuous func-
tion f : C(I,R) → L1(I,R) such that f(u) ∈ F(u) for all u ∈ C(I,R). Consider
the problem

Dα
0+u(t) = f(u(t)), 0 < t < +∞,

Dα
0+u(0) = Dα

0+u(1) = 0, u(0) = 0, u(1)−
m−2∑
i=1

ai u(ξi) = λ,
(4.10)

in the space C([0, 1),R). It is clear that if u is a solution of the problem (4.10),
then u is a solution to the problem (1.2). In order to transform the problem (4.10)
into a fixed point problem, we define the operator as

Θu(t) =
{
z(t) +

∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(u(r))dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(u(r))dr
)
ds, t ∈ I

}
.

It can easily be shown that is continuous and completely continuous. The remaining
part of the proof is similar to that of Theorem 4.11. So we omit it. This completes
the proof. �

4.3. The Lipschitz case. Now we prove the existence of solutions for the problem
(1.2) with a nonconvex valued right hand side by applying a fixed point theorem
for multivalued maps due to Covitz and Nadler [11].

Definition 4.17. A multivalued operator N : X → Pcl(X) is called:

(a) γ-Lipschitz if and only if there exists γ > 0 such that dH(N(x), N(y)) ≤
d(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 4.18 (Covitz-Nadler [11]). Let (X, d) be a complete metric space. If N :
X → Pcl(X) is a contraction, then FixN 6= ∅.

Definition 4.19. A measurable multi-valued function F : [0,+∞) → P(X) is said
to be integrably bounded if there exists a function f ∈ L1(I,X) such that for all
v ∈ F (t), ‖v‖ ≤ f(t) for a.e. t ∈ [0,+∞).

Theorem 4.20. Assume that the following conditions hold:

(H8) F : I × R → Pcp(R) is such that F (·, x) : I → Pcp(R) is measurable for
each x ∈ R;

(H9) There exists l : I → [0,+∞) are not identical zero on any closed subinterval
of I, and ∫ 1

0

H(r, r)l(r)dr < +∞, i = 1, 2,

such that for almost all t ∈ [0,+∞),

dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2|

for all x1, x2 ∈ R with d(0, F (t, 0, 0)) ≤ l(t) for almost all t ∈ I.
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Then boundary-value problem (1.2) has at least one solution on I = [0, 1] if∫ 1

0

G(s, s)
( ∫ 1

0

H(r, r)l(r)dr
)
ds+

∑m−2
i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(r, r)l(r)dr
)
ds < 1.

Proof. We transform problem (1.2) into a fixed point problem. Consider the set-
valued map T : C[0, 1] → P(C[0, 1],R)) defined at the beginning of the proof of
Theorem 4.11. It is clear that the fixed points of T are solutions of (1.2).

Note that since the set-valued map F (·, u(·)) is measurable with the measurable
selection theorem (e.g., [8, Theorem III.6]) it admits a measurable selection f :
I → R. Moreover, since F is integrably bounded, f ∈ L1([0, 1],R). Therefore,
SF (u) 6= ∅.

We shall prove that T fulfills the assumptions of Covitz-Nadler contraction prin-
ciple (Lemma 4.18).

First, we note that since SF (u) 6= ∅, T (u) 6= ∅ for any u ∈ C([0,+∞)). Second,
we prove that T (u) is closed for any u ∈ AC1([0,+∞),R). Let {un}n≥0 ∈ T (u)
such that un → u0 in AC1([0,+∞),R). Then u0 ∈ AC1([0,+∞),R) and there
exists fn ∈ SF (u) such that

un(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)fn(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)fn(r)dr
)
ds.

Since F has compact values, we may pass onto a subsequence (if necessary) to obtain
that fn converges to f ∈ L1(([0, 1],R)) in L1(([0, 1],R)). In particular, f ∈ SF (u)
and for any t ∈ [0, 1] we have

un(t) → u0(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f(r)dr
)
ds;

i.e., u0 ∈ T (u) and T (u) is closed.
Next we show that T is a contraction on C([0, 1],R). Let u1, u2 ∈ C([0, 1],R)

and v1 ∈ T (u1). Then there exist f1 ∈ SF (u1) such that

v1(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f1(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f1(r)dr
)
ds, t ∈ I.

Consider the set-valued map

H(t) := F (t, u2(t)) ∩ {u ∈ R : |f1(t)− u| ≤ l(t)|x1 − x2|}, t ∈ [0,+∞).

By (H5), we have
dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2|,

hence H has nonempty closed values. Moreover, since H is measurable (e.g., [8,
Proposition III.4]), there exists f2 a measurable selection of H. It follows that
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f2 ∈ SF (u2) and for any t ∈ [0, 1],

|f1(t)− f2(t)| ≤ l(t)|x1 − x2|.

Define

v2(t) = z(t) +
∫ 1

0

G(t, s)
( ∫ 1

0

H(s, r)f2(r)dr
)
ds

+
tα−1

(1−∆)

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(s, r)f2(r)dr
)
ds, t ∈ I,

and one can obtain

|v1(t)− v2(t)| ≤
∫ 1

0

G(s, s)
( ∫ 1

0

H(r, r)|f1(r)− f1(r)|dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(r, r)|f1(r)− f1(r)|dr
)
ds

≤
∫ 1

0

G(s, s)
( ∫ 1

0

H(r, r)l(r)|x1(r)− x2(r)|dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(r, r)l(r)|x1(r)− x2(r)|dr
)
ds

≤ ‖x1 − x2‖
[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(r, r)l(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(r, r)l(r)dr
)
ds

]
.

Therefore,

‖v1 − v2‖ ≤ ‖x1 − x2‖
[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(r, r)l(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(r, r)l(r)dr
)
ds

]
.

From an analogous reasoning by interchanging the roles of u1 and u2 it follows

dH(T (u1), T (u2)) ≤ ‖x1 − x2‖
[ ∫ 1

0

G(s, s)
( ∫ 1

0

H(r, r)l(r)dr
)
ds

+
∑m−2

i=1 ai

(1−∆)

∫ 1

0

G(ξi, s)
( ∫ 1

0

H(r, r)l(r)dr
)
ds

]
.

Since T is a contraction, it follows by the Lemma 4.18 that T admits a fixed point
which is a solution to problem (1.2). �

5. An application

Consider the singular boundary-value problem

D
3/2
0+ (D3/2

0+ u)(t) = f(t, u(t)), t ∈ (0, 1),

D
3/2
0+ u(0) = D

3/2
0+ u(1) = 0, u(0) = 0, u(1)− 7

4
u(

1
16

)− u(
1
4
) = λ1.

(5.1)
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Here, α = β = 3/2, p = 2, m = 4, a1 = 7/4, a2 = 1, ξ1 = 1/16 and ξ2 = 1/4. Let

f(t, u) =



√
1−t2

1000 + 1
400u

2, t ∈ [0, 1], 0 ≤ u ≤ 1,
√

1−t2

1000 + 5[u2 − u] + 1
400 , t ∈ [0, 1], 1 < u < 2,

√
1−t2

1000 + 2[log2 u+ 2u] + 1
400 , t ∈ [0, 1], 2 ≤ u ≤ 4

√
1−t2

1000 +
√

u
2 + 19 + 1

400 , t ∈ [0, 1], 4 < u < +∞,

Choose γ = 1/4 and δ = 3/4. Then, by direct calculations, we can obtain that
η = 0.3780, σ = 0.3536 and

∆ = 0.9375, m = 1.0765, M = 2.9786.

Then, by Choosing a = 1, b = 2, c = 1000, one obtains
1
p
· a
M

= 0.0671,
1
p
· c
M

= 67.1456,
b

m
= 1.8579.

It is easy to check that f satisfy the conditions (H1)–(H3). Then, all conditions
of theorem 3.5 hold. Hence, for 0 < λ < 3.1250, the system (5.1) has at least
three positive solutions u1, u2, u3 such that ‖u1‖ < 1, 2 < min 1

4≤t≤ 3
4
(u2(t)), and

‖u3‖ > 1, with min 1
4≤t≤ 3

4
(u3(t)) < 2.

Acknowledgments. The authors express their sincere gratitude to the anonymous
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