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BLOW-UP CRITERION FOR STRONG SOLUTIONS TO THE 3D
MAGNETO-MICROPOLAR FLUID EQUATIONS IN THE

MULTIPLIER SPACE

HUI ZHANG, YONGYE ZHAO

Abstract. In this article, we study the blow-up of strong solutions to the
magneto-micropolar (MMP) fluid equations in R3. It is proved that if the
gradient field of velocity satisfies

∇u ∈ L2/(2−r)(0, T ; Ẋr(R3)) with r ∈ [0, 1],

then the strong solution (u, w, b) can be extended beyond t = T .

1. Introduction

In this article, we consider the 3D magneto-micropolar (MMP) fluid equations

∂tu + (u · ∇)u− (µ + χ)∆u− (b · ∇)b +∇(p + |b|2)− χ∇× w = 0,

∂tw − γ∆w − κ∇∇ · w + 2χw + u · ∇w − χ∇× u = 0,

∂tb− ν∆b + (u · ∇)b− (b · ∇)u = 0,

∇ · u = ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x), w(x, 0) = w0(x).

(1.1)

where u(x, t) ∈ R3, w(x, t) ∈ R3, b(x, t) ∈ R3, p = p(x, t) ∈ R denote the velocity of
the fluid, the micro-rotational velocity, magnetic field and pressure, respectively. µ
is the kinematic viscosity, χ is the vortex viscosity, κ and γ are spin viscosities and
ν is the magnetic diffusivity. (u0, w0, b0) are the given initial data with ∇ · u0 =
∇ · b0 = 0.

The MMP fluid system (1.1) was first studied by Galdi and Rionero in [3]. Rojas-
Medar and Boldrin [11] proved the existence of weak solutions by the Galerkin
method, and in 2D case, also proved the uniqueness of the weak solutions. Ortega-
Torres and Rojas-Medar [12, 8] established the local in time existence and unique-
ness of strong solutions and proved global in time existence of strong solution for
small initial data. However, whether the local strong solutions can exist globally
or the global weak solution is regular and unique is an outstanding open problem.

If b = 0, (1.1) reduce to micropolar fluid equations.The micropolar fluid equa-
tions were first proposed by Eringen [1]. It is a type of fluids which exhibit the
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micro-rotational effects and micro-rotational inertia, and can be viewed as a non-
Newtonian fluid. It can describe some physical phenomena that can’t be treated by
the classical Navier-Stokes equations for the viscous incompressible fluids, such as
the motion of animal blood, liquid crystals and dilute aqueous polymer solutions,
etc. The existences of weak and strong solutions were treated by Galdi and Rionero
[4], as well as Yamaguchi [14], respectively. Recently, Ferreira and Villamizar-Roa
[2] considered the existence and stability of solutions to the micropolar fluids in
exterior domains. Villamizar-Roa and Rodŕıguez-Bellido [13] studied the microp-
olar system in a bounded domain by using the semigroup approach in Lp-space,
showing the global existence of strong solutions for small data and the asymptotic
behavior and stability of the solutions.

The purpose of this article is to study the breakdown criteria of smooth solutions
to the MMP fluid system (1.1). Some fundamental Serrin’s-type regularity criteria
was done in [9] and [15] independently. Torres [9] showed the uniqueness of weak
solution if (u, w, b) ∈ Lp(0, T ;Lq(Ω)); 2

p + 3
q ≤ 1, q > 3 in a bounded domain with

the no-slip boundary conditions, Yuan [15] proved that if ∇u ∈ Lp(0, T ;Lq(R3));
2
p + 3

q = 2, 3
2 < q ≤ ∞, then the weak solution is regular. Zhang [16] consider

the regularity criterion for the 3D MMP fluid equations in Triebel-Lizorkin spaces.
Torres [10] showed a regularity criterion in term of pressure for the micropolar in
a bounded domain.

Motivated by these works, we establish a similar regularity criterion to the MMP
fluid system (1.1) in multiplier space Ẋr(R3). More precisely, we prove the following
result.

Theorem 1.1. Let T > 0, (u, w, b) be a strong solution of 3D MMP equation (1.1)
on (0, T ) with the initial data (u0, w0, b0) ∈ H1(R3) with ∇ · u0 = ∇ · b0 = 0. If the
gradient field of velocity satisfies

∇u ∈ L2/(2−r)(0, T ; Ẋr(R3)), 0 ≤ r ≤ 1 (1.2)

then the solution (u, w, b) can be extended smoothly beyond t = T .

Definition 1.2. Let T > 0, (u0, w0, b0) ∈ H1(R3) with ∇ · u0 = ∇ · b0 = 0. A
measurable R3-valued triple (u, w, b) is said to be a weak solution of the MMP
equation on (0, T ] if the following conditions hold:

(1) (u, w, b) ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)),
(2) (u, w, b) verifies (1.1) in the sense of distribution,
(3) the following energy inequality is satisfied,

‖(u, w, b)‖22 + 2(µ + χ)
∫ t

0

‖∇u‖22ds

+ 2γ

∫ t

0

‖∇w‖22ds + 2ν

∫ t

0

‖∇b‖22ds + 2χ

∫ t

0

‖w‖22ds ≤ ‖(u0, b0, w0)‖22.
(1.3)

For the convenience, we set µ = χ = 1/2, κ = γ = ν = 1, throughout this article,
the Lp-norm of a function denoted by ‖ · ‖p, and the Hs-norm by ‖ · ‖Hs .

2. The multiplier space

In this section, we describe the multiplier space Ẋr introduced by Lemarie-
Rieusset [6] .
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Definition 2.1. For 0 ≤ r < 3/2, the space Ẋr is defined as the space of f(x) ∈
L2

loc(R3) such that
‖f‖Ẋr

= sup
t
‖g‖Ḣr≤1‖fg‖2 < ∞,

where we denote by Ḣr(Rd) the completion of the space D(Rd) with respect to the
norm ‖u‖Ḣr = ‖(−∆)

r
2 u‖2 = ‖|ξ|rû(ξ)‖2, where û(ξ) denotes the Fourier transform

of u.

For any function f(x, t) defined for both spatial and time variables, we have

‖fλ‖
L

2
1−r (0, T

λ2 ,Ẋr)
= ‖fλ‖

L
2

1−r (0,T,Ẋr)

for any λ > 0, with fλ(x, t) = λf(λx, λ2t). So, if (u, w, b) solves the MMP equation,
then so does (uλ, wλ, bλ) for all λ > 0. This is so called scaling dimension zero
property. For more details, we refer the reader to [6, 7, 17]. In particular, we have
the imbedding

L3/r(R3) ⊂ Ẋr(R3), 0 ≤ r <
3
2

holds, r = 0, it is clear that, [5],

Ẋ0
∼= BMO.

3. Proof of main theorem

We take gradient of the both sides of (1.1) and take the L2 inner product of the
resulting equation with (∇u,∇w,∇b). With help of integrating by parts, we have

1
2

d

dt
(‖∇u‖22 + ‖∇w‖22 + ‖∇b‖22) + (‖∇2u‖22 + ‖∇2w‖22

+ ‖∇2b‖22) + ‖∇∇ · w‖22 + ‖∇w‖22dx

= −
∫

R3
∇[(u · ∇)u]∇udx +

∫
R3
∇[(b · ∇)b]∇udx−

∫
R3
∇[(u · ∇)w]∇wdx

+
1
2

∫
R3
∇(∇× w)∇udx +

1
2

∫
R3
∇(∇× u)∇wdx

−
∫

R3
∇[(u · ∇)b]∇bdx +

∫
R3
∇[(b · ∇)u]∇bdx

=
7∑

i=1

Ii.

(3.1)

To estimate I1, we integrate by parts and apply Holder’s inequality:

I1 = −
∫

R3
∇[(u · ∇)u]∇udx

= −
3∑

i,j,k=1

∫
R3

∂k(ui∂iuj)∂kujdx

= −
3∑

i,j,k=1

∫
R3

∂kui∂iuj∂kujdx−
3∑

i,j,k=1

∫
R3

ui∂i∂kuj∂kujdx

= I11 + I12.

(3.2)
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|I11| ≤
∫

R3
|∇u|3dx

≤ ‖∇u · ∇u‖2‖∇u‖2
≤ ‖∇u‖Ẋr

‖∇u‖2−r
2 ‖∇2u‖r

2

≤ C‖∇u‖2/(2−r)

Ẋr
‖∇u‖22 +

1
4
‖∇2u‖22.

(3.3)

Here we have used the inequality ‖f‖Ḣr ≤ ‖f‖1−r
2 ‖∇f‖r

2. Using the incompressible
condition ∇ · u = 0, we obtain

|I12| = 0. (3.4)

Similarly, for I2 one can deduce

I2 =
∫

R3
∇[(b · ∇)b]∇udx

=
3∑

i,j,k=1

∫
R3

∂k(bi∂ibj)∂kujdx

=
3∑

i,j,k=1

∫
R3

∂kbi∂ibj∂kujdx +
3∑

i,j,k=1

∫
R3

bi∂i∂kbj∂kujdx

= I21 + I22.

(3.5)

|I21| ≤
∫

R3
|∇b|2|∇u|dx

≤ ‖∇u · ∇b‖2‖∇b‖2
≤ ‖∇u‖Ẋr

‖∇b‖2−r
2 ‖∇2b‖γ

2

≤ C‖∇u‖2/(2−r)

Ẋr
‖∇b‖22 +

1
6
‖∇2b‖22.

(3.6)

For I22, we will give a result of I22 + I72 = 0 later. In the same way, for I3, we
have

I3 = −
∫

R3
∇[(u · ∇)w]∇wdx

= −
3∑

i,j,k=1

∫
R3

∂k(ui∂iwj)∂kwjdx

= −
3∑

i,j,k=1

∫
R3

∂kui∂iwj∂kwjdx−
3∑

i,j,k=1

∫
R3

ui∂i∂kwj∂kwjdx

= I31 + I32.

(3.7)

|I31| ≤ C‖∇u‖2/(2−r)

Ẋr
‖∇w‖22 +

1
2
‖∇2w‖22. (3.8)

Using the incompressible condition ∇ · u = 0, we obtain

|I32| = 0. (3.9)
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Integrating by parts and Holder’s inequality, we find

|I4 + I5| = |1
2

∫
R3
∇(∇× w)∇u +∇(∇× u)∇wdx|

≤
∫

R3
|∇2u||∇w|dx

≤ 1
4
‖∇2u‖22 + ‖∇w‖22.

(3.10)

With the similar derivation as of I1, one has

I6 = −
∫

R3
∇[(u · ∇)b]∇bdx

= −
3∑

i,j,k=1

∫
R3

∂k(ui∂ibj)∂kbjdx

= −
3∑

i,j,k=1

∫
R3

∂kui∂ibj∂kbjdx−
3∑

i,j,k=1

∫
R3

ui∂i∂kbj∂kbjdx

= I61 + I62.

(3.11)

|I61| ≤
∫

R3
|∇b|2|∇u|dx

≤ ‖∇u · ∇b‖2‖∇b‖2
≤ ‖∇u‖Ẋr

‖∇b‖2−r
2 ‖∇2b‖r

2

≤ C‖∇u‖2/(2−r)

Ẋr
‖∇b‖22 +

1
6
‖∇2b‖22.

(3.12)

Using the incompressible condition ∇ · u = 0, we have

|I62| = 0. (3.13)

Similarly,

I7 =
∫

R3
∇[(b · ∇)u]∇bdx

=
3∑

i,j,k=1

∫
R3

∂k(bi∂iuj)∂kbjdx

=
3∑

i,j,k=1

∫
R3

∂kbi∂iuj∂kbjdx +
3∑

i,j,k=1

∫
R3

bi∂i∂kuj∂kbjdx

= I71 + I72.

(3.14)

|I71| ≤ C‖∇u‖2/(2−r)

Ẋr
‖∇b‖22 +

1
6
‖∇2b‖22. (3.15)

Now, we give a simple result

I22 + I72 =
3∑

i,j,k=1

∫
R3

bi∂i(∂kbj∂kuj)dx

=
3∑

i,j,k=1

∫
R3

∂i[bi(∂kbj∂kuj)]dx−
3∑

i,j,k=1

∫
R3

∂ibi(∂kbj∂kuj) = 0.

(3.16)
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Here we have used the incompressible condition and the |(u, w, b)| → 0 as |x| → ∞.
Now combing the estimates of (3.1)–(3.16), we obtain

d

dt
(‖∇u‖22 + ‖∇w‖22 + ‖∇b‖22) + (‖∇2u‖22 + ‖∇2w‖22 + ‖∇2b‖22) + ‖∇∇ · w‖22

≤ C(‖∇u‖22 + ‖∇w‖22 + ‖∇b‖22)‖∇u‖2/(2−r)

Ẋr
.

(3.17)

Applying Gronwall’s inequality, we have

(‖∇u‖22 + ‖∇w‖22 + ‖∇b‖22) ≤ C exp{
∫ T

0

‖∇u‖2/(2−r)

Ẋr
dt}. (3.18)

Combining the a priori estimate (3.18) with the energy inequality (1.3) and by stan-
dard arguments of continuation of local solutions, we conclude that the solutions
(u, w, b) can be extended beyond t = T provided that∇u ∈ L2/(2−r)(0, T ; Ẋr(R3)), r ∈
[0, 1]. This completes the proof of Theorem 1.1.
Remark. We point out that the above methods do not seem to work for a bounded
domains. For bounded domains, the main difficulty lies in controlling the pressure.
If we removed the contribution of the pressure p, which can be recovered with the
help of (u, b), there is no difficulty in considering a bounded domain.
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[13] E. J. Villamizar-Roa, M. a. Rodŕıguez-Bellido; Global existence and exponential stability for
the micropolar fluid system, Z Angew Math Phys, 59, 790-809 (2008).



EJDE-2012/188 BLOW-UP CRITERION FOR STRONG SOLUTIONS 7

[14] N. Yamaguchi; Existence of global strong solution to the micropolar fluid system in a bounded
domain, Math Methods Appl Sci. 28, 1507-1526 (2005).

[15] Baoquan Yuan; Regularity of weak solutions to Magneto-Micropolar fluid equations, Acta
Mathematica Scientia. 30B(5), 1469-1480 (2010).

[16] Z. J. Zhang, Z. A. Yao, X. F. Wang; A regularity criterion for the 3D magneto-micropolar
fluid equations in Triebel-Lizorkin spaces, Nonlinear Analysis. (2010).

[17] Y. Zhou; Regularity criteria for the solutions to the 3D MHD equations in the multiplier
space, Z. Angew. Math. Phys. 61, 193-199 (2010).

Hui Zhang
School of Mathematical Science, Xiangtan University, Xiangtan 411105, China

E-mail address: zhangxtu@126.com

Yongye Zhao
Department of Mathematics, South China University of Technology, Guangzhou 510640,
China

E-mail address: zhao.yongye@mail.scut.edu.cn


	1. Introduction
	2. The multiplier space
	3. Proof of main theorem
	Acknowledgements

	References

