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EXISTENCE OF POSITIVE SOLUTIONS FOR SYSTEMS OF
BENDING ELASTIC BEAM EQUATIONS

PING KANG, ZHONGLI WEI

Abstract. This article discusses the existence of positive solutions for systems
of bending elastic beam equations. In mechanics, the problem describes the
deformations of two elastic beams in equilibrium state, whose two ends are
simply supported.

1. Introduction

The deformations of two elastic beams in equilibrium state, whose two ends
are simply supported, can be described by the systems of bending elastic beam
equations:

u(4)(t) = f1(t, u(t), v(t), u′′(t), v′′(t)), 0 < t < 1,

v(4)(t) = f2(t, u(t), v(t), u′′(t), v′′(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

v(0) = v(1) = v′′(0) = v′′(1) = 0,

(1.1)

where f1, f2 : I × R+ × R+ × R− × R− → R+ are continuous functions, and the
u′′, v′′ in f1 and f2 are the bending moment terms which represent bending effect,
I = [0, 1], R+ = [0,+∞), R− = (−∞, 0].

In recent years, due to its importance in physics, some authors (see [3, 4, 6, 7])
have studied the existence of solutions to the equation

u(4)(t) = f(t, u(t), u′′(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(1.2)

Naturally, further study in this specific field is on the system of fourth-order or-
dinary differential equations. However, to our knowledge, results for systems of
fourth-order ordinary differential equations are rarely seen (see [5, 8]). For exam-
ple, In [5], by applying the fixed-point theorem of cone expansion and compression
type due to Krasnosel’skii, the authors show the existence of single and multiple
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positive solutions of the singular boundary value problems for systems of nonlinear
fourth-order differential equations of the form

u(4)(t) = a1(t)f1(t, u(t), v(t), u′′(t), v′′(t)) + b1(t)g1(t, u(t), v(t), u′′(t), v′′(t)),

v(4)(t) = a2(t)f2(t, u(t), v(t), u′′(t), v′′(t)) + b2(t)g2(t, u(t), v(t), u′′(t), v′′(t)),
0 < t < 1,

u(0) = u(1) = v(0) = v(1) = 0, (1.3)

α1u
′′(0)− β1u

′′′(0) = 0, γ1u
′′(1) + δ1u

′′′(1) = 0,

α2v
′′(0)− β2v

′′′(0) = 0, γ2v
′′(1) + δ2v

′′′(1) = 0,

where fi, gi satisfied some weaker conditions and are continuous; ai(t) and bi(t) are
allowed to be singular at t = 0 or t = 1, i = 1, 2.

In the above articles, it is always supposed that the nonlinear terms satisfy the
superlinear and sublinear conditions, or some weaker conditions which are similar
to them (see [5, 8]). Therefore, the purpose of this paper is to improve these
results. We shall employ the theory of the fixed point index in cones to present
some precise conditions on f1 and f2 guaranteeing the existence of positive solutions
of the system (1.1).

Moreover, in this paper, we study the existence of positive solutions for system
(1.1) in the case that the nonlinear terms have the different features. However, it
is difficult to directly construct proper open sets in a single cone in product space.
Therefore, we will construct a cone K1×K2 which is the Cartesian product of two
cones in space C2[0, 1] and choose the proper open sets O = O1 × O2 ⊂ K1 ×K2.
Applying the product formula for the fixed point index on product cone and the
fixed point index theory, we obtain the existence of positive solutions for system
(1.1).

This paper is organized as follows. In Section 2, we present some preliminaries
and main result. In Section 3, we present some basic lemmas that will be used to
prove our main result. In Section 4, we will prove the main result in Section 2.

2. Preliminaries and main result

In this Section, we will give some useful preliminary results and change the
system (1.1) into the fixed point problem in a cone which is the Cartesian product
of two cones.

We shall consider the Banach space C2[0, 1] equipped with the norm

‖u‖2 = ‖u‖+ ‖u′′‖ = max
0≤t≤1

|u(t)|+ max
0≤t≤1

|u′′(t)|,

and the Banach space C2[0, 1]× C2[0, 1] equipped with the norm

‖(u, v)‖2 = ‖u‖2 + ‖v‖2.

Let G(t, s) be the Green function to the linear boundary value problem

−u′′ = 0, u(0) = u(1) = 0.

which is explicitly expressed by

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.
(2.1)
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It is clear that

G(t, s) > 0, 0 < t, s < 1,

G(t, t)G(s, s) ≤ G(t, s) ≤ G(s, s) = s(1− s), t, s ∈ I.
(2.2)

For convenience, we now introduce the notation, for r > 0,

Kr = {u ∈ K : ‖u‖2 < r}, ∂Kr = {u ∈ K : ‖u‖2 = r},Kr = {u ∈ K : ‖u‖2 ≤ r},

and

K =
{
u ∈ C2[0, 1] : u(t) ≥ 0, u′′(t) ≤ 0, u(t) ≥ q(t)‖u‖,
u′′(t) ≤ −q(t)‖u′′‖, t ∈ I

}
,

where q(t) = t(1− t). It is easy to prove that K is a cone in C2[0, 1]× C2[0, 1].
Let us list the following assumptions:

(H1) f1, f2 : I × R+ × R+ × R− × R− → R+ are continuous functions;
(H2) there exist h1 ∈ C(I × R+ × R−, R+), such that

f1(t, x, y, r, s) ≥ h1(t, x, r), ∀t ∈ I, x, y ∈ R+, r, s ∈ R−,

where

lim inf
|x|+|r|→+∞

min
t∈I

h1(t, x, r)
|x|+ |r|

>
π4

1 + π2
;

(H3) there exist h2 ∈ C(I × R+ × R−, R+), such that

f2(t, x, y, r, s) ≤ h2(t, y, s), ∀t ∈ I, x, y ∈ R+, r, s ∈ R−,

where

lim sup
|y|+|s|→+∞

max
t∈I

h2(t, y, s)
|y|+ |s|

<
π4

1 + π2
;

(H4) there exist α1, β1 ≥ 0, with α1
π4 + β1

π2 < 1, and r0 > 0, such that

f1(t, x, y, r, s) ≤ α1x− β1r, ∀t ∈ I, x ∈ [0, r0], r ∈ [−r0, 0], y ∈ R+, s ∈ R−;

(H5) there exist α2 > 0, β2 ≥ 0, α2
π4 + β2

π2 > 1, and r∗0 > 0, such that

f2(t, x, y, r, s) ≥ α2y − β2s, ∀t ∈ I, y ∈ [0, r∗0 ], s ∈ [−r∗0 , 0], x ∈ R+, r ∈ R−.

We obtain the following results concerned with positive solutions for system
(1.1).

Theorem 2.1. Assume that (H1)–(H5) hold. Then (1.1) has at least one positive
solution.

It is easy to see that conditions (H4) and (H5) are weaker than the superlinear
and sublinear conditions.
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3. Basic lemmas

For λ ∈ I, u, v ∈ C2[0, 1], we define two operators Aλ, Bλ : C2[0, 1]× C2[0, 1] →
C2[0, 1] by

Aλ(u, v)(t) =
∫ 1

0

∫ 1

0

G(t, s)G(s, τ)[λf1(τ, u(τ), v(τ), u′′(τ), v′′(τ))

+ (1− λ)h1(τ, u(τ), u′′(τ))]dτds,

Bλ(u, v)(t) =
∫ 1

0

∫ 1

0

G(t, s)G(s, τ)[λf2(τ, u(τ), v(τ), u′′(τ), v′′(τ))

+ (1− λ)h2(τ, v(τ), v′′(τ))]dτds.

(3.1)

Then we define an operator Tλ : C2[0, 1]× C2[0, 1] → C2[0, 1]× C2[0, 1] by

Tλ(u, v) = (Aλ(u, v), Bλ(u, v)), (u, v) ∈ C2[0, 1]× C2[0, 1]. (3.2)

Lemma 3.1. Assume that (H1) holds. Then
(1) Tλ : C2[0, 1]× C2[0, 1] → C2[0, 1]× C2[0, 1] is completely continuous.
(2) Tλ : K ×K → K ×K is completely continuous.
(3) If (u, v) ∈ K ×K is a nontrivial fixed point of T1, then (u, v) is a positive

solution of system (1.1).

Proof. (1) The proof is similar to that of [5, Lemma 2.1], and we omit it. (2) By
(1), we only need to prove that operator Tλ : K × K → K × K. In fact, for any
(u, v) ∈ K ×K, it follows from (3.1) that

Aλ(u, v)(t) ≥ 0, Aλ(u, v)′′(t) ≤ 0, t ∈ [0, 1],

‖Aλ(u, v)‖ ≤
∫ 1

0

∫ 1

0

s(1− s)G(s, τ)[λf1(τ, u(τ), v(τ), u′′(τ), v′′(τ))

+ (1− λ)h1(τ, u(τ), u′′(τ))]dτds,

‖A′′
λ(u, v)‖ ≤

∫ 1

0

G(s, s)[λf1(s, u(s), v(s), u′′(s), v′′(s))

+ (1− λ)h1(s, u(s), u′′(s))]ds.

(3.3)

On the other hand, for any (u, v) ∈ K×K and any 0 ≤ t ≤ 1, It follows from (2.2),
(3.1), and (3.3) that

Aλ(u, v)(t) =
∫ 1

0

∫ 1

0

G(t, s)G(s, τ)[λf1(τ, u(τ), v(τ), u′′(τ), v′′(τ))

+ (1− λ)h1(τ, u(τ), u′′(τ))]dτds

≥ q(t)
∫ 1

0

∫ 1

0

s(1− s)G(s, τ)[λf1(τ, u(τ), v(τ), u′′(τ), v′′(τ))

+ (1− λ)h1(τ, u(τ), u′′(τ))]dτds

≥ q(t)‖Aλ(u, v)‖,

and

A′′
λ(u, v)(t) = −

∫ 1

0

G(t, s)[λf1(s, u(s), v(s), u′′(s), v′′(s))

+ (1− λ)h1(s, u(s), u′′(s))]ds
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≤ −q(t)
∫ 1

0

G(s, s)[λf1(s, u(s), v(s), u′′(s), v′′(s))

+ (1− λ)h1(s, u(s), u′′(s))]ds

≤ −q(t)‖A′′
λ(u, v)‖.

In a similar way, it follows that

Bλ(u, v)(t) ≥ 0, Bλ(u, v)′′(t) ≤ 0, t ∈ I,

and

Bλ(u, v)(t) ≥ q(t)‖Bλ(u, v)‖, B′′
λ(u, v)(t) ≤ −q(t)‖B′′

λ(u, v)‖, ∀ t ∈ I.

From the above, we assert that Tλ(u, v) = (Aλ(u, v), Bλ(u, v)) ∈ K × K; that is,
Tλ : K ×K → K ×K.

(3) Let (u, v) ∈ K ×K is a fixed point of T1, Then

u(t) = A1(u, v)(t)

=
∫ 1

0

[ ∫ 1

0

G(t, s)G(s, τ)f1(τ, u(τ), v(τ), u′′(τ), v′′(τ))dτ
]
ds, t ∈ I,

v(t) = B1(u, v)(t)

=
∫ 1

0

[ ∫ 1

0

G(t, s)G(s, τ)f2(τ, u(τ), v(τ), u′′(τ), v′′(τ))dτ
]
ds, t ∈ I.

After direct computations, we obtain

u′′(t) = −
∫ 1

0

G(t, s)f1(s, u(s), v(s), u′′(s), v′′(s))ds,

u′′′(t) =
∫ t

0

sf1(s, u(s), v(s), u′′(s), v′′(s))ds

−
∫ 1

t

(1− s)f1(s, u(s), v(s), u′′(s), v′′(s))ds,

u(4)(t) = f1(t, u(t), v(t), u′′(t), v′′(t)),

v′′(t) = −
∫ 1

0

G(t, s)f2(s, u(s), v(s), u′′(s), v′′(s))ds,

v′′′(t) =
∫ t

0

sf2(s, u(s), v(s), u′′(s), v′′(s))ds

−
∫ 1

t

(1− s)f2(s, u(s), v(s), u′′(s), v′′(s))ds,

v(4)(t) = f2(t, u(t), v(t), u′′(t), v′′(t)).

Moreover, since G(0, s) = G(1, s) = 0, we see that u(0) = u(1) = u′′(0) = u′′(1) =
v(0) = v(1) = v′′(0) = v′′(1) = 0.

Therefore, (u, v) is a solution of (1.1). Moreover, since the graphs of u ∈ K and
v ∈ K are concave down on I, we assert that (u, v) is a positive solution of system
(1.1). This completes the proof. �

Remark 3.2. Denoting T (λ, u, v)(t) = Tλ(u, v)(t), we see that T (λ×K ×K) is a
compact set by the Arzela-Ascoli theorem.
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Lemma 3.3 ([2, 9]). Let E be a real Banach space and let P be a closed convex
cone in E. Ω be a bounded open set of E, θ ∈ Ω, A : P ∩ Ω → P be completely
continuous. Then the following conclusions are valid:

(i) if µAu 6= u for every u ∈ P ∩ ∂Ω and µ ∈ (0, 1], then i(A,P ∩ Ω, P ) = 1;
(ii) if mapping A satisfies the following two conditions:

(a) infu∈P∩∂Ω ‖Au‖ > 0,
(b) µAu 6= u for every u ∈ P ∩ ∂Ω and µ ≥ 1, then i(A,P ∩ Ω, P ) = 0.

Lemma 3.4 ([1]). Let E be a Banach space and let Ki ⊂ E(i = 1, 2) be a closed
convex cone in E. For ri > 0 (i = 1, 2), denote Kri

= {u ∈ Ki : ‖u‖ < ri},
∂Kri = {u ∈ Ki : ‖u‖ = ri}. Let Ai : Ki → Ki be completely continuous. If
Aiui 6= ui, for all u ∈ ∂Kri , then

i(A,Kr1 ×Kr2 ,K1 ×K2) = i(A1,Kr1 ,K1)× i(A2,Kr2 ,K2),

where A(u, v) = (A1u, A2v), for all (u, v) ∈ K1 ×K2.

4. Proof of main result

We separate the proof of Theorem 2.1 into five steps.
Step 1. For each r1 ∈ (0, r0), we will prove that

µAλ(u, v) 6= u, ∀µ ∈ (0, 1], (u, v) ∈ ∂Kr1 ×K. (4.1)

In fact, if there exist µ0 ∈ (0, 1] and (u0, v0) ∈ ∂Kr1 ×K, such that µ0Aλ(u0, v0) =
u0, then u0(t) satisfies the differential equation

u
(4)
0 (t) = µ0[λf1(t, u0(t), v0(t), u′′0(t), v′′0 (t)) + (1− λ)h1(t, u0(t), u′′0(t))],

u0(0) = u0(1) = u′′0(0) = u′′0(1) = 0.

Since 0 ≤ u0(t),−u′′0(t) ≤ ‖u0‖2 = r1 < r0, from (H2) and (H4), we obtain

u
(4)
0 (t) ≤ λf1(t, u0(t), v0(t), u′′0(t), v′′0 (t)) + (1− λ)h1(t, u0(t), u′′0(t))

≤ α1u0(t)− β1u
′′
0(t),

Multiplying both sides of this inequality by sin(πt) and integrating on I, then using
integrating by parts, we obtain

π4

∫ 1

0

u0(t) sin(πt)dt ≤ (α1 + β1π
2)

∫ 1

0

u0(t) sin(πt)dt. (4.2)

By [4, Lemma 1],

π3 + π5

4

∫ 1

0

u0(t) sin(πt)dt ≥ ‖u0‖+ ‖u′′0‖ = ‖u0‖2 = r1 > 0. (4.3)

Hence,
∫ 1

0
u0(t) sin(πt)dt > 0. From (4.2) and (4.3), we obtain that π4 ≤ (α1 +

β1π
2), which is a contradiction.

Step 2. From (H2), there exist ε > 0, m > 0, C > 0, such that

h1(t, u, u′′) ≥ (
π4

1 + π2
+ ε)(|u|+ |u′′|), ∀t ∈ I, |u|+ |u′′| ≥ m, (4.4)

and

h1(t, u, u′′) ≥ (
π4

1 + π2
+ ε)(|u|+ |u′′|)− C, ∀t ∈ I, u ∈ R+. (4.5)
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We will prove that there exist R1 > r1, such that

µAλ(u, v) 6= u, inf
u∈∂KR1

‖Aλ(u, v)‖2 > 0, ∀µ ≥ 1, (u, v) ∈ ∂KR1 ×K. (4.6)

In fact, if there exist µ1 ≥ 1 and (u1, v1) ∈ ∂KR1×K, such that µ1Aλ(u1, v1) = u1,
then u1(t) satisfies the differential equation

u
(4)
1 (t) = µ1[λf1(t, u1(t), v1(t), u′′1(t), v′′1 (t)) + (1− λ)h1(t, u1(t), u′′1(t))]

u1(0) = u1(1) = u′′1(0) = u′′1(1) = 0.

In combination with (4.5) and the condition (H2), we obtain that

u
(4)
1 (t) ≥ λf1(t, u1(t), v1(t), u′′1(t), v′′1 (t)) + (1− λ)h1(t, u1(t), u′′1(t))

= λ(f1(t, u1(t), v1(t), u′′1(t), v′′1 (t))− h1(t, u1(t), u′′1(t))) + h1(t, u1(t), u′′1(t))

≥ h1(t, u1(t), u′′1(t))

≥ (
π4

1 + π2
+ ε)(u1 − u′′1)− C, ∀t ∈ I.

Multiplying the both sides of this inequality by sin(πt) and integrating on I, then
using integrating by parts, we obtain

π4

∫ 1

0

u1(t) sin(πt)dt ≥ (
π4

1 + π2
+ ε)(1 + π2)

∫ 1

0

u1(t) sin(πt)dt− 2C

π
.

Hence ∫ 1

0

u1(t) sin(πt)dt ≤ 1
(1 + π2)ε

2C

π
.

In combination with (4.3), we obtain

‖u1‖2 ≤
π3 + π5

4(1 + π2)ε
2C

π
=

π2C

2ε
:= R∗.

So, as R1 > R∗, we have µAλ(u, v) 6= u, for all (u, v) ∈ ∂KR1 ×K and µ ≥ 1. In
addition, if R1 > 5C

ε , by (4.5), we know that for all (u, v) ∈ ∂KR1 ×K,

Aλ(u, v)(
1
2
)

=
∫ 1

0

∫ 1

0

G(
1
2
, s)G(s, τ)[λf1(τ, u(τ), v(τ), u′′(τ), v′′(τ))

+ (1− λ)h1(τ, u(τ), u′′(τ))]dτds

≥ 1
4

∫ 1

0

∫ 1

0

G(s, s)G(s, τ)[λf1(τ, u(τ), v(τ), u′′(τ), v′′(τ))

+ (1− λ)h1(τ, u(τ), u′′(τ))]dτds

≥ 1
4

∫ 1

0

G(s, s)
∫ 1

0

q(s)G(τ, τ)[λf1(τ, u(τ), v(τ), u′′(τ), v′′(τ))

+ (1− λ)h1(τ, u(τ), u′′(τ))]dτds

=
1
4

∫ 1

0

G(s, s)q(s)ds

∫ 1

0

G(τ, τ)[λf1(τ, u(τ), v(τ), u′′(τ), v′′(τ))

+ (1− λ)h1(τ, u(τ), u′′(τ))]dτ
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≥ 1
120

∫ 1

0

G(τ, τ)[(
π4

1 + π2
+ ε)(u(τ)− u′′(τ))]dτ − 1

120

∫ 1

0

G(τ, τ)dτ · C

≥ 1
120

[
ε

∫ 1

0

G(τ, τ)q(τ)(‖u‖+ ‖u′′‖)dτ
]
− 1

720
C

=
1

120
ε

30
‖u‖2 −

1
720

C > 0,

which follows that infu∈∂KR1
‖Aλ(u, v)‖2 > 0. Hence, we choose

R1 > max{R∗,
5C

ε
, r1}. (4.7)

Step 3. For each r2 ∈ (0, r∗0), we will prove that

µBλ(u, v) 6= v, inf
v∈∂Kr2

‖Bλ(u, v)‖2 > 0, ∀µ ≥ 1, (u, v) ∈ K × ∂Kr2 . (4.8)

From (H3) and (H5),

λf2(t, u, v, u′′, v′′) + (1− λ)h2(t, v, v′′) ≥ α2v − β2v
′′,

∀t ∈ I, v ∈ [0, r2], v′′ ∈ [−r2, 0], u ∈ R+, u′′ ∈ R−.
(4.9)

By (4.9) and a proof similar to Step 1 and 2, we deduce that (4.8) holds.
Step 4. We will prove that

µBλ(u, v) 6= v, ∀µ ∈ (0, 1], (u, v) ∈ K × ∂KR2 . (4.10)

From (H3),we know that there exist ε > 0, m > 0, C > 0, such that

λf2(t, u, v, u′′, v′′) + (1− λ)h2(t, v, v′′) ≤ (
π4

1 + π2
− ε)(|v|+ |v′′|),

∀t ∈ I, |v|+ |v′′| ≥ m, u ∈ R+, u′′ ∈ R−;

λf2(t, u, v, u′′, v′′) + (1− λ)h2(t, v, v′′) ≤ (
π4

1 + π2
− ε)(|v|+ |v′′|) + C,

∀t ∈ I, u ∈ R+, v ∈ R+, u′′ ∈ R−, v′′ ∈ R−.

Then the proof similar to Step 2. If we choose R2 > max{R∗, r2}, we deduce that
(4.10) holds.

Step 5. We choose an open set D = (KR1\Kr1)× (KR2\Kr2). By (4.1), (4.6),
(4.8), and (4.10), it is easy to verify that {Tλ}λ∈I satisfy the sufficient conditions
for the homotopy invariance of fixed point index on ∂D; on the other hand, in
combination with the classical fixed point index results (see Lemma 3.3), we have

i(A0,Kr1 ,K) = i(B0,KR2 ,K) = 1,

i(A0,KR1 ,K) = i(B0,Kr2 ,K) = 0.

Applying the homotopy invariance of fixed point index and the product formula for
the fixed point index (see Lemma 3.4), we obtain

i(T1, D, K ×K) = i(T0, D, K ×K)

= i(A0,KR1\Kr1 ,K)× i(B0,KR2\Kr2 ,K)

= [i(A0,KR1 ,K)− i(A0,Kr1 ,K)]× [i(B0,KR2 ,K)− i(B0,Kr2 ,K)] = −1.

Thus, T1 has at least a fixed point(u∗, v∗) ∈ (KR1\Kr1) × (KR2\Kr2). Hence, by
Lemma 3.1, system (1.1) has at least one positive solution (u∗, v∗). The proof of
Theorem 2.1 is complete.
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