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STABILITY OF SOLUTIONS FOR SOME INVERSE PROBLEMS

ROBERT DALMASSO

Abstract. In this article we establish three stability results for some inverse
problems. More precisely we consider the following boundary value problem:
∆u + λu + µ = 0 in Ω, u = 0 on ∂Ω, where λ and µ are real constants and
Ω ⊂ R2 is a smooth bounded simply-connected open set. The inverse problem
consists in the identification of λ and µ from knowledge of the normal flux
∂u/∂ν on ∂Ω corresponding to some nontrivial solution.

1. Introduction

Let Ω ⊂ R2 be a smooth bounded simply-connected open set. Consider the
elliptic boundary-value problem

∆u+ λu+ µ = 0 in Ω , (1.1)

u = 0 on ∂Ω , (1.2)

where λ and µ are real constants. An interesting problem is to examine whether
one can identify the constants λ and µ from knowledge of the normal flux ∂u/∂ν
on ∂Ω corresponding to some nontrivial solution of (1.1)-(1.2). For more general
sources this inverse problem arises for instance in plasma physics in connection with
the modelling of Tokamaks [2]. Actually when λu + µ is replaced by f(u) where
f ≥ 0 we have a simplified version of the Grad-Shafranov equation (see [3]). The
identifiability of f from ∂u/∂ν depends on the shape of ∂Ω. But even in the very
particular case of an affine term the problem is difficult. It is well known that if Ω
is a disk then such identification of (λ, µ) is completely impossible, even in the case
where a sign condition is imposed on the affine term: It is shown in [12] that there
is a continuum of coefficient pairs (λ, µλ) ∈ R2, and therefore a continuum of affine
functions, which give rise to the same normal derivative on the boundary. We refer
the reader to paper [12] for a more detailed description of the problem in general
and the difficulties encountered.

A partial answer to this problem was first obtained by Vogelius in [12], and more
recently we have also given a contribution [4]-[6]: Under some conditions on the
domain and on the normal derivative, there exist at most finitely many pairs of
coefficients.

Our purpose is to show that in some cases uniqueness of the above inverse prob-
lem is stable under analytic perturbation of the data.
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Let χ denote the torsion function relative to Ω, that is,

∆χ+ 1 = 0 in Ω , χ = 0 on ∂Ω .

In [7] we proved the following result.

Theorem 1.1. Assume that Ω is a true ellipse. If there exist λ, µ ∈ R and u
satisfying (1.1)-(1.2) and

∂u

∂ν
=
∂χ

∂ν
on ∂Ω , (1.3)

then λ = 0, µ = 1 and u = χ.

Remark 1.2. It is shown in [7] that, when Ω is the unit disk, there is a continuum
of coefficient pairs (λ, µλ) and uλ which solve the problem raised in Theorem 1.1.

Remark 1.3. We conjectured in [7] that disks are the only smooth bounded simply-
connected open sets for which problem (1.1)-(1.2) and (1.3) has more than one
solution.

In our first two results we study the case where problem (1.1)-(1.3) has a unique
solution. We first consider an analytic perturbation of the normal derivative of
the torsion function and we establish the uniqueness of the inverse problem. Then
we treat the case of an analytic perturbation of the domain. In our last result we
assume that, for some given ϕ on ∂Ω, (λ, µ) is uniquely determined. We show that
uniqueness holds under an analytic perturbation of ϕ.

We begin with the following theorem.

Theorem 1.4. Let Ω ⊂ R2 be a C4,α bounded simply-connected open set (α ∈ (0, 1])
such that the identification problem (1.1)-(1.3) has a unique solution (λ = 0, µ = 1
and u = χ). Let T > 0 and ψ : [0, T ) → C4,α(∂Ω) depending analytically on
t ∈ [0, T ) and such that ψ(0) = ∂χ/∂ν on ∂Ω. Suppose that for any t ∈ [0, T ),
there exist λ(t), µ(t) ∈ R and u(t) ∈ C4,α(Ω) such that

∆u(t) + λ(t)u(t) + µ(t) = 0 in Ω ,

u(t) = 0 ,
∂u(t)
∂ν

= ψ(t) on ∂Ω .

Suppose moreover that λ and µ depend analytically on t ∈ [0, T ). Then λ(t) and
µ(t) are unique.

Now let Ω ⊂ R2 be a bounded simply-connected open set with real analytic
boundary. Let Ωt ⊂ R2, t ∈ [0, T ) be a family of bounded simply-connected open
sets with real analytic boundary depending analytically on the parameter t. We
also suppose that Ω0 = Ω. We denote by ν(t) (resp. ν = ν(0)) the outward unit
normal to Ωt (resp. Ω) and by χ(t) (resp. χ = χ(0)) the torsion function relative
to Ωt (resp. Ω). We have the following theorem.

Theorem 1.5. In the above setting suppose that the identification problem (1.1)-
(1.3) has a unique solution (λ = 0, µ = 1 and u = χ) and that for any t ∈ [0, T ),
there exist λ(t), µ(t) ∈ R and u(t) analytic on Ωt such that

∆u(t) + λ(t)u(t) + µ(t) = 0 in Ωt ,

u(t) = 0 ,
∂u(t)
∂ν(t)

=
∂χ(t)
∂ν(t)

on ∂Ωt .
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Suppose moreover that λ and µ depend analytically on t ∈ [0, T ). Then λ(t) = 0
and µ(t) = 1 for t ∈ [0, T ).

Remark 1.6. In the setting of Theorem 1.5, for any t ∈ [0, T ), Ωt is not a disk by
Remark 1.2.

A smooth bounded simply-connected open set Ω ⊂ R2 is said to have the Schiffer
property if (for any λ) the following overdetermined boundary-value problem

∆v + λv + 1 = 0 in Ω , (1.4)

v =
∂v

∂ν
= 0 on ∂Ω , (1.5)

has no solution. It is well known that disks do not have the Schiffer property.
Indeed let Jz denote the z-th Bessel function. For any λ > 0 such that J1(

√
λ) = 0,

the function

vλ(x) =
1
λ

(
J0(

√
λ|x|)

J0(
√
λ)

− 1) , |x| < 1 ,

satisfies (1.4)-(1.5) when Ω is the unit disk.
The Schiffer conjecture asserts that disks are the only smooth bounded simply-

connected open sets for which (1.4)-(1.5) has a solution for even a single value of
λ. Wide classes of smooth bounded simply-connected open sets in R2 having the
Schiffer property were studied in [11] and the references therein. In [8] and [9] we
gave some elementary results allowing to exhibit very simple examples of planar
domains having the Schiffer property. Now we can state our last result.

Theorem 1.7. Let Ω ⊂ R2 be a C3,α bounded simply-connected open set (α ∈ (0, 1])
and let ϕ ∈ C3,α(∂Ω). We assume that

(i) Ω has the Schiffer property;
(ii) ϕ 6≡ 0;
(iii)

∫
∂Ω
ϕ(x) dσ(x) = 0, or∫

∂Ω
ϕ(x)(x1ν2(x)− x2ν1(x))2 dσ(x) = 0 and ∂Ω is real analytic;

(iv) There exists a unique pair of coefficients (λ, µ) ∈ R2 such that problem
(1.1)-(1.2) has a solution u ∈ C3,α(Ω) satisfying

∂u

∂ν
= ϕ on ∂Ω .

Let T > 0 and ψ : [0, T ) → C3,α(∂Ω) depending analytically on t ∈ [0, T ) and such
that ψ(0) = ϕ on ∂Ω. Suppose that for any t ∈ [0, T ), there exist λ(t), µ(t) ∈ R
and u(t) ∈ C3,α(Ω) such that

∆u(t) + λ(t)u(t) + µ(t) = 0 in Ω ,

u(t) = 0 ,
∂u(t)
∂ν

= ψ(t) on ∂Ω .

Suppose moreover that λ and µ depend analytically on t ∈ [0, T ). Then λ(t) and
µ(t) are unique.

We shall use the following theorem obtained by Bennett [1].

Theorem 1.8. Let Ω ⊂ RN ( N ≥ 2) be a C4,α domain (α ∈ (0, 1]). Suppose that
there exists u ∈ C4(Ω) such that

∆2u = 1 in Ω ,
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u =
∂u

∂ν
= 0 on ∂Ω ,

∆u = c on ∂Ω

where c is a constant. Then Ω is an open ball of radius R = (cN(N + 2))1/2 and

u(x) =
1

8N(N + 2)
(R2 − |x− x0|2)2 , x ∈ Ω ,

where x0 denotes the center of Ω.

Theorems 1.4–1.7 are proved in Sections 2–4 respectively.

2. Proof of Theorem 1.4

As λ, µ and ψ depend analytically on the parameter t, the function u does also.
Let us consider the Taylor decompositions

u(t)(x) =
∞∑

n=0

un(x)tn , ψ(t)(y) =
∞∑

n=0

ψn(y)tn ,

λ(t) =
∞∑

n=0

λnt
n , µ(t) =

∞∑
n=0

µnt
n ,

for x ∈ Ω, y ∈ ∂Ω and t ∈ [0, T ), where λn, µn ∈ R, un ∈ C4,α(Ω) and ψn ∈
C4,α(∂Ω). For n ∈ N we have

∆un + vn + µn = 0 in Ω , (2.1)

un = 0 ,
∂un

∂ν
= ψn on ∂Ω , (2.2)

where

vn =
n∑

k=0

λn−kuk .

Now (2.1) and (2.2) with n = 0 give

∆u0 + λ0u0 + µ0 = 0 in Ω ,

u0 = 0 ,
∂u0

∂ν
= ψ0 =

∂χ

∂ν
on ∂Ω ,

and our assumption implies that λ0 = 0, µ0 = 1 and u0 = χ. Then

vn =
n−1∑
k=0

λn−kuk , if n ≥ 1 .

Integrating (2.1) and using (2.2) with n = 1 we obtain

λ1

∫
Ω

χ(x) dx+ µ1|Ω| = −
∫

∂Ω

ψ1(x) dσ(x) . (2.3)

We have u1 = λ1v + µ1χ where

∆v + χ = 0 in Ω and v = 0 on ∂Ω . (2.4)

Then (2.2) with n = 1 gives

λ1
∂v

∂ν
+ µ1

∂χ

∂ν
= ψ1 . (2.5)
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We claim that

∃ y ∈ ∂Ω such that
∂v

∂ν
(y)− 1

|Ω|
∂χ

∂ν
(y)

∫
Ω

χ(x) dx 6= 0 . (2.6)

Suppose the contrary and let

z = v − 1
|Ω|

χ

∫
Ω

χ(x) dx .

Then we have

∆2z = 1 in Ω ,

z =
∂z

∂ν
= 0 on ∂Ω ,

∆z =
1
|Ω|

∫
Ω

χ(x) dx = const. on ∂Ω ,

and using Theorem 1.8 we conclude that Ω is a disk. Our assumption and Remark
1.2 give a contradiction. Thus our claim is proved. Now (2.3), (2.5) and (2.6) imply
that λ1 and µ1 are uniquely determined. Then u1 is also uniquely determined.
Assume that λj , µj and uj , j = 1, . . . , n − 1 ( n ≥ 2), are uniquely determined.
Integrating (2.1) and using (2.2) we obtain

λn

∫
Ω

χ(x) dx+ µn|Ω| = −
∫

∂Ω

ψn(x) dσ(x)−
n−1∑
k=1

λn−k

∫
Ω

uk(x) dx .

We have un = λnv + µnχ+ wn where

wn(x) =
n−1∑
k=1

λn−k

∫
Ω

G(x, y)uk(y) dy , x ∈ Ω ,

where G denotes the Green’s function of the operator −∆ on Ω with Dirichlet
boundary conditions. Then (2.2) gives

λn
∂v

∂ν
+ µn

∂χ

∂ν
= ψn −

∂wn

∂ν
.

and we conclude as before that (λn, µn) and un are uniquely determined. The proof
of the theorem is complete.

Remark 2.1. Note that Theorem 1.4 also holds when Ω ⊂ RN , N ≥ 3.

3. Proof of Theorem 1.5

Let ω(t) : Ω = Ω0 → Ωt be a conformal mapping analytically depending on
t ∈ [0, T ) and such that ω(0) is the identity mapping. It is well-known that ω(t)
extends analytically on a neighborhood of Ω to a neighborhood of Ωt: See [10].
Define v(t)(x) = u(t) ◦ ω(t)(x) and χ̃(t)(x) = χ(t) ◦ ω(t)(x) for x = (x1, x2) ∈ Ω
and

ρ(t)(x) =
(∂ωj(t)(x)

∂x1

)2 +
(∂ωj(t)(x)

∂x2

)2
, x ∈ Ω , j = 1 or 2 ,

where ω(t)(x) = (ω1(t)(x), ω2(t)(x)). The behavior of the Laplacian under confor-
mal mappings is well-known. Using elementary calculations and the fact that ω(t)
maps ∂Ω on ∂Ωt we obtain

∆χ̃(t) + ρ(t) = 0 in Ω , (3.1)
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χ̃(t) = 0 ,
∂χ̃(t)
∂ν

= ρ(t)1/2 ∂χ(t)
∂ν(t)

◦ ω(t) on ∂Ω , (3.2)

and

∆v(t) + λ(t)ρ(t)v(t) + µ(t)ρ(t) = 0 in Ω , (3.3)

v(t) = 0 ,
∂v(t)
∂ν

= ρ(t)1/2 ∂χ(t)
∂ν(t)

◦ ω(t) on ∂Ω . (3.4)

Let us consider the Taylor decompositions

χ̃(t)(x) =
∞∑

n=0

χ̃n(x)tn , v(t)(x) =
∞∑

n=0

vn(x)tn ,

∂χ(t)
∂ν(t)

◦ ω(t)(y) =
∞∑

n=0

γn(y)tn , ρ(t)1/2(x) =
∞∑

n=0

αn(x)tn ,

λ(t) =
∞∑

n=0

λnt
n , µ(t) =

∞∑
n=0

µnt
n ,

for x ∈ Ω, y ∈ ∂Ω and t ∈ [0, T ), where λn, µn ∈ R, vn, αn are analytic on Ω and
γn is analytic on ∂Ω. We have α0 = 1, χ̃0 = χ and γ0 = ∂χ/∂ν. Now

ρ(t) =
∞∑

n=0

ρnt
n , µ(t)ρ(t) =

∞∑
n=0

βnt
n , λ(t)ρ(t)v(t) =

∞∑
n=0

δnt
n ,

where

ρn =
n∑

k=0

αn−kαk , βn =
n∑

k=0

µn−kρk , δn =
n∑

k=0

λn−k(
k∑

j=0

ρk−jvj) .

From (3.1)-(3.4) we obtain

∆χ̃n + ρn = 0 in Ω , (3.5)

χ̃n = 0 ,
∂χ̃n

∂ν
=

n∑
k=0

γn−kαk on ∂Ω , (3.6)

and

∆vn + δn + βn = 0 in Ω , (3.7)

vn = 0 ,
∂vn

∂ν
=

n∑
k=0

γn−kαk on ∂Ω , (3.8)

for n ∈ N. (3.7) and (3.8) with n = 0 give

∆v0 + λ0v0 + µ0 = 0 in Ω ,

v0 = 0 ,
∂v0
∂ν

=
∂χ

∂ν
on ∂Ω ,

and our assumption implies that λ0 = 0, µ0 = 1 and v0 = χ. Now (3.7) and (3.8)
with n = 1 give

∆v1 + λ1χ+ ρ1 + µ1 = 0 in Ω ,

v1 = 0 ,
∂v1
∂ν

= α1
∂χ

∂ν
+ γ1 on ∂Ω .
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Then, using (3.5) and (3.6) with n = 1 we obtain

∆(v1 − χ̃1) + λ1χ+ µ1 = 0 in Ω , (3.9)

v1 − χ̃1 =
∂(v1 − χ̃1)

∂ν
= 0 on ∂Ω . (3.10)

Integrating (3.9) and using (3.10) we obtain

λ1

∫
Ω

χ(x) dx+ µ1|Ω| = 0 .

Since v1 − χ̃1 = λ1v + µ1χ where v is given by (2.4) we obtain

λ1
∂v

∂ν
+ µ1

∂χ

∂ν
= 0 .

We conclude that λ1 = µ1 = 0 by using the same arguments as in the proof of
Theorem 1.4. Then we also have v1 = χ̃1. Assume that λj = µj = 0 and vj = χ̃j

for j = 1, . . . , n− 1 (n ≥ 2). Then (3.7) becomes

∆vn + λnχ+ ρn + µn = 0 in Ω . (3.11)

With the help of (3.5), (3.6), (3.8) and (3.11) we obtain

∆(vn − χ̃n) + λnχ+ µn = 0 in Ω , (3.12)

vn − χ̃n =
∂(vn − χ̃n)

∂ν
= 0 on ∂Ω . (3.13)

Integrating (3.12) and using (3.13) we obtain

λn

∫
Ω

χ(x) dx+ µn|Ω| = 0 .

Since vn − χ̃n = λnv + µnχ where v is given by (2.4) we obtain

λn
∂v

∂ν
+ µn

∂χ

∂ν
= 0 .

We conclude that λn = µn = 0 by using the same arguments as before. Then we
also have vn = χ̃n. The proof of the theorem is complete.

4. Proof of Theorem 1.7

We shall need the following lemma.

Lemma 4.1. Let a, b and c be real constants. Let z ∈ C2(Ω) and u ∈ C(Ω) satisfy

∆z + az + bu+ c = 0 in Ω ,

z =
∂z

∂ν
= u = 0 on ∂Ω .

Then
∂2z

∂xj∂xk
= −cνjνk on ∂Ω .

Proof. Let x = x(s) = (x1(s), x2(s)), s ∈ [0, L], be a parametrization of ∂Ω by arc
length. We denote by ν̃(s) = (ν̃1(s), ν̃2(s)) the exterior normal to ∂Ω at x(s). Then
ν̃1(s) = x′2(s) and ν̃2(s) = −x′1(s), s ∈ [0, L]. We have

∂z

∂xj
(x(s)) = 0 , s ∈ [0, L] , j = 1, 2 . (4.1)



8 R. DALMASSO EJDE-2012/196

Differentiating (4.1) with respect to s we obtain

− ∂2z

∂xj∂x1
(x(s))ν̃2(s) +

∂2z

∂xj∂x2
(x(s))ν̃1(s) = 0 , s ∈ [0, L] ,

for j = 1, 2. Since

∂2z

∂x2
2

(x(s)) = −∂
2z

∂x2
1

(x(s))− c , s ∈ [0, L] ,

the lemma follows. �

As λ, µ and ψ depend analytically on the parameter t, the function u does also.
Let us consider the Taylor decompositions

u(t)(x) =
∞∑

n=0

un(x)tn , ψ(t)(y) =
∞∑

n=0

ψn(y)tn ,

λ(t) =
∞∑

n=0

λnt
n , µ(t) =

∞∑
n=0

µnt
n ,

for x ∈ Ω, y ∈ ∂Ω and t ∈ [0, T ), where λn, µn ∈ R, un ∈ C3,α(Ω) and ψn ∈
C3,α(∂Ω). We have λ0 = λ, µ0 = µ, u0 = u and ψ0 = ϕ.

For n ∈ N we have

∆un + vn + µn = 0 in Ω , (4.2)

un = 0 ,
∂un

∂ν
= ψn on ∂Ω , (4.3)

where

v0 = λ0u0 = λu and vn =
n∑

k=0

λn−kuk , if n ≥ 1 .

When n = 1, (4.2) and (4.3) give

∆u1 + λu1 + λ1u+ µ1 = 0 in Ω ,

u1 = 0 ,
∂u1

∂ν
= ψ1 on ∂Ω .

Assume that there exist λ̃1, µ̃1 ∈ R and ũ1 ∈ C3,α(Ω) such that

∆ũ1 + λũ1 + λ̃1u+ µ̃1 = 0 in Ω ,

ũ1 = 0 ,
∂ũ1

∂ν
= ψ1 on ∂Ω .

Then, if z = u1 − ũ1, we have

∆z + λz + (λ1 − λ̃1)u+ µ1 − µ̃1 = 0 in Ω , (4.4)

z =
∂z

∂ν
= 0 on ∂Ω . (4.5)

Now we have two cases to consider.

Case 1. Assume that
∫

∂Ω
ϕ(x) dσ(x) = 0. Let j = 1 or 2. From (4.4), (4.5) and

Lemma 4.1 we obtain

∆
∂z

∂xj
+ λ

∂z

∂xj
+ (λ1 − λ̃1)

∂u

∂xj
= 0 in Ω ,
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∂z

∂xj
= 0 ,

∂

∂ν
(
∂z

∂xj
) = (µ̃1 − µ1)νj on ∂Ω .

We also have

∆
∂u

∂xj
+ λ

∂u

∂xj
= 0 in Ω ,

and, since u = 0 on ∂Ω,
∂u

∂xj
= ϕνj on ∂Ω .

Then we can write

−
∫

Ω

∂u

∂xj
∆
∂z

∂xj
dx = λ

∫
Ω

∂u

∂xj

∂z

∂xj
dx+ (λ1 − λ̃1)

∫
Ω

( ∂u
∂xj

)2
dx

= −
∫

Ω

∂z

∂xj
∆
∂u

∂xj
dx−

∫
∂Ω

∂u

∂xj

∂

∂ν
(
∂z

∂xj
) dσ(x)

= λ

∫
Ω

∂z

∂xj

∂u

∂xj
dx+ (µ1 − µ̃1)

∫
∂Ω

ϕν2
j dσ(x)

which implies that

(λ1 − λ̃1)
∫

Ω

( ∂u
∂xj

)2
dx = (µ1 − µ̃1)

∫
∂Ω

ϕν2
j dσ(x) . (4.6)

From (4.6) we deduce that

(λ1 − λ̃1)
∫

Ω

|∇u|2 dx = (µ1 − µ̃1)
∫

∂Ω

ϕdσ(x) = 0 . (4.7)

By (ii), u 6≡ 0. Then (4.7) implies that λ1 = λ̃1. Suppose that µ1 6= µ̃1. Define
v = z/(µ1 − µ̃1). Then (4.4) and (4.5) give

∆v + λv + 1 = 0 in Ω ,

v =
∂v

∂ν
= 0 on ∂Ω ,

a contradiction to (i). Therefore µ1 = µ̃1 and necessarily u1 = ũ1. Now assume
that λj , µj and uj , j = 1, . . . , n− 1 (n ≥ 2), are uniquely determined. We have

∆un + λun + λnu+
n−1∑
j=1

λn−juj + µn = 0 in Ω ,

un = 0 ,
∂un

∂ν
= ψn on ∂Ω .

Then we obtain the uniqueness of λn, µn and un in the same way.

Case 2. Assume that
∫

∂Ω
ϕ(x)(x1ν2(x) − x2ν1(x))2 dσ(x) = 0 and that ∂Ω is

real analytic. If f ∈ C1(Ω) we define

Pf(x) = x1
∂f

∂x2
(x)− x2

∂f

∂x1
(x)

for x ∈ Ω. From (4.4), (4.5) and Lemma 4.1 we obtain

∆Pz + λPz + (λ1 − λ̃1)Pu = 0 in Ω ,

P z = 0 ,
∂Pz

∂ν
= (µ̃1 − µ1)(x1ν2 − x2ν1) on ∂Ω .



10 R. DALMASSO EJDE-2012/196

We also have

∆Pu+ λPu = 0 in Ω ,

Pu = ϕ(x1ν2 − x2ν1) on ∂Ω .

Then we can write

−
∫

Ω

Pu∆Pz dx = λ

∫
Ω

PuPz dx+ (λ1 − λ̃1)
∫

Ω

(Pu)2 dx

= −
∫

Ω

Pz∆Pudx−
∫

∂Ω

Pu
∂Pz

∂ν
dσ(x)

= λ

∫
Ω

PzPu dx+ (µ1 − µ̃1)
∫

∂Ω

ϕ(x1ν2 − x2ν1)2 dσ(x)

which implies

(λ1 − λ̃1)
∫

Ω

(Pu)2 dx = (µ1 − µ̃1)
∫

∂Ω

ϕ(x1ν2 − x2ν1)2 dσ(x) = 0 . (4.8)

Suppose that Pu = 0 in Ω. Then ϕ(x1ν2 − x2ν1) = 0 on ∂Ω. By (ii) A = {x ∈
∂Ω;ϕ(x) 6= 0} 6= ∅. Then x1ν2 − x2ν1 = 0 on A. Since ∂Ω is connected and real
analytic we deduce that x1ν2−x2ν1 = 0 on ∂Ω, hence ∂Ω is a circle, a contradiction
to i). Therefore Pu 6≡ 0 and (4.8) implies that λ1 = λ̃1. Now we show that µ1 = µ̃1

and u1 = ũ1 as in Case 1. Then we use an induction argument as in Case 1 to
obtain the uniqueness of λn, µn and un for all n ≥ 1. The proof of the theorem is
complete.

Remark 4.2. Assume that Ω ⊂ RN , N ≥ 3. If we replace the second condition in
(iii) by:

(iv) for all j, k ∈ {1, . . . , N} such that j 6= k∫
∂Ω

ϕ(x)(xjνk(x)− xkνj(x))2 dx = 0 ,

and ∂Ω is connected and real analytic,
then Theorem 1.7 also holds since the Schiffer property and Lemma 4.1 can be
stated in any dimension.
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