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STABILITY OF SOLUTIONS FOR SOME INVERSE PROBLEMS

ROBERT DALMASSO

ABSTRACT. In this article we establish three stability results for some inverse
problems. More precisely we consider the following boundary value problem:
Au+Adu+p=01in Q, u = 0 on 992, where X\ and p are real constants and
Q C R? is a smooth bounded simply-connected open set. The inverse problem
consists in the identification of A and p from knowledge of the normal flux
Ou/0v on O corresponding to some nontrivial solution.

1. INTRODUCTION

Let Q C R? be a smooth bounded simply-connected open set. Consider the
elliptic boundary-value problem

Au+du+p=0 inQQ, (1.1)
u=0 onodQ, (1.2)

where A and g are real constants. An interesting problem is to examine whether
one can identify the constants A and u from knowledge of the normal flux du/Ov
on Jf) corresponding to some nontrivial solution of —. For more general
sources this inverse problem arises for instance in plasma physics in connection with
the modelling of Tokamaks [2]. Actually when Au + p is replaced by f(u) where
f > 0 we have a simplified version of the Grad-Shafranov equation (see [3]). The
identifiability of f from du/Ov depends on the shape of 9. But even in the very
particular case of an affine term the problem is difficult. It is well known that if
is a disk then such identification of (A, p1) is completely impossible, even in the case
where a sign condition is imposed on the affine term: It is shown in [I2] that there
is a continuum of coefficient pairs (), u)) € R?, and therefore a continuum of affine
functions, which give rise to the same normal derivative on the boundary. We refer
the reader to paper [12] for a more detailed description of the problem in general
and the difficulties encountered.

A partial answer to this problem was first obtained by Vogelius in [12], and more
recently we have also given a contribution [4]-[6]: Under some conditions on the
domain and on the normal derivative, there exist at most finitely many pairs of
coefficients.

Our purpose is to show that in some cases uniqueness of the above inverse prob-
lem is stable under analytic perturbation of the data.
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Let x denote the torsion function relative to €2, that is,
Ax+1=0 inQ, x=0 onoQ.
In [7] we proved the following result.

Theorem 1.1. Assume that Q is a true ellipse. If there exist A, p € R and u

satisfying (L.1)-(1.2) and
ou Oy
- A 0 1.
aw o " o, (13)
then A=0, p=1 and u = x.

Remark 1.2. It is shown in [7] that, when  is the unit disk, there is a continuum
of coefficient pairs (A, uy) and uy which solve the problem raised in Theorem [1.1

Remark 1.3. We conjectured in [7] that disks are the only smooth bounded simply-

connected open sets for which problem (1.1)-(1.2) and (L.3) has more than one
solution.

In our first two results we study the case where problem — has a unique
solution. We first consider an analytic perturbation of the normal derivative of
the torsion function and we establish the uniqueness of the inverse problem. Then
we treat the case of an analytic perturbation of the domain. In our last result we
assume that, for some given ¢ on 99, (\, ) is uniquely determined. We show that
uniqueness holds under an analytic perturbation of .

We begin with the following theorem.

Theorem 1.4. Let Q C R? be a C** bounded simply-connected open set (o € (0,1])
such that the identification problem — has a unique solution (A =0, u =1
and w = x). Let T > 0 and ¢ : [0,T) — CH*(99) depending analytically on

€ [0,T) and such that 1(0) = Ox/Ov on ON. Suppose that for any t € [0,T),
there exist \(t), u(t) € R and u(t) € C+*(Q) such that

Au(t) + AO)u(t) +p(t) =0 in ),
Ou(t)
v

Suppose moreover that A and p depend analytically on t € [0,T). Then A(t) and
wu(t) are unique.

u(t) =0, =¢(t) on 0N

Now let 2 C R? be a bounded simply-connected open set with real analytic
boundary. Let Q; C R? ¢ € [0,T) be a family of bounded simply-connected open
sets with real analytic boundary depending analytically on the parameter . We
also suppose that Qy = Q. We denote by v(t) (resp. v = v(0)) the outward unit
normal to € (resp. Q) and by x(¢) (resp. x = x(0)) the torsion function relative
to Q (resp. ). We have the following theorem.

Theorem 1.5. In the above setting suppose that the identification problem (|L.1))-
(1.3) has a unique solution (A =0, u =1 and v = x) and that for any t € [0,T),
there exist A(t), p(t) € R and u(t) analytic on Q; such that

Au(t) + MO)u(t) + p(t) =0 in Q4
dult) _ ox(t

u(t) =0, () ~ i) on 08 .
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Suppose moreover that A and p depend analytically on t € [0,T). Then A(t) =0
and p(t) =1 fort € [0,7T).

Remark 1.6. In the setting of Theorem for any t € [0,7T), 2 is not a disk by
Remark

A smooth bounded simply-connected open set 2 C R? is said to have the Schiffer
property if (for any ) the following overdetermined boundary-value problem

Av+Aiv+1=0 inQ, (1.4)
vz%zO on 082, (1.5)

has no solution. It is well known that disks do not have the Schiffer property.
Indeed let J, denote the z-th Bessel function. For any A > 0 such that J; (vA) = 0,

the function
ona) = (L)
AT Jo(VN)
satisfies (L.4)-(L.5) when Q is the unit disk.
The Schiffer conjecture asserts that disks are the only smooth bounded simply-
connected open sets for which — has a solution for even a single value of
. Wide classes of smooth bounded simply-connected open sets in R? having the
Schiffer property were studied in [I1] and the references therein. In [8] and [9] we
gave some elementary results allowing to exhibit very simple examples of planar
domains having the Schiffer property. Now we can state our last result.

-1, Jz|<1,

Theorem 1.7. Let Q C R? be a C>* bounded simply-connected open set (a € (0,1])
and let ¢ € C3*(0€)). We assume that
(i) Q has the Schiffer property;
(i) ¢ #0;
(iii) [oq @(z)do(x) =0, or
Joq (@) (@102(2) — 2211 (7)) do(x) = 0 and O is real analytic;
(iv) There exists a unique pair of coefficients (X, u) € R? such that problem
— has a solution u € C*%(Q) satisfying
% =¢ onof.
Let T > 0 and 1 : [0,T) — C>%(9R) depending analytically on t € [0,T) and such
that ¥ (0) = ¢ on 9Q. Suppose that for any t € [0,T), there exist A(t), u(t) € R
and u(t) € C>*(Q) such that

Au(t) + AMt)u(t) + p(t) =0 in ),
Ou(t)
ov

Suppose moreover that A and p depend analytically on t € [0,T). Then A(t) and
w(t) are unique.

u(t) =0, =(t) on ON.

We shall use the following theorem obtained by Bennett [IJ.

Theorem 1.8. Let Q CRY (N >2) be a C** domain (o € (0,1]). Suppose that
there exists u € C*(QQ) such that

Au=1 inQ,
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ou
U—E—O on 082,
Au=c on 0f)

where ¢ is a constant. Then Q is an open ball of radius R = (cN(N + 2))'/2 and
1
u) = SN T

where xy denotes the center of €.

(R? — |z — z0]?)?, 2€Q,

Theorems are proved in Sections 2—4 respectively.

2. PROOF OF THEOREM [L.4]

As A\, u and ¥ depend analytically on the parameter ¢, the function v does also.
Let us consider the Taylor decompositions

u(t)(@) =Y (@), PO)y) =D valy)t",
n=0 n=0

A= St ) =3t
n=0 n=0

forz € Q, y € 92 and t € [0,T), where \,, i, € R, u,, € C**(Q) and ¥, €
C**(09). For n € N we have

Aup + v, +pp =0 in Q, (2.1)
Oouy,
up =0, w—wn on 01, (2.2)

where

n
Up = E )\n_kuk.
k=0

Now (2.1) and (2.2)) with n = 0 give
Aug + Aoug + o =0 in Q,

B Oug ,  0x
ug =0, 5—1/)0—% on 99,
and our assumption implies that Ag = 0, g = 1 and ugp = x. Then
n—1
Uy = Z)\n,ku;m ifn>1.
k=0
Integrating ([2.1) and using (2.2]) with n = 1 we obtain
M [ X do sl == [ i) dota). (2.3)
Q a0
We have u; = A\1v + p1x where
Av+x=0inQ and v=0ondN. (2.4)

Then (2.2) with n = 1 gives

v ox
)\15 + Nl% =1 (2'5)
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We claim that

ov 1 dx
Jy € 99 such that 5(@/) - @g(y) /Q x(xz)dx #0. (2.6)

Suppose the contrary and let

.
z=v——x | x(z)dz.
] Jo X

Then we have

A%’z=1 inQ,
%—0 on 09,
Az = dx = const. on 02,
m/

and using Theorem [I.8 we conclude that 2 is a disk. Our assumption and Remark

give a contradiction. Thus our claim is proved. Now (2.3), (2.5) and (2.6)) imply
that A\; and p; are uniquely determined. Then w; is also uniquely determined.

Assume that A\;, pj and u; , j =1,...,n—1 ( n > 2), are uniquely determined.

Integrating (2.1)) and using (2.2]) we obtain

M [ @) ol = = [ () dota

We have u,, = A\,v + pnXx + w, where

n—1

ZAnk/ x) dz

J:):Z)\n_k/QG(x,y)uk(y)dy, x €,

where G denotes the Green’s function of the operator —A on 2 with Dirichlet
boundary conditions. Then (2.2) gives

ov Own,
)\8——1— = =1, — 5

and we conclude as before that (A, un) and U, are uniquely determined. The proof
of the theorem is complete.

Remark 2.1. Note that Theorem |1.4] also holds when 2 C RV, N > 3.

3. PROOF OF THEOREM

Let w(t) : Q = Qo — O be a conformal mapping analytically depending on

€ [0,T) and such that w(0) is the identity mapping. It is well-known that w(t)

extends analytically on a neighborhood of Q to a neighborhood of €;: See [10].

Define v(t)(x) = u(t) o w(t)(z) and x(t)(x) = x(t) o w(t)(x) for & = (x1,72) € Q
and

_ 0w ()2 Ow;(t)(x)\2 5

p(t)(z) = (Tm) +(TQ) , €9

where w(t)(z) = (w1(t)(z),w2(t)(z)). The behavior of the Laplacian under confor-

mal mappings is well-known. Using elementary calculations and the fact that w(t)
maps 002 on J§2; we obtain

,jJ=1lor 2,

Ax(t)+p(t) =0 in Q, (3.1)
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() =0, agf) _ mwlﬂm ow(t) ondQ, (3.2)

and
() + MO(E0() + u(D)o(t) =0 i Q. (33)
w(t) = 0, ag(y) — (1) gig; w(t) on Q. (3.4)

Let us consider the Taylor decompositions

2) =) Xal@)t", (b)) = Z on(2)t"
n=0

Ox(t i N
aigt; ow(t)(y) :ngo%(y)t ORI Zan :

n=0
= Z Ant™, p(t) = Z pnt™
n=0 n=0

forz € Q, y € 00 and t € [0,T), where \,, in € R, v,, @, are analytic on Q and
n is analytic on 9. We have ag = 1, xo = x and 9 = dx/0v. Now

)= pat", ut)pt) = But™, AB)p(tu(t) =D out",
n=0 n=0 n=0

where

n n
= Zan—kak , Bn= Z/-Ln—kpk , Op = Zpk ]/U]
k=0 k=0 =
From (3.I)-(3.4) we obtain

AXn+pn=0 inQ, (3.5)

- O~
Xn =0, W = Z’Yn—kak on aQa (36)

k=0
and

Av, +6,+8,=0 inQ, (3.7)

vy, ~
v, =0, B = kzzovn,kak on 09, (3.8)

for n € N. (3.7) and (3.8) with n =0 give

Avg + Agvg + o =0 in Q,

dvg  Ox
= _— Q

v9 =0, ey ey on 0f),
and our assumption implies that A\g = 0, ug = 1 and vg = x. Now and (| .
with n =1 give

A”L)1+>\1X+,01+,u1 =0 in Q,
ovy ox

’U1:0, E—O{lai—f—’)/]_ on 0.
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Then, using (3.5) and (3.6) with n =1 we obtain

A(’Ul —)21)+)\1X+ﬂ1 =0 in Q, (39)
Ul—ilzw=0 on 9N . (3.10)

Integrating (3.9) and using (3.10)) we obtain
)\1/ x(x)dz + 11|92 =0.
Q

Since v1 — X1 = A1v + p1x where v is given by (2.4]) we obtain

v 195%
)\ _
Loy THg,

We conclude that \; = p; = 0 by using the same arguments as in the proof of

Theorem [1.4] . Then we also have vl = X1 Assume that \; = p; = 0 and v; = X;
forj=1,...,n—1 (n>2). Then ) becomes

=0.

Avn+)\nx+pn+un =0 inQ. (3.11)
With the help of (3.5), (3.6]), (3.8) and (3.11)) we obtain
A(vn = Xn) + AnX + pn =0 in Q, (3.12)
6 - ~n

Integrating (3.12)) and using (3.13)) we obtain
M [ (@) dz ol =0,
Q

Since vn, — Xn = Apv + pp X where v is given by (2.4]) we obtain
v ox

An "%, +,una =0.

We conclude that A\, = p,, = 0 by using the same arguments as before. Then we
also have v, = X,,. The proof of the theorem is complete.

4. PROOF OF THEOREM
We shall need the following lemma.

Lemma 4.1. Let a, b and c be real constants. Let z € C%(Q) and u € C(Q) satisfy
Az+az+bu+c=0 1in$Q,

0z
= — = = Q.
z ey u=0 ond
Then )
0%z
m = —CV;V on 0N).

Proof. Let x = x(s) = (z1(s),z2(s)), s € [0, L], be a parametrization of 9Q by arc
length. We denote by 7(s) = (#1(s), P2(s)) the exterior normal to 9 at x(s). Then
1(s) = x4(s) and Dy(s) = —x)(s), s € [0, L]. We have

8—%(33(5)):0, se0,L], j=1,2. (4.1)
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Differentiating (4.1) with respect to s we obtain

0%z B 922 )
T CEP(8) + G @) =0, s €01,

for j = 1,2. Since

8%z 0%z
Sl =~ S2Go) —e. se Ll

the lemma follows. O

As A\, u and ¥ depend analytically on the parameter ¢, the function v does also.
Let us consider the Taylor decompositions

u(t)(@) =Y un(@)t", Y(B)(y) =D baly)t",
n=0 n=0

A) =D At p(t) =Y pnt",
n=0 n=0

forz € Q, y € 92 and t € [0,T), where \,, i € R, u,, € C3*(Q) and ¥, €
C32(09). We have \g = A, po = 1, up = u and g = ¢.
For n € N we have

Aup + vy +up=0 1in Q, (4.2)
Ouy,
Up =0, a—“y:zz;n on 9, (4.3)

where

Vg = NUp = Au  and v, = Z)\n_kuk, ifn>1.
k=0
When n =1, (4.2)) and (4.3)) give
Auy +Aup + Mu+pup =0 in Q,
uy =0, %:wl on Of).
ov
Assume that there exist \;, fi1 € R and @ € C3*(Q) such that

Aﬁ1+/\ﬂ1+5\1u+ﬁ1:0 inQ,

11120, %:wl on onN.
ov
Then, if z = uy — %1, we have
Az+Xz4+ M —A)u+p —jn =0 inQ, (4.4)
z:%:(} on 0f). (4.5)

Now we have two cases to consider.

Case 1. Assume that [, ¢(x)do(z) = 0. Let j = 1 or 2. From (4.4)), (4.5) and
Lemma [£.1] we obtain

0z 0z - . Ou
A2 A2 — M) =0 inQ
a.%'j + A(?QTJ + (/\1 )\1) ij 0 m 5
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0z 0,6 0z _
6‘7:@_0’ 5(@)—(/11—#1)%‘ on 9.

We also have

ou ou

A—+A-—=0 i Q
duj  Ox;j o ’
and, since u = 0 on 0f),
Ju
a—xj =pv; on O0N.

Then we can write

ou ou 0z < Ou 2
—A— - et
o Ox; Oz d /\/ 8xj ax] dz+ (M )\1)/ ((“)xj) d

ou 0 , 0z
T )

0z
[ 220y 7 2d
/ amj 8.’13] x+( Ml)/@ﬂ SDV] O'(I')

which implies that
- ou B
(M — /\1)/ (8 ) dx = (1 ul)/ <puj2» do(z) . (4.6)
Q 9% o0
From (4.6) we deduce that

(A — Xl)/Q \Vul? dz = (u1 — fin) /aQ pdo(z) =0. (4.7)

By (ii), u # 0. Then (4.7) implies that Ay = Ai. Suppose that p1 # fi1. Define
v=2z/(p1 — fi1). Then (4.4) and (4.5)) give
Av+dv+1=0 inQ,
0
v = 6—; =0 on 9N,
a contradiction to (i). Therefore p; = fi1 and necessarily u; = 4. Now assume
that A;, u; and uwj, j =1,...,n—1 (n > 2), are uniquely determined. We have

n—1
Aun—i—)\un—i—)\nu—l—ZAn,juj—i—,un:O in Q,
j=1
Ouy,
Uy =0, Y =1, on O0f).
v

Then we obtain the uniqueness of A\, u, and u, in the same way.

Case 2. Assume that [, o(z)(z1v2(2) — zov1(x))? do(x) = 0 and that O is
real analytic. If f € C*(Q) we define

0 0
Pf(@) =152 (a) ~ 2250 (@)

for z € Q. From (4.4), (4.5) and Lemma we obtain

APz 4+ APz+ (M —A\)Pu=0 inQ,

0Pz .
Pz=0, o = (i1 — p1)(x1v2 — x211)  on 0N
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We also have
APu+ APu=0 1in Q,
Pu = @(x1v9 — x91v1) on 0.

Then we can write

7/ PulAPzdx = /\/ PuPzdz + (A — Ay) / (Pu)? dx
Q Q Q

P
- / PzAPudzx — Puﬁ do(x)
Q o0 v

)\/ PzPudx + (uy — ﬂl)/ o(r1ve — zov)? do(x)
Q N

which implies

(M — A1) /Q(Pu)2 dx = (1 — fi1) /asz o(x1v0 — mov1)? do(z) = 0. (4.8)
Suppose that Pu = 0 in Q. Then @(z1v2 — 2911) = 0 on 9Q. By (ii)) A = {z €
0Q; p(z) # 0} # 0. Then z1v5 — x2v1 = 0 on A. Since 99 is connected and real
analytic we deduce that xyvs — 2911 = 0 on 02, hence 0f) is a circle, a contradiction
to i). Therefore Pu # 0 and implies that Ay = A\;. Now we show that u; = fiy
and u; = u; as in Case 1. Then we use an induction argument as in Case 1 to
obtain the uniqueness of A\, u, and u, for all n > 1. The proof of the theorem is
complete.

Remark 4.2. Assume that Q € RY, N > 3. If we replace the second condition in
(iii) by:
(iv) for all j, k € {1,..., N} such that j # k

/ (@) (m98(w) — v (2))? d = 0,
o0

and 02 is connected and real analytic,

then Theorem also holds since the Schiffer property and Lemma [4.1] can be
stated in any dimension.
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