Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 198, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

NONLINEAR FIRST-ORDER PERIODIC BOUNDARY-VALUE PROBLEMS OF IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES

WEN GUAN, DUN-GANG LI, SHUANG-HONG MA

ABSTRACT. By using the fixed point theorem in cones, in this paper, existence criteria for single and multiple positive solutions to a class of nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales are obtained. An example is given to illustrate the main results in this article.

1. INTRODUCTION

Let \mathbb{T} be a time scale; i.e., is a nonempty closed subset of \mathbb{R} . Let 0, T be points in \mathbb{T} , an interval $(0, T)_{\mathbb{T}}$ denoting time scales interval, that is, $(0, T)_{\mathbb{T}} := (0, T) \cap \mathbb{T}$. Other types of intervals are defined similarly.

The theory of impulsive differential equations is emerging as an important area of investigation, since it is a lot richer than the corresponding theory of differential equations without impulse effects. Moreover, such equations may exhibit several real world phenomena in physics, biology, engineering, etc. (see [3, 17]). At the same time, the boundary value problems for impulsive differential equations and impulsive difference equations have received much attention [6, 11, 12, 18, 20, 24]. On the other hand, recently, the theory of dynamic equations on time scales has become a new important branch (See, for example, [4, 5, 10]). Naturally, some authors have focused their attention on the boundary value problems of impulsive dynamic equations on time scales [1, 2, 7, 9, 13, 14, 15, 22, 23]. However, to the best of our knowledge, few papers concerning PBVPs of impulsive dynamic equations on time scales with semi-position condition [22, 23].

In this paper, we are concerned with the existence of positive solutions for the following PBVPs of impulsive dynamic equations on time scales with semi-position condition

$$x^{\Delta}(t) + f(t, x(\sigma(t))) = 0, \quad t \in J := [0, T]_{\mathbb{T}}, \ t \neq t_k, \ k = 1, 2, \dots, m,$$
$$x(t_k^+) - x(t_k^-) = I_k(x(t_k^-)), \quad k = 1, 2, \dots, m,$$
$$x(0) = x(\sigma(T)),$$
(1.1)

²⁰⁰⁰ Mathematics Subject Classification. 39A10, 34B15.

Key words and phrases. Periodic boundary value problem; positive solution; fixed point; time scale; impulsive dynamic equation.

^{©2012} Texas State University - San Marcos.

Submitted August 20, 2012. Published November 10, 2012.

where \mathbb{T} is a time scale, T > 0 is fixed, $0, T \in \mathbb{T}$, $f \in C(J \times [0, \infty), (-\infty, \infty))$, $I_k \in C([0, \infty), (-\infty, \infty))$, $t_k \in (0, T)_{\mathbb{T}}$, $0 < t_1 < \cdots < t_m < T$, and for each $k = 1, 2, \ldots, m, x(t_k^+) = \lim_{h \to 0^+} x(t_k + h)$ and $x(t_k^-) = \lim_{h \to 0^-} x(t_k + h)$ represent the right and left limits of x(t) at $t = t_k$.

Using fixed point theorems, Wang [22, 23] considered the existence of one or two positive solution to (1.1) when the following hypothesis holds (semi-position condition):

(A) There exists a positive number M such that

$$Mx - f(t, x) \ge 0 \text{ for } x \in [0, \infty), \quad t \in [0, T]_{\mathbb{T}}.$$

Motivated by the results mentioned above, in this paper, we shall obtain existence criteria for single and multiple positive solutions to (1.1) by means of a fixed point theorem in cones. It is worth noticing that: (i) Our hypotheses on nonlinearity f in this paper are weaker than condition (A) of [22, 23]; (ii) For the case $\mathbb{T} = \mathbb{R}$ and $I_k(x) \equiv 0, k = 1, 2, \ldots, m$, problem (1.1) reduces to the problem studied in [16] and for the case $I_k(x) \equiv 0, k = 1, 2, \ldots, m$, problem (1.1) reduces to the problem (in the one-dimension case) studied by [19]. The ideas in this article come from [21].

Theorem 1.1 ([8]). Let X be a Banach space and K is a cone in X. Assume Ω_1, Ω_2 are open subsets of X with $0 \in \Omega_1, \overline{\Omega}_1 \subset \Omega_2$. Let

$$\Phi: K \cap (\overline{\Omega}_2 \setminus \Omega_1) \to K$$

be a continuous and completely continuous operator such that

(i) $\|\Phi x\| \leq \|x\|$ for $x \in K \cap \partial\Omega_1$;

(ii) there exists $e \in K \setminus \{0\}$ such that $x \neq \Phi x + \lambda e$ for $x \in K \cap \partial \Omega_2$ and $\lambda > 0$. Then Φ has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

Remark 1.2. In Theorem 1.1, if (i) and (ii) are replaced by

- (i) $\|\Phi x\| \leq \|x\|$ for $x \in K \cap \partial\Omega_2$;
- (ii) there exists $e \in K \setminus \{0\}$ such that $x \neq \Phi x + \lambda e$ for $x \in K \cap \partial \Omega_1$ and $\lambda > 0$, then Φ has also a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

2. Preliminaries

Throughout the rest of this paper, we assume that the points of impulse t_k are right-dense for each k = 1, 2, ..., m. We define

$$PC = \left\{ x \in [0, \sigma(T)]_{\mathbb{T}} \to \mathbb{R} : x_k \in C(J_k, R), \ k = 0, 1, 2, \dots, m \text{ and} \right.$$

there exist $x(t_k^+)$ and $x(t_k^-)$ with $x(t_k^-) = x(t_k), \ k = 1, 2, \dots, m \right\},$

where x_k is the restriction of x to $J_k = (t_k, t_{k+1}]_{\mathbb{T}} \subset (0, \sigma(T)]_{\mathbb{T}}, k = 1, 2, \ldots, m$ and $J_0 = [0, t_1]_{\mathbb{T}}, t_{m+1} = \sigma(T)$. Let

$$X = \{x : x \in PC, \quad x(0) = x(\sigma(T))\}$$

with the norm $||x|| = \sup_{t \in [0,\sigma(T)]_T} |x(t)|$, then X is a Banach space.

Lemma 2.1 ([22, 23]). Suppose M > 0 and $h : [0, T]_{\mathbb{T}} \to \mathbb{R}$ is rd-continuous, then x is a solution of

$$x(t) = \int_0^{\sigma(T)} G(t,s)h(s) \Delta s + \sum_{k=1}^m G(t,t_k)I_k(x(t_k)), \quad t \in [0,\sigma(T)]_{\mathbb{T}},$$

where

$$G(t,s) = \begin{cases} \frac{e_M(s,t)e_M(\sigma(T),0)}{e_M(\sigma(T),0)-1}, & 0 \le s \le t \le \sigma(T), \\ \frac{e_M(s,t)}{e_M(\sigma(T),0)-1}, & 0 \le t < s \le \sigma(T), \end{cases}$$

if and only if x is a solution of the boundary-value problem

$$\begin{aligned} x^{\Delta}(t) + Mx(\sigma(t)) &= h(t), \quad t \in J := [0, T]_{\mathbb{T}}, \quad t \neq t_k, \quad k = 1, 2, \dots, m, \\ x(t_k^+) - x(t_k^-) &= I_k(x(t_k^-)), \quad k = 1, 2, \dots, m, \\ x(0) &= x(\sigma(T)). \end{aligned}$$

Lemma 2.2. Let G(t,s) be defined as in Lemma 2.1. Then

$$\frac{1}{e_M(\sigma(T), 0) - 1} \le G(t, s) \le \frac{e_M(\sigma(T), 0)}{e_M(\sigma(T), 0) - 1}$$

for all $t, s \in [0, \sigma(T)]_{\mathbb{T}}$.

Remark 2.3. Let G(t, s) be defined as in Lemma 2.1, then $\int_0^{\sigma(T)} G(t, s) \Delta s = 1/M$. Let

$$K = \{ x \in X : x(t) \ge \delta \|x\|, \ t \in [0, \sigma(T)]_{\mathbb{T}} \},\$$

where $\delta = \frac{1}{e_M(\sigma(T), 0)} \in (0, 1)$. It is not difficult to verify that K is a cone in X.

For $u \in K$, we consider the problem

$$x^{\Delta}(t) + Mx(\sigma(t)) = Mu(\sigma(t)) - f(t, u(\sigma(t))),$$

$$t \in [0, T]_{\mathbb{T}}, \ t \neq t_k, \ k = 1, 2, \dots, m,$$

$$x(t_k^+) - x(t_k^-) = I_k(x(t_k^-)), \quad k = 1, 2, \dots, m,$$

$$x(0) = x(\sigma(T)).$$

(2.1)

It follows from Lemma 2.1 that (2.1) has a unique solution,

$$x(t) = \int_0^{\sigma(T)} G(t, s) h_u(s) \Delta s + \sum_{k=1}^m G(t, t_k) I_k(x(t_k)), \quad t \in [0, \sigma(T)]_{\mathbb{T}},$$

where $h_u(s) = Mu(\sigma(s)) - f(s, u(\sigma(s))), s \in [0, T]_{\mathbb{T}}$. We define an operator $\Phi: K \to X$ by

$$\Phi_x(t) = \int_0^{\sigma(T)} G(t,s) h_x(s) \Delta s + \sum_{k=1}^m G(t,t_k) I_k(x(t_k)), \quad t \in [0,\sigma(T)]_{\mathbb{T}}.$$

It is obvious that fixed points of Φ are solutions of (1.1).

Lemma 2.4. The operator $\Phi: K \to X$ is completely continuous.

The proof similar to that in [22, 23], so we omit it here.

3. Main results

In this section, by defining an appropriate cones, we impose the conditions on f which allow us to apply the fixed point theorem in cones to establish the existence criteria for single and multiple positive solutions of the problem (1.1).

Theorem 3.1. Suppose that there exist a positive number M > 0 and $0 < \alpha < \beta$ such that

$$Mx - f(t, x) \ge 0$$
 for $t \in [0, T]_{\mathbb{T}}, x \in [\delta\alpha, \beta].$

Then (1.1) has at least one positive solution if one of the following two conditions holds: (i)

$$f(t,x) \leq 0 \quad \text{for } t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\alpha,\alpha]; \ \forall k, I_k(x) \geq 0, \ x \in [\delta\alpha,\alpha],$$

$$f(t,x) \geq 0 \text{ for } t \in [0,T]_{\mathbb{T}}, \quad x \in [\delta\beta,\beta]; \ \forall k, I_k(x) \leq 0, \ x \in [\delta\beta,\beta],$$

(ii)

$$\begin{split} f(t,x) &\geq 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\alpha,\alpha]; \ \forall k, \ I_k(x) \leq 0, \ x \in [\delta\alpha,\alpha], \\ f(t,x) &\leq 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\beta,\beta]; \ \forall k, \ I_k(x) \geq 0, \ x \in [\delta\beta,\beta]. \end{split}$$

Proof. Define the open sets

$$\Omega_1 = \{ x \in X : \|x\| < \alpha \}, \quad \Omega_2 = \{ x \in X : \|x\| < \beta \}$$

Firstly, we claim that $\Phi: K \cap (\overline{\Omega}_2 \setminus \Omega_1) \to K$. In fact, for any $x \in K \cap (\overline{\Omega}_2 \setminus \Omega_1)$, we have $\delta \alpha \leq x \leq \beta$, by Lemma 2.2

$$\|\Phi x\| \le \frac{e_M(\sigma(T),0)}{e_M(\sigma(T),0) - 1} \Big[\int_0^{\sigma(T)} (Mx(\sigma(s)) - f(s,x(\sigma(s)))) \Delta s + \sum_{k=1}^m I_k(x(t_k)) \Big]$$

and

$$(\Phi x)(t) = \int_0^{\sigma(T)} G(t,s)h_x(s)\Delta s + \sum_{k=1}^m G(t,t_k)I_k(x(t_k))$$

$$\geq \frac{1}{e_M(\sigma(T),0) - 1} [\int_0^{\sigma(T)} (Mx(\sigma(s)) - f(s,x(\sigma(s))))\Delta s + \sum_{k=1}^m I_k(x(t_k))].$$

 So

$$(\Phi x)(t) \ge \frac{1}{e_M(\sigma(T),0)} \|\Phi x\| = \delta \|\Phi x\|; \text{ i.e., } \Phi x \in K.$$

Therefore, $\Phi: K \cap (\overline{\Omega}_2 \setminus \Omega_1) \to K$.

Secondly, we prove the result provided conditions (i) holds. By the first inequality of (i), we have

$$Mx - f(t, x) \ge Mx, \quad t \in [0, T]_{\mathbb{T}}, \ x \in [\delta\alpha, \alpha].$$

Let $e \equiv 1$, then $e \in K$. We assert that

$$x \neq \Phi x + \lambda e \quad \text{for } x \in K \cap \partial \Omega_1 \text{ and } \lambda > 0.$$
 (3.1)

If not, there would exist $x_0 \in K \cap \partial \Omega_1$ and $\lambda_0 > 0$ such that $x_0 = \Phi x_0 + \lambda_0 e$.

Since $x_0 \in K \cap \partial\Omega_1$, it follows that $\delta\alpha = \delta ||x_0|| \leq x_0(t) \leq \alpha$. Let $\mu = \min_{t \in [0,\sigma(T)]_{\mathbb{T}}} x_0(t)$, then for any $t \in [0,\sigma(T)]_{\mathbb{T}}$, we have

$$\begin{aligned} x_0(t) &= (\Phi x_0)(t) + \lambda_0 \\ &= \int_0^{\sigma(T)} G(t,s) [M x_0(\sigma(s)) - f(s, x_0(\sigma(s)))] \triangle s + \sum_{k=1}^m G(t,t_k) I_k(x_0(t_k)) + \lambda_0 \\ &\ge \int_0^{\sigma(T)} G(t,s) M x_0(\sigma(s)) \triangle s + \lambda_0 \end{aligned}$$

EJDE-2012/198 IMPULSIVE DYNAMIC EQUATIONS

$$\geq \mu \int_0^{\sigma(T)} G(t,s) M \triangle s + \lambda_0 = \mu + \lambda_0.$$

This implies that $\mu \ge \mu + \lambda_0$, and this is a contradiction. Therefore (3.1) holds. On the other hand, by using the second inequality of (i), we have

$$Mx - f(t, \quad x) \leq Mx, \quad t \in [0, T]_{\mathbb{T}}, \; x \in [\delta\beta, \beta].$$

We assert that

$$\|\Phi x\| \le \|x\| \text{ for } x \in K \cap \partial\Omega_2.$$
(3.2)

In fact, if $x \in K \cap \partial \Omega_2$, then $\delta \beta = \delta ||x|| \le x(t) \le \beta$; we have

$$\begin{aligned} (\Phi x)(t) &= \int_0^{\sigma(T)} G(t,s) [Mx(\sigma(s)) - f(s, \quad x(\sigma(s)))] \triangle s + \sum_{k=1}^m G(t,t_k) I_k(x(t_k)) \\ &\leq \int_0^{\sigma(T)} G(t,s) M x(\sigma(s)) \triangle s \\ &\leq \int_0^{\sigma(T)} G(t,s) M \triangle s \|x\| = \|x\|. \end{aligned}$$

Therefore, $\|\Phi x\| \leq \|x\|$.

It follows from Remark 1.2, (3.1) and (3.2) that Φ has a fixed point $x \in K \cap (\overline{\Omega}_2 \setminus \Omega_1)$. In a similar way, we can prove the result by Theorem 1.1 if condition (ii) holds.

Theorem 3.2. Suppose that there exist a positive number M > 0 and $0 < \alpha < \rho < \beta$ such that

$$Mx - f(t, x) \ge 0 \quad \text{for } t \in [0, T]_{\mathbb{T}}, \ x \in [\delta\alpha, \beta].$$

Then (1.1) has at least two positive solutions if one of the following two conditions holds (i)

$$\begin{aligned} f(t,x) &\leq 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\alpha,\alpha]; \ \forall k, \ I_k(x) \geq 0, \ x \in [\delta\alpha,\alpha], \\ f(t,x) &> 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\rho,\rho]; \ \forall k, \ I_k(x) < 0, \ x \in [\delta\rho,\rho], \\ f(t,x) &\leq 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\beta,\beta]; \ \forall k, \ I_k(x) \geq 0, \ x \in [\delta\beta,\beta], \end{aligned}$$

(ii)

$$\begin{split} f(t,x) &\geq 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\alpha,\alpha]; \ \forall k, \ I_k(x) \leq 0, \ x \in [\delta\alpha,\alpha], \\ f(t,x) &< 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\rho,\rho]; \ \forall k, \ I_k(x) > 0, \ x \in [\delta\rho,\rho], \\ f(t,x) &\geq 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\beta,\beta]; \ \forall k, \ I_k(x) \leq 0, \ x \in [\delta\beta,\beta], \end{split}$$

Proof. We prove only the result when condition (i) holds. In a similar way we can obtain the result if condition (ii) holds. Define Ω_1 , Ω_2 as in Theorem 3.1 and define

$$\Omega_3 = \{ x \in X : ||x|| < \rho \}$$

Similar to the proof of Theorem 3.1, we can prove that

$$x \neq \Phi x + \lambda e \text{ for } x \in K \cap \partial \Omega_1 \text{ and } \lambda > 0,$$

$$(3.3)$$

$$x \neq \Phi x + \lambda e \text{ for } x \in K \cap \partial \Omega_2 \text{ and } \lambda > 0, \tag{3.4}$$

where $e \equiv 1 \in K$, and

$$\|\Phi x\| < \|x\| \quad \text{for } x \in K \cap \partial\Omega_3.$$
(3.5)

Thus we can obtain the existence of two positive solutions x_1 and x_2 by using Theorem 1.1 and Remark 1.2, respectively. It is easy to see that $\alpha \leq ||x_1|| < \rho < 1$ $\|x_2\| \le \beta.$

Theorem 3.3. Suppose that there exist a positive number M > 0 and $0 < \alpha_1 < \alpha_1$ $\beta_1 < \alpha_2 < \beta_2 < \cdots < \alpha_n < \beta_n$ such that

$$Mx - f(t, x) \ge 0$$
 for $t \in [0, T]_{\mathbb{T}}, x \in [\delta \alpha_1, \beta_n].$

Then (1.1) has at least n multiple positive solutions x_i (1 $\leq i \leq n$) satisfying $\alpha_i \leq ||x_i|| \leq \beta_i, \ 1 \leq i \leq n, \ if \ one \ of \ the \ following \ two \ conditions \ holds \ (i)$

 $f(t,x) \leq 0$ for $t \in [0,T]_{\mathbb{T}}$, $x \in [\delta\alpha_i, \alpha_i]$; $\forall k, I_k(x) \geq 0, x \in [\delta\alpha_i, \alpha_i], 1 \leq i \leq n$, $f(t,x) \ge 0$ for $t \in [0,T]_{\mathbb{T}}$, $x \in [\delta\beta_i, \beta_i]$; $\forall k, I_k(x) \le 0$, $x \in [\delta\beta_i, \beta_i]$, $1 \le i \le n$, (ii)

$$\begin{aligned} f(t,x) &\geq 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\alpha_i,\alpha_i]; \ \forall k, I_k(x) \leq 0, \ x \in [\delta\alpha_i,\alpha_i], \ 1 \leq i \leq n, \\ f(t,x) &\leq 0 \quad for \ t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\beta_i,\beta_i]; \ \forall k, I_k(x) \geq 0, \ x \in [\delta\beta_i,\beta_i], \ 1 \leq i \leq n. \end{aligned}$$

Remark 3.4. In theorem 3.3, if (i) and (ii) are replaced by (iii)

$$f(t,x) < 0 \quad \text{for } t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\alpha_i,\alpha_i]; \ \forall k, I_k(x) > 0, \ x \in [\delta\alpha_i,\alpha_i], \ 1 \le i \le n,$$

$$f(t,x) > 0 \quad \text{for } t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\beta_i,\beta_i]; \ \forall k, I_k(x) < 0, \ x \in [\delta\beta_i,\beta_i], \ 1 \le i \le n;$$

(iv)

$$f(t,x) > 0 \quad \text{for } t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\alpha_i,\alpha_i]; \ \forall k, I_k(x) < 0, \ x \in [\delta\alpha_i,\alpha_i], \ 1 \le i \le n,$$

$$f(t,x) < 0 \quad \text{for } t \in [0,T]_{\mathbb{T}}, \ x \in [\delta\beta_i,\beta_i]; \ \forall k, I_k(x) > 0, \ x \in [\delta\beta_i,\beta_i], \ 1 \le i \le n.$$

Then (1.1) has at least $2n - 1$ multiple positive solutions.

4. Examples

Example 4.1. Let $\mathbb{T} = [0,1] \cup [2,3]$. We consider the following problem on \mathbb{T} :

$$x^{\Delta}(t) + f(t, x(\sigma(t))) = 0, \quad t \in [0, 3]_{\mathbb{T}}, \ t \neq \frac{1}{2},$$

$$x(\frac{1}{2}^{+}) - x(\frac{1}{2}^{-}) = I(x(\frac{1}{2})),$$

$$x(0) = x(3),$$
(4.1)

where T = 3, $f(t, x) = x - x^{1/2} + \frac{7}{64}$, and $I(x) = x^{1/2} - x$. Let M = 1, $\alpha = e^2/32$, $\beta = 4e^2$. Then $e_M(\sigma(T), 0) = 2e^2$, $\delta = 1/(2e^2)$, it is easy to see that

$$Mx - f(t, x) = x^{1/2} - \frac{7}{64} \ge \frac{1}{8} - \frac{7}{64} = \frac{1}{64} > 0, \quad \text{for } x \in [\frac{1}{64}, 4e^2] = [\delta\alpha, \beta],$$

and

$$\begin{split} f(t,x) &= x - x^{1/2} + \frac{7}{64} \leq \frac{1}{64} - \frac{1}{8} + \frac{7}{64} = 0, \quad \text{for } x \in [\frac{1}{64}, \frac{e^2}{32}] = [\delta\alpha, \alpha]; \\ f(t,x) &= x - x^{1/2} + \frac{7}{64} > 0, \quad \text{for } x \in [2, 4e^2] = [\delta\beta, \beta]; \\ I(x) &= x^{1/2} - x \geq \frac{1}{8} - \frac{1}{64} > 0, \quad \text{for } x \in [\frac{1}{64}, \frac{e^2}{32}] = [\delta\alpha, \alpha]; \\ I(x) &= x^{1/2} - x \leq 2^{1/2} - 2 < 0, \quad \text{for } x \in [2, 4e^2] = [\delta\beta, \beta]. \end{split}$$

Therefore, by Theorem 3.1, it follows that (4.1) has at least one positive solution.

References

- M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab; On first order impulsive dynamic equations on time scales, J. Difference Equ. Appl., 6(2004)541–548.
- [2] M. Benchohra, S. K. Ntouyas and A. Ouahab; Existence results for second-order bounary value problem of impulsive dynamic equations on time scales, J. Math. Anal. Appl., 296(2004)65–73.
- [3] M. Benchohra, J. Henderson and S. K. Ntouyas; *Impulsive Differential Equations and Inclusions*, Hindawi Publishing Corporation, Vol. 2, New York, 2006.
- [4] M. Bohner and A. Peterson; Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
- [5] M. Bohner and A. Peterson; Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
- [6] M. Feng, B. Du and W. Ge; Impulsive boundary value problems with integral boundary conditions and one-dimensional p-Laplacian, Nonlinear Anal., 70(2009)3119-3126.
- [7] F. Geng, Y. Xu and D. Zhu; Periodic boundary value problems for first-order impulsive dynamic equations on time scales, *Nonlinear Anal.*, 69(2008)4074-4087.
- [8] D. Guo and V. Lakshmikantham; Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
- J. Henderson; Double solutions of impulsive dynamic boundary value problems on time scale, J. Difference Equ. Appl., 8 (2002)345–356.
- [10] S. Hilger; Analysis on measure chains-a unified approach to continuous and discrete calculus, *Results Math.*, 18(1990)18–56.
- [11] J. L. Li, J. J. Nieto and J. Shen; Impulsive periodic boundary value problems of first-order differential equastions, J. Math. Anal. Appl., 325(2007)226–236.
- [12] J. L. Li and J. H. Shen; Positive solutions for first-order difference equation with impulses, Int. J. Differ. Equ., 2(2006)225-239.
- [13] J. L. Li and J. H. Shen; Existence results for second-order impulsive boundary value problems on time scales, *Nonlinear Anal.*, 70(2009)1648-1655.
- [14] Y. K. Li and J. Y. Shu; Multiple positive solutions for first-order impulsive integral boundary value problems on time scales, *Boundary Value Problems*, 2011:12, doi:10.1186/1687-2770-2011-12.
- [15] H. B. Liu and X. Xiang; A class of the first order impulsive dynamic equations on time scales, Nonlinear Analysis, 69(2008) 2803-2811.
- [16] S. Peng; Positive solutions for first order periodic boundary value problem, Appl. Math. Comput., 158(2004)345-351.
- [17] A. M. Samoilenko and N. A. Perestyuk; *Impulsive Differential Equations*, World Scientific, Singapore, 1995.
- [18] J. Sun, H. Chen, J.J. Nieto and M. Otero-Novoa; The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, *Nonlinear Anal.*, 72(2010)4575-4586.
- [19] J. P. Sun and W. T. Li; Positive solution for system of nonlinear first-order PBVPs on time scales, *Nonlinear Anal.*, 62(2005)131-139.
- [20] Y. Tian and W. Ge; Applications of variational methods to boundary-value problem for impulsive differential equations, *Proceedings of the Edinburgh Mathematical Society. Series* II, 51(2008)509-527.
- [21] P. J. Torres; Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Diff. Equats, 190(2003)643-662.
- [22] D. B. Wang and W. Guan; Nonlinear first-order semipositone problems of impulsive dynamic equations on time scales, *Dynamic Systems and Applications*, 20(2011)307-316.
- [23] D. B. Wang; Periodic boundary value problems for nonlinear first-order impulsive dynamic equations on time scales, *Advances in Difference Equations*, 2012:12(2012)1-9.
- [24] J. Zhou and Y. Li; Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects, *Nonlinear Analysis*, 71(2009)2856-2865.

Wen Guan

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China

E-mail address: mathgw@sohu.com

Dun-Gang Li

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China

E-mail address: dungangli@gmail.com

Shuang-Hong Ma

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China

E-mail address: mashuanghong@lut.cn