
Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 199, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

NECESSARY AND SUFFICIENT CONDITIONS FOR THE
EXISTENCE OF PERIODIC SOLUTIONS IN A
PREDATOR-PREY MODEL ON TIME SCALES

XINGYONG LIU, XIUXIANG LIU

Abstract. This article explores the existence of periodic solutions for non-
autonomous impulsive semi-ratio-dependent predator-prey systems on time
scales. Based on a continuous theorem in coincidence degree theory, sharp suf-
ficient and necessary conditions are derived in which most popular monotonic,
non-monotonic and predator functional responses are applicable. This article
extends the work in [6, 10, 12, 13, 14, 18, 25].

1. Introduction

It is well known that time scales were introduced by Hilger[17] in his Doctoral de-
gree thesis to unify the continuous and discrete analysis. Today, it has become a new
important branch for its tremendous potential applications in many mathematical
models of real process and phenomena such as population dynamics, biotechnology,
economics, neural networks and social science; see, e.g., Agarwal[1, 2], Aulbach[3],
Bohner[7, 8], Erbe[11], Lakshmikantham[19] and the reference therein. In the way
of time scales, not only are the results related to the set of real numbers or to
the set of integers, but also pertaining to more general time scales are obtained.
On the other hand, impulsive effects always occur in the simulation of process and
phenomena observed in control theory, chemistry, population dynamics, industrial
robotics etc. To incorporate it into those models, impulsive differential/difference
equations are an adequate mathematical apparatus. The interesting in impulsive
systems has grown because of the importance of both theoretical and practice need,
and more richer dynamics are observed, see, e.g. [9, 4, 20].

Let T be a time scale; i.e., T is a nonempty closed subset of R(see Definition
2.1–2.5 in Section 2), {tk}k∈N ⊂ T (N is the set of positive integers) is the impulsive
moment sequence with t0 = min{[0,∞) ∩ T} < t1 < · · · < tk < · · · , limk→∞ tk =
∞, k ∈ N. In present paper, we consider following impulsive semi-ratio-dependent
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predator-prey model on time scale T
x∆

1 (t) = a(t)− b(t)ex1(t) − ϕ
(
t, ex1(t), ex2(t)

)
ex2(t)−x1(t), t ∈ T\tk,

x∆
2 (t) = d(t)− β(t)ex2(t)−x1(t), t ∈ T\tk,

∆x1(t) = ln(1 + c1k), t = tk, k ∈ N,

∆x2(t) = ln(1 + c2k), t = tk, k ∈ N,

(1.1)

where x1(t) and x2(t) stand for the population (or density) of the prey and the
predator, respectively. The same symbol ∆ in (1.1) in differential positions has dif-
ferent meanings, we think, which are easily distinguished by readers, that is, x∆

i (t)
is the delta-derivative of xi at t, and ∆xi(t) = xi(t+) − xi(t−) = lims→t+ xi(s) −
lims→t− xi(s), i = 1, 2 are impulsive perturbations. A natural constraint is 1+cik >
0, k ∈ N, i = 1, 2. In (1.1), it has been assumed that the prey grows logistically
with growth rate a and carrying capacity a/b in the absence of predation. The
predator consumes the prey according to the function response ϕ(t, x, y) and grow
logistically with growth rate d and carrying capacity x/β proportional to the pop-
ulation size of prey (or prey abundance). The parameter β is a measure of the food
quality that the prey provides for conversion into predator birth.

As mentioned above, time scales can unify continuous and discrete analysis. If
T = R, (1.1) reduces the following impulsive differential equations

x′1(t) = a(t)− b(t)ex1(t) − ϕ(t, ex1(t), ex2(t))ex2(t)−x1(t), t ∈ R\tk,

x′2(t) = d(t)− β(t)ex2(t)−x1(t), t ∈ R\tk,

∆x1(t) = ln(1 + c1k), t = tk, k ∈ N,

∆x2(t) = ln(1 + c2k), t = tk, k ∈ N,

(1.2)

or its equivalent form

x′(t) = x(t)[a(t)− b(t)x(t)]− ϕ(t, x(t), y(t))y(t), t ∈ R\tk,

y′(t) = y(t)[d(t)− β(t)y(t)
x(t)

], t ∈ R\tk,

∆x(t) = c1kx(t), t = tk, k ∈ N,

∆y(t) = c2ky(t), t = tk, k ∈ N.

(1.3)

If T = Z, then {tk} ⊂ Z and system (1.1) may turn into the following impulsive
difference equations

x(t + 1) = x(t) exp(a(t)− b(t)x(t)− ϕ(t, x(t), y(t))
y(t)
x(t)

), t ∈ Z\tk,

y(t + 1) = y(t) exp(d(t)− β(t)
y(t)
x(t)

), t ∈ Z\tk,

∆x(tk + 1) = (1 + c1k)x(tk), k ∈ N,

∆y(tk + 1) = (1 + c2k)y(tk), k ∈ N.

(1.4)

The key term ϕ(t, x, y) in (1.1) is called functional response, which is the rate of prey
consumption by an average predator and can be classified as prey-dependence and
predator-dependence. The response is a function of prey alone in prey-dependence
while both predator and prey density have an effect on the response in predator-
dependence. After the classical work of Lotka[21] and Volterra[22], various prey-
dependent responses are presented. For example, ϕ1(t, x) = r(t)x, ϕ2(t, x) =
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r(t)x/(A(t)+x), ϕ3(t, x) = r(t)x2/(A(t)+x2) and ϕ4(t, x) = r(t)x/(A(t)+B(t)x+
C(t)x2) are well known as Holling type I, II, III and IV respectively. Particularly,
ϕ4 is non-monotone and declines at high prey densities, while ϕ1-ϕ3 are monotone,
and in more general case is ϕ5(t, x) = r(t)xθ/(A(t) + xθ), θ > 2 which is known as
the sigmoidal response. Similar monotone responses as ϕ6(t, x) = r(t)x2/((A(t) +
x)(D(t) + x)) and ϕ7(t, x) = r(t)(1− e−A(t)x) can be found Freedman[15].

On the other hand, there are evidences to show predator density also has an
effect on functional response. A typical predator-dependent response is proposed
by Beddington and DeAngelis, now, popular referred to as Beddington-DeAngelis
functional response taking the form ϕ8(t, x, y) = r(t)x/(A(t) + B(t)x + C(t)y).
Recently, D. Miller etc[24] proposed the following modified Holling type II and III
response ϕ9(t, x, y) = r(t)x/((A(t) + x)(D(t) + y)), ϕ10(t, x, y) = r(t)x2/((A(t) +
x2)(D(t) + y)). This dynamical relationship between predators and their prey has
long been and will continue to be one of the dominant themes in both ecology and
mathematical ecology due to its universal existence and importance[5].

It is an interesting topic to explore the existence of periodic solutions in nonau-
tonomous semi-ratio-dependent predator-prey dynamical systems; see, e.g. [6, 10,
12, 13, 14, 18, 25] and the reference therein. For the case without impulses (i.e,
cik = 0, i = 1, 2, k ∈ N), the existence of periodic solutions for system (1.1)–(1.4)
has been studied by many authors. For example, Huo and Li[18] considered system
(1.3) with ϕ(t, x, y) = ϕ1, which is called Leslie-Gower system. For more general
monotone functional responses in (1.3), some criteria of existence are presented by
Wang et al[25]. Ding et al[10] also establish a criterion for (1.3) with non-monotone
functional response ϕ4. The discrete analogue (1.4) was then explored by Fazly and
Hesaaraki[13], Fan and Wang[12]. Recently, Bohner et al. [6], Fazly and Hesaaraki
[14] investigate the dynamical system (1.1) on time scales with monotone functional
responses ϕ1 − ϕ3 and ϕ5 − ϕ7. Especially, for some widely recognized functional
responses which are not monotone such as ϕ4, some sufficient conditions are derived
in [14].

In this paper, our approach is based on continuation theorem developed by
Gaines and Mawhin[16] and also used by many authors. However, by the invari-
ance property of homotopy and analysis technique, we establish some new suf-
ficient and necessary results where the exponential or monotone conditions are
not necessary, which improves and extends many previous work in the literature
[6, 10, 12, 13, 14, 18, 25]; see, Remark 3.5, Remark 4.2, Remark 4.4, and Proposition
4.5.

The rest of the paper is arranged as follows. In Section 2, we introduce some
notation and concepts for time scales and continuous theorem of coincidence, at the
same time we give some necessary lemmas. In Section 3, we establish new sharp
conditions for the existence of periodic solutions for system (1.1). Its applications
then are illustrated in Section 4.

2. Preliminaries

Denote R, R+, Z, Z+ and N are real numbers set, non-negative real numbers set,
integer numbers set, non-negative integer numbers set and positive integer numbers
set respectively. For the convenience of the reader, we list some definitions and
notations on the time scale calculus as follows. These definitions and notations are
common in the related literature.
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Definition 2.1. A time scale is an arbitrary nonempty closed subset T of R. The
set T inherits the standard topology of R.

Let ω > 0, throughout this paper, the time scale T, impulsive sequence and
impulsive functions are assumed to be ω-periodic; i.e., t ∈ T implies t + ω ∈ T and
there exists an integer p ≥ 1 such that Iω ∩ {tk} = {t1, t2, . . . , tp}, tk+p = tk + ω,
cik = ci(k+p), i = 1, 2, k ∈ N. Some examples of such time scales are

R, Z, ∪k∈Z[2k, 2k + 1].

Definition 2.2. For t ∈ T, the forward jump operator σ : T → T and the backward
jump operator ρ : T → T are defined by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t},
respectively.

In this definition, a point t ∈ T is said to be left-dense if ρ(t) = t, left-scattered
if ρ(t) < t, left-dense if σ(t) = t and right-scattered if σ(t) > t. The graininess µ of
the time scale is defined by µ(t) = σ(t)− t.

Definition 2.3. A function f : T → R is said to be rd-continuous if it is continuous
at right-dense points in T and its left-sides limits exist (finite) at left-dense points
in T. The set of rd-continuous functions is shown by Crd = Crd(T) = Crd(T, R).

Definition 2.4. For f : T → R and t ∈ T we define f∆(t), the delta-derivative
of f at t, to be the number (provided it exists) with the property that, given any
ε > 0, there is a neighborhood U of t in T such that for any s ∈ U it holds that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|.
Thus, f is said to be delta-differential if its delta-derivative exists. The set of
function f : T → R that are delta-differentiable and whose delta-derivative are
rd-continuous functions is denoted by C1

rd = C1
rd(T) = C1

rd(T, R).

Definition 2.5. A function F : T → R is called a delta-antiderivative of f : T → R
provided F∆(t) = f(t), for all t ∈ T. Then for all a, b ∈ T we write∫ b

a

f(s)∆s = F (b)− F (a).

Lemma 2.6 (Existence of Antiderivatives). Every rd-continuous function has an
antiderivative. In particular if t0 ∈ T, then F defined by

F (t) =
∫ t

t0

f(τ)∆τ, for t ∈ T

is an antiderivative of f .

In fact, for the usual time scale T = R and T = Z we have

σ(t) = ρ(t) = t, µ(t) = 0, f∆(t) = f ′(t),∫ b

a

f(t)∆t =
∫ b

a

f(t) dt, σ(t) = t + 1, ρ(t) = t− 1,

µ(t) = 1, f∆(t) = f(t + 1)− f(t),
∫ b

a

f(t)∆t =
b−1∑
t=a

f(t),
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respectively. For more information about the above definitions and their related
concepts, the reader is referred to [7, 8, 19].

The method to be used in this paper involves the application of the continuous
theorem of coincidence degree. It is necessary to introduce some concepts and
results from Gaines and Mawhin[16].

Let X, Z be two Banach spaces, L : X ∩ DomL → Z be a linear mapping,
N : X → Z be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim ker L = codim Im L < +∞ and Im L is closed in Z.
If L is a Fredholm mapping of index zero and there exist continuous projections
P : X → X and Q : Z → Z such that Im P = kerL, Im L = kerQ = Im(I−Q), then
it follows that L|Dom L∩ker P : (I−P )X → Im L is invertible. We denote the inverse
of that map by Kp. If Ω is an open bounded subset of X, the mapping N will be
called L-compact on Ω if QN(Ω) is bounded and Kp(I−Q)N : Ω → X is compact.
Since ImQ is isomorphic to kerL, there exists an isomorphism J : Im Q → ker L.

Lemma 2.7. Let L be a Fredholm mapping of index zero and N be L-compact on
Ω̄. Suppose that

(1) Lx 6= λNx, for any x ∈ ∂Ω and λ ∈ (0, 1);
(2) QNx 6= 0, for any x ∈ ∂Ω ∩ ker L;
(3) deg{JQN, Ω ∩ ker L, 0} 6= 0.

Then the operator equation Lx = Nx has at least one solution in Dom L ∩ Ω̄.

In what follows in this section, we will translate (1.1) into its equivalent operator
equations. Firstly of all, the following notation are introduced

Iω = [t0, t0 + ω] ∩ T, f̂ =
1
ω

∫
Iω

f(t)∆t,

where f ∈ Crd(T) is an ω-periodic real function. Moreover, we denote

PCω =
{

φ : T → R : (i) φ(t) is rd-continuous for t ∈ T\tk and ω-periodic;

(ii) lim
s→tk−0

φ(s) = φ(t−k ) and lim
s→tk+0

φ(s) = φ(t+k ) exist.
}

,

and
PC1

ω = {φ ∈ PCω : φ∆ ∈ PCω}.
Let

X = {x = (x1, x2)T : xi ∈ PCω, i = 1, 2}, Z = X × R2p

with the norms

‖x‖X =
2∑

i=1

sup
t∈Iω

| xi(t), x = (x1, x2)T ∈ X,

‖z‖Z = ‖x‖X + ‖y‖, z = (x, y) ∈ Z,

where ‖ · ‖ is the Euclidean norm of R2p. Then X and Z are Banach spaces when
they are endowed with above norms. Set

L : Dom L ∩X → Z, Lx = (x∆,∆x(t1), . . . ,∆x(tp)), x = (x1, x2)T ∈ X

with Dom L = {x = (x1, x2)T | xi ∈ PC1
ω, i = 1, 2} and N : X → Z as

Nx =
[
x∆

1 (t), ln(1 + c11), . . . , ln(1 + c1p)
x∆

2 (t), ln(1 + c21), . . . , ln(1 + c2p)

]
x ∈ X.
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Using this notation we may rewrite (1.1) in the equivalent form Lx = Nx, x ∈ X.
So, kerL = R2, Im L = {z = (φ, γ1, . . . , γp) ∈ Z :

∫
Iω

φ(t)∆t +
∑p

k=1 γk = 0} is
closed in Z, and dim kerL = codimIm L = 2. Thus, L is a Fredholm mapping of
index zero. Define two projections P : X → X and Q : Z → Z as

Px = x̂, x ∈ X,

Qz = Q(x, γ1, . . . , γp) = (x̂ +
1
ω

p∑
k=1

γk, 0, . . . , 0).

It is trivial to show that P,Q are continuous projections such that

Im P = kerL, Im L = kerQ = Im(I −Q),

and hence, the generalized inverse Kp exists. For x ∈ Dom L ⊂ X, it is not difficult
to get

QNx =
1
ω

(∫
Iω

x∆
1 (t)∆t +

∑p
k=1 ln(1 + c1k), 0, . . . , 0∫

Iω
x∆

2 (t)∆t +
∑p

k=1 ln(1 + c2k), 0, . . . , 0

)
,

and

Kp(I −Q)Nx

=

(∫ t

0
x∆

1 (s)∆s +
∑p

k=i ln(1 + c1k)∫ t

0
x∆

2 (s)∆s +
∑p

k=i ln(1 + c2k)

)

− (
t

ω
− 1

2
)
(∫

Iω
x∆

1 (t)∆t +
∑p

k=i ln(1 + c1k)∫
Iω

x∆
2 (t)∆t +

∑p
k=i ln(1 + c2k)

)
− 1

ω

(∫
Iω

∫ t

0
x∆

1 (s)∆s∆t + ω
∑p

k=1 ln(1 + c1k)−
∑p

k=1 ln(1 + c1k)tk∫
Iω

∫ t

0
x∆

2 (s)∆s∆t + ω
∑p

k=1 ln(1 + c2k)−
∑p

k=1 ln(1 + c2k)tk

)
.

Clearly, QN and Kp(I − Q) are continuous. It is not difficult to show that
Kp(I −Q)N(Ω) is compact for any open-bounded set Ω ⊂ X. In addition, QN(Ω)
is bounded. Therefore, N is L compact on Ω with any open-bounded set Ω ⊂ X.

3. Main Results

Theorem 3.1. Assume that he following conditions hold.
(H1) a(t), b(t), d(t) and β(t) are non-negative ω-periodic rd-continuous real func-

tions and â > 0, d̂ > 0;
(H2) The functional response ϕ : T × R+ × R+ → R+ is rd-continuous and ω-

periodic with respect to t, ϕ(t, 0, y) = 0 for any t ∈ T, y ≥ 0. In addition,
there exist m ∈ N and ω-periodic rd-continuous functions αi : T → R+, i =
0, . . . ,m− 1 such that

ϕ(t, x, y) ≤ α0(t)xm + · · ·+ αm−1(t)x (3.1)

for t ∈ T, x ≥ 0, y ≥ 0.
Then, system (1.1) has at least one ω-periodic solution if and only if

âω +
p∑

k=1

ln(1 + c1k) > 0, d̂ω +
p∑

k=1

ln(1 + c2k) > 0. (3.2)
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Proof. First, suppose (x(t), y(t)) is a periodic solution of (1.1), integrating both
sides of the first two equations in (1.1) on Iω, we have

âω +
p∑

k=1

ln(1 + c1k) =
∫

Iω

b(t) exp(x1(t))∆t

+
∫

Iω

ϕ(t, exp(x1(t)), exp(x2(t))) exp(x2(t)− x1(t))∆t > 0,

d̂ω +
p∑

k=1

ln(1 + c2k) =
∫

Iω

β(t) exp(x2(t)− x1(t))∆t > 0,

which shows the condition is necessary.
Next, we show it is sufficient. By Lemma 2.7, it suffices to search for an appropri-

ate open bounded subset Ω ⊂ X. For some λ ∈ (0, 1), suppose that (x1, x2)T ∈ X
is a solution of

x∆
1 (t) = λ

[
a(t)− b(t)ex1(t) − ϕ

(
t, ex1(t), ex2(t)

)
ex2(t)−x1(t)

]
, t ∈ T\tk,

x∆
2 (t) = λ

[
d(t)− β(t)ex2(t)−x1(t)

]
, t ∈ T\tk,

∆x1(t) = λ ln(1 + c1k), t = tk, k ∈ N,

∆x2(t) = λ ln(1 + c2k), t = tk, k ∈ N.

(3.3)

Integrating both sides of the first and second equation of (3.3) over Iω, one has

âω +
p∑

k=1

ln(1 + c1k)

=
∫

Iω

b(t) exp(x1(t))∆t

+
∫

Iω

ϕ(t, exp(x1(t)), exp(x2(t))) exp(x2(t)− x1(t))∆t,

(3.4)

d̂ω +
p∑

k=1

ln(1 + c2k) =
∫

Iω

β(t) exp(x2(t)− x1(t))∆t. (3.5)

Thus, it follows that ∫
Iω

|x∆
1 (t)|∆t ≤ 2âω +

p∑
k=1

ln(1 + c1k),

∫
Iω

|x∆
2 (t)|∆t ≤ 2d̂ω +

p∑
k=1

ln(1 + c2k).

(3.6)

For any (x1, x2)T ∈ X, clearly there exist ζi, ηi ∈ Iω, i = 1, 2, such that

xi(ζi)(or xi(ζ+
i )) = inf

t∈Iω

xi(t), xi(ηi)(or xi(η+
i )) = sup

t∈Iω

xi(t), i = 1, 2.

We only consider the following case (other cases are proved only by replacing ζi(ηi)
by ζ+

i (η+
i ))

xi(ζi) = inf
t∈Iω

xi(t), xi(ηi) = sup
t∈Iω

xi(t), i = 1, 2. (3.7)
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For any ξ ∈ Iω, it holds that

xi(t) ≥ xi(ξ)−
∫

Iω

|x∆
i (s)|∆s−

p∑
k=1

| ln(1 + cik)|, i = 1, 2,

xi(t) ≤ xi(ξ) +
∫

Iω

|x∆
i (s)|∆s +

p∑
k=1

| ln(1 + cik)|, i = 1, 2.

Now we find the bound from above for solutions of (3.3). By (3.4) and the first
equation in (3.6), we have

x1(ζ1) ≤ ln
âω +

∑p
k=1 ln(1 + c1k)

b̂ω
.

Thus,

x1(t) ≤ ln
âω +

∑p
k=1 ln(1 + c1k)

b̂ω
+ 2âω + 2

p∑
k=1

| ln(1 + c1k)| := M1. (3.8)

By (3.5) and (3.7), one has

d̂ω +
p∑

k=1

ln(1 + c2k) ≥ β̂ω exp(x2(ζ2)− x1(η1)), (3.9)

d̂ω +
p∑

k=1

ln(1 + c2k) ≤ β̂ω exp(x2(η2)− x1(ζ1)). (3.10)

It follows from (3.8) and (3.9) that

x2(ζ2) ≤ M1 + ln
d̂ω +

∑p
k=1 ln(1 + c2k)

β̂ω
:= A

which leads to

x2(t) ≤ A + 2d̂ω + 2
p∑

k=1

| ln(1 + c2k)| := M2.

Next, we find a bound from below for solutions of (3.3). This technique is similar
to that in [13]. By (3.4) and the condition (3.1) of Theorem 3.1 we have

â +
1
ω

p∑
k=1

ln(1 + c1k) ≤ b̂ exp(x1(η1)) +
[
α̂0(exp(x1(η1)))m−1

+ α̂1(exp(x1(η1)))m−2 + · · ·+ α̂m−1

]
exp(x2(η2)).

(3.11)

There are two cases: x1(η1) ≤ x2(η2) and x1(η1) ≥ x2(η2).
Case (1): x1(η1) ≤ x2(η2). By (3.11), we obtain

x2(η2) ≥ ln
[ â + 1

ω

∑p
k=1 ln(1 + c1k)

(̂b + α̂m−1) + α̂m−2 exp(WM1) + · · ·+ α̂0(exp(WM1))m−1

]
:= B,

hence,

x2(t) ≥ B − 2d̂ω − 2
p∑

k=1

| ln(1 + c2k)| := l
(1)
2 .
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Therefore, by (3.9), one has x1(η1) ≥ l
(1)
2 + ln[

bβωbdω+
Pp

k=1 ln(1+c2k)
] and then

x1(t) ≥ l
(1)
2 + ln[

β̂ω

d̂ω +
∑p

k=1 ln(1 + c2k)
]− 2âω − 2

p∑
k=1

| ln(1 + c1k)| := l
(1)
1 .

Case (2): x1(η1) ≥ x2(η2). In this case, by (3.11) we may have

â +
1
ω

p∑
k=1

ln(1 + c1k) ≤ α̂0(exp(x1(η1)))m + . . .

+ α̂m−2(exp(x1(η1)))2 + (̂b + α̂m−1) exp(x1(η1)).

(3.12)

Consider the function

$(t) = α̂0t
m + · · ·+ (̂b + α̂m−1)t,

which is increasing for t ≥ 0 with limt→∞$(t) = ∞ and $(0) = 0, so there exists
t∗ > 0 such that $(t∗) = â + 1

ω

∑p
k=1 ln(1 + c1k)]. The inequality (3.12) implies

exp(x1(η1)) ≥ t∗, namely, x1(η1) ≥ ln t∗, which yields

x1(t) ≥ ln t∗ − 2âω − 2
p∑

k=1

| ln(1 + c1k)| := l
(2)
1 . (3.13)

Thus, by (3.10) and (3.13), one has

x2(η2) ≥ l
(2)
1 + ln[

d̂ω +
∑p

k=1 ln(1 + c2k)

β̂ω
]

and hence

x2(t) ≥ l
(2)
1 + ln[

d̂ω +
∑p

k=1 ln(1 + c2k)

β̂ω
]− 2d̂ω − 2

p∑
k=1

| ln(1 + c2k)| := l
(2)
2 .

Choose li = min{l(1)i , l
(2)
i }, i = 1, 2 such that any solution of (3.3) satisfies

|xi(t)| ≤ max{|Mi|, |li|} := Wi, i = 1, 2. (3.14)

Clearly, W1,W2 are independent of λ.
Consider the algebraic equations

â− b̂ exp(x1) +
1
ω

p∑
k=1

ln(1 + c1k)

−exp(x2 − x1)
ω

∫
Iω

µϕ(t, exp(x1), exp(x2))∆t = 0,

d̂ +
1
ω

p∑
k=1

ln(1 + c2k)− β̂ exp(x2 − x1) = 0

(3.15)

for (x1, x2)T ∈ R2, where µ ∈ [0, 1]. Replace ϕ with µϕ in (3.3), then the key
inequality (3.11) still holds. So carry out similar arguments as above, any solution
(x∗1, x

∗
2) of (3.15) with µ ∈ [0, 1] also satisfies

|x∗i | ≤ max{|Mi|, |li|} := Wi, i = 1, 2. (3.16)

Define Ω = {x ∈ X|‖x‖X < W} with W > W1 + W2, it is easy to see Ω satisfies
the condition (1) of Lemma 2.7. Let x ∈ ∂Ω∩ker L = ∂Ω∩R2, then x is a constant
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vector in R2 with ‖x‖X = W . Hence from (3.15) and the definition of W , we see
that QNx 6= 0.

Define a homotopy

Hµ((x1, x2)T) = µQN((x1, x2)T) + (1− µ)U((x1, x2)T), µ ∈ [0, 1], (3.17)

where

U((x1, x2)T) =

(
â− b̂ exp(x1) + 1

ω

∑p
k=1 ln(1 + c1k)

d̂ + 1
ω

∑p
k=1 ln(1 + c2k)− β̂ exp(x2 − x1)

)
. (3.18)

then it follows from (3.14) and (3.16) that Hµ(x) 6= 0 for x ∈ ∂Ω ∩ ker L and
µ ∈ [0, 1]. In addition, it is clear that the algebraic equation U((x1, x2)T) = 0 has
a unique solution in R2. Choose the isomorphism J to be the identity mapping, by
a direct computation and the invariance property of homotopy, so

deg{JQN, Ω ∩ ker L, 0} = deg{QN, Ω ∩ ker L, 0} = deg{U,Ω ∩ ker L, 0} 6= 0,

where deg(·, ·, ·) is the Brouwer degree.
Therefore, Ω defined above satisfies all conditions of Lemma 2.7, then, the system

(1.1) has at least one ω-periodic solution in Dom L ∩ Ω. This completes the proof.
�

For the time scale of non-negative real numbers; i.e., T = R+ = [0,∞), Equaton
(1.1) reduces to (1.2) or its equivalent form (1.3), and f̂ = 1

ω

∫ ω

0
f(s) ds for ω-

periodic function f . Correspondingly, we have following result.

Theorem 3.2. Suppose (1.3) satisfies the following assumptions:
(R1) a(t), b(t), d(t) and β(t) are non-negative ω-periodic continuous real func-

tions and â > 0, d̂ > 0;
(R2) The functional response ϕ : R+ × R+ × R+ → R+ is continuous and ω-

periodic with respect to t, ϕ(t, 0, y) = 0 for any t ∈ R+, y ≥ 0. In addition,
there exists positive integer m and ω-periodic continuous functions αi : R →
R+, i = 0, . . . ,m− 1 such that

ϕ(t, x, y) ≤ α0(t)xm + · · ·+ αm−1(t)x (3.19)

for t ∈ R+, x ≥ 0, y ≥ 0.
Then, system (1.3) has at least one ω-periodic solution if and only if∫ ω

0

a(s) ds +
p∑

k=1

ln(1 + c1k) > 0,

∫ ω

0

d(s) ds +
p∑

k=1

ln(1 + c2k) > 0.

If T is another usual time scale Z+ = {0, 1, . . . , n, . . . , }, Equation (1.1) reduces
to impulsive difference system (1.4) and f̂ = 1

ω

∑ω−1
k=0 f(k). Similarly, we have

following theorem.

Theorem 3.3. Assume that in system (1.4) the following conditions hold.
(Z1) a(j), b(j), d(j) and β(j) are non-negative ω-periodic real sequences and â >

0, d̂ > 0;
(Z2) The functional response ϕ : Z+×R+×R+ → R+ is ω-periodic with respect

to t, ϕ(j, 0, y) = 0 for any j ∈ Z+, y ≥ 0. In addition, there exists positive
integer m and ω-periodic sequences αi : Z+ → R+, i = 0, . . . ,m − 1 such
that

ϕ(j, x, y) ≤ α0(j)xm + · · ·+ αm−1(j)x (3.20)
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for j ∈ Z+, x ≥ 0, y ≥ 0.
Then, system (1.4) has at least one positive ω-periodic solution if and only if

ω−1∑
k=0

a(k) +
p∑

k=1

ln(1 + c1k) > 0,

ω−1∑
k=0

d(k) +
p∑

k=1

ln(1 + c2k) > 0.

In particular, when cik = 0, i = 1, 2, k ∈ N, the impulses in (1.1) disappear. In
this case, (3.2) holds naturally. By Theorem 3.1, we have the following corollary.

Corollary 3.4. It must have at least one ω-periodic positive solution if (H1)–(H2)
are satisfied in system (1.1) with cik = 0, i = 1, 2, k ∈ N.

Remark 3.5. When cik = 0, k ∈ N, i = 1, 2, the existence of periodic solutions
of dynamical system (1.1) on time scales with monotonic functional responses ϕ1–
ϕ3 and ϕ5–ϕ7 is investigated by Bohner et al [6]. The following conditions (the
notation used here are same as that in corresponding papers cited)

(i) c(t, x) ≤ C0(t)x and b̄ē > C̄0d̄ exp{(a + |ā|+ d + |d̄|)ω} in [6, Theorem 3.4];
(ii) c(t, x) ≤ C1(t) and elā > Cu

1 d̄ in [6, Theorem 3.5]
can be eliminated.

Moreover, our results are applicable for both monotone and nonmonotone func-
tional responses. By Corollary 3.4, the conditions

(iii) global monotonicity of response function f(t, x) with respect to x in [14,
Theorem 1] ;

(iv) f̄(·, x) is monotone function for 0 < x < ā/b̄ in [14, Theorem 2];
(v) Al > (ā/b̄)2 in [14, Corollary 3]

are not necessary. Thus, our results improve and extend their related work.

4. Applications

In this section, we apply Theorem 3.2, Theorem 3.3 and Corollary 3.4 to impul-
sive differential/difference systems (1.3)–(1.4) with all kinds of functional responses
mentioned in Section 1. The functions r, A,B,C and D, appearing in the functional
responses ϕ1–ϕ10, are all ω-periodic and r(t) > 0, A(t) > 0, B(t) ≥ 0, C(t) ≥ 0
and D(t) > 0. Then it holds that

ϕ1(t, x) ≤ r(t)x, ϕ2(t, x) ≤ r(t)x/A(t), ϕ3(t, x) ≤ r(t)x2/A(t),

ϕ4(t, x) ≤ r(t)x/A(t), ϕ5(t, x) ≤ r(t)xθ/A(t)(θ > 2),

ϕ6(t, x) ≤ r(t)x2/(A(t)D(t)), ϕ7(t, x) ≤ r(t)A(t)x, ϕ8(t, x, y) ≤ r(t)x/A(t),

ϕ9(t, x, y) ≤ r(t)x/(A(t)D(t)), ϕ10(t, x, y) ≤ r(t)x2/(A(t)D(t))

for t ∈ T, x ∈ R+ and y ∈ R+. Consequently, we have the following results.

Proposition 4.1. Impulsive differential / difference system (1.3) or (1.4) with
monotonic functional response ϕ1–ϕ3 and ϕ5–ϕ7 has at least one positive periodic
solution if (3.2) holds. Moreover, it must have at least one positive periodic solution
if cik = 0, k ∈ N, i = 1, 2.

Remark 4.2. The case of cik = 0, k ∈ N, i = 1, 2 in (1.3) or (1.4) with monotonic
functional responses ϕ1–ϕ3 and ϕ5–ϕ7 is studied by Bohner et al[6], Huo and Li[18],
Fan and Wang[12], Wang et al[25]. By Proposition 4.1, the conditions

(vi) r2(t) ≥ a2(t) in [18, Theorem 2.1];
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(vii) (A7): C0d̄ exp{2(ā + d̄)ω}/(b̄ē) < 1 in [25, Theorem 3.3];
(viii) b̄ē > p̄0d̄ exp{(Ā + ā + D̄ + d̄)ω} in [12, Theorem 2.1];
(ix) elā > pu

1 d̄ in [12, Theorem 2.2]

may be redundant.

Proposition 4.3. Impulsive differential/difference system (1.3) or (1.4) with non-
monotonic functional response ϕ4 has at least one positive periodic solution if (3.2)
holds. Moreover, it must have at least one positive periodic solution if cik = 0,
k ∈ N, i = 1, 2.

Remark 4.4. By Proposition 4.3, the following conditions are not necessary:

(x) r̄1 − ā12 exp{H2}/m2 > 0 in [10, Theorem 2.1];
(xi) the monotonicity of response function with respect to prey in [12, condition

(H2), P55] and in Fazly and Hesaaraki[13, Theorem 1].

For predator-dependent response functions we also have a result.

Proposition 4.5. Impulsive differential / difference system (1.3) or (1.4) with
predator-dependent function responses ϕ8–ϕ10 has at least one positive periodic so-
lution if (3.2) holds. Moreover, it must have at least one positive periodic solution
if cik = 0, k ∈ N, i = 1, 2.
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