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HÖLDER REGULARITY FOR SIGNED SOLUTIONS TO
SINGULAR POROUS MEDIUM TYPE EQUATIONS

SIMONA PUGLISI

Abstract. We prove Hölder regularity for bounded signed solution to singular
porous medium type equations, whose prototype is

ut − div m|u|m−1Du = 0 weakly in ET ,

with m ∈ (0, 1).

1. Introduction and statement of main result

Let E be an open set in RN , for T > 0 denote the cylindrical domain

ET = E × (0, T ]

and let Γ = ∂ET \ Ē × {T} be its parabolic boundary. We consider quasi-linear
homogeneous singular parabolic partial differential equation

ut − divA(x, t, u,Du) = 0 weakly in ET , (1.1)

where A : ET ×RN+1 → RN is measurable and subject to the structure conditions{
A(x, t, z, ξ) · ξ ≥ C0m|z|m−1|ξ|2

|A(x, t, z, ξ)| ≤ C1m|z|m−1|ξ|
(1.2)

for a.e. (x, t) ∈ ET , for every z ∈ R, ξ ∈ RN , where C0, C1 are given positive
constants and 0 < m < 1.

The prototype of this class of parabolic equations is the porous medium equation

ut − divm|u|m−1Du = 0 weakly in ET .

The modulus of ellipticity of this class of parabolic equations is m|u|m−1. Whenever
m > 1, such a modulus vanishes when u vanishes, and for this reason we say that
the equation (1.1)-(1.2) is degenerate. Whenever 0 < m < 1, such a modulus
approaches infinity as u → 0, and for this reason we say that the equation (1.1)-
(1.2) is singular. One also speaks about slow, when m > 1, or fast diffusion, when
0 < m < 1 (see the monograph [8]).
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We are interested only in local solutions to singular porous medium type equa-
tion. The parameters {N,m,C0, C1} are the data, and we say that a generic con-
stant γ = γ(N,m,C0, C1) depends upon the data, if it can be quantitatively deter-
mined a priori only in terms of the indicated parameters. As usual, in the following
the constant γ may change from line to line.

Let us give the notion of weak solution for this kind of equations as follows.
A function u ∈ Cloc(0, T ;L2

loc(E)) with |u|m ∈ L2
loc(0, T ;H1

loc(E)) is a local weak
sub(super)-solution to (1.1) if for every compact set K ⊂ E and every subinterval
[t1, t2] ⊂ (0, T ]∫

K
uϕdx

∣∣t2
t1

+
∫ t2

t1

∫
K
[−uϕt +A(x, t, u,Du) ·Dϕ] dx dt ≤ (≥) 0,

for all non-negative test functions ϕ ∈ H1
loc(0, T ;L2(K)) ∩ L2

loc(0, T ;H1
0 (K)).

Our aim is to show that locally bounded, local, weak solutions of variable sign
to our problem (1.1)-(1.2), with 0 < m < 1, are locally Hölder continuous.

Let us introduce the parabolic m-distance of a compact set K ⊂ ET from the
parabolic boundary Γ in the following way

m-dist(K,Γ) = inf
(x,t)∈K,(y,s)∈Γ

(
‖u‖

1−m
2

∞, ET
|x− y|+ |t− s|1/2

)
.

We can state the main result of this paper as follows.

Theorem 1.1. Let u be a bounded, local, weak solution to (1.1)-(1.2). Then u is
locally Hölder continuous in ET and there exist constants c > 1 and α ∈ (0, 1) such
that for every compact set K ⊂ ET

|u(x1, t1)− u(x2, t2)| ≤ c ‖u‖∞,ET

(‖u‖ 1−m
2

∞,ET
|x1 − x2|+ |t1 − t2|1/2

m-dist(K,Γ)

)α

,

for every pair of points (x1, t1), (x2, t2) ∈ K.

The constant c depends only upon the data, the norm ‖u‖∞,K and m-dist(K,Γ);
the constant α depends only upon the data and the norm ‖u‖∞,K.

In some physical applications it is natural to consider positive solutions to quasi-
linear parabolic equations of the form (1.1), and it is also a very useful simplification
from the mathematical point of view. Therefore, most of the papers directly deal
with positive solutions.

A Hölder regularity result for signed solutions was obtained first by DiBenedetto
in [3] for degenerate (p > 2) p-laplacian type equations and then by Chen and
DiBenedetto in [1] for singular (1 < p < 2) p-laplacian type ones (see also [4]).
Later on, in 1993 Porzio and Vespri [7] considered the case of a degenerate doubly
non-linear equation, whose prototype is

ut − div
(
|u|m−1|Du|p−2Du

)
= 0,

for p ≥ 2 and m ≥ 1. Notice that this kind of equations admits as a particular
case both the degenerate p-laplacian type equations (for m = 1 and p > 2) and the
degenerate porous medium type equations (for p = 2 andm > 1). As a consequence,
it only remained open the case of the singular porous medium type equations.

We want to point out that the difficulty in our case is due to the presence of the
term |u|m−1 in the modulus of continuity; indeed, the fact that u changes sign plays
a crucial role here. In the p-laplacian case, the modulus of continuity is |Du|p−2,
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thus the proof does not change if u is positive or if it changes sign. One could think
to follow the lines of [1] with minor modification, but at some point it will appear
|u|m−1 that one cannot control from above in a sublevel of the modulus of u, being
0 < m < 1.

An important point of our strategy is to work with a different equation, ap-
parently more complicated, but instead easier to handle, to which we can reduce,
thanks to a change of variables introduced by Vespri in [9]. We will apply a tech-
nique due to DiBenedetto [3, 4] via an alternative argument; we will write energy
estimates for super(sub)-solutions and logarithmic estimates. We notice that, due
to the change of variables, our logarithmic function has to be different by the usual
one (see for instance [4]). Then we will use the so-called reduction of oscillation
procedure: the Hölder continuity of a solution u to the transformed equation (2.2)
will be heuristically a consequence of the following fact: for every (x0, t0) ∈ ET

there exists a family of nested and shrinking cylinders in which the essential oscil-
lation of u goes to zero in a way that can be quantitatively determined in terms
of the data. Since this result is well known for non-negative solutions (see [4, 5]),
it will suffice to consider the case in which the infimum of our solution is negative
and the supremum is positive.

2. Change of variables

To justify some of the following calculations, we assume u to be smooth. In no
way this is a restrictive assumption: indeed the modulus of continuity of u will play
no role in the forthcoming calculations.

Let us consider n ∈ N such that

n >
1
m
,

and define
|v|n−1v = u,

which is equivalent to
v = |u| 1n−1u.

Notice that
Du = n|v|n−1Dv, Dv =

1
n
|u| 1n−1Du.

With this substitution equation (1.1) becomes(
|v|n−1v

)
t
− div Ã(x, t, v,Dv) = 0 weakly in ET ,

where
Ã(x, t, v,Dv) = A(x, t, u,Du)

∣∣
u=|v|n−1v

.

Now, let us see what the structure conditions become. We have

Ã(x, t, v,Dv) ·Dv =
1
n
|u| 1n−1A(x, t, u,Du) ·Du

≥ m

n
C0|u|

1
n +m−2|Du|2

= nmC0|v|1+nm−2n|v|2(n−1)|Dv|2

= nmC0|v|nm−1|Dv|2;

since the exponent is nm− 1 > 0, the equation is “degenerate”.
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In the same way

|Ã(x, t, v,Dv)| = |A(x, t, u,Du)| ≤ mC1|u|m−1|Du|

= mC1|v|n(m−1)n|v|n−1|Dv| = nmC1|v|nm−1|Dv|.
If we denote our variable with u again, we are then led to consider equations of the
type

(|u|n−1u)t − div Ã(x, t, u,Du) = 0 weakly in ET ,

with structure conditions{
Ã(x, t, z, ξ) · ξ ≥ nmC0|z|nm−1|ξ|2

|Ã(x, t, z, ξ)| ≤ nmC1|z|nm−1|ξ|,
(2.1)

for a.e. (x, t) ∈ ET and for every z ∈ R, ξ ∈ RN .
Without loss of generality, we can assume n to be odd; in this case

|u|n−1u = un,

and we can rewrite the equation as

(un)t − div Ã(x, t, u,Du) = 0 weakly in ET . (2.2)

Hence we have reduced problem (1.1)-(1.2) to (2.2) with structure conditions (2.1).
Let us now see what the notion of weak solution becomes in this new setting. A

function u such that un ∈ Cloc(0, T ;L2
loc(E)) with |u|nm ∈ L2

loc(0, T ;H1
loc(E)) is a

local weak sub(super)-solution to (2.2) if for every compact set K ⊂ E and every
subinterval [t1, t2] ⊂ (0, T ]∫

K
unϕdx

∣∣t2
t1

+
∫ t2

t1

∫
K
[−unϕt + Ã(x, t, u,Du) ·Dϕ] dx dt ≤ (≥) 0,

for all non-negative test functions ϕ ∈ H1
loc(0, T ;L2(K)) ∩ L2

loc(0, T ;H1
0 (K)).

3. Preliminaries

Let r, s ≥ 1 and let us consider the Banach spaces

V r,s(ET ) = L∞
(
0, T ;Lr(E)

)
∩ Ls

(
0, T ;W 1,s(E)

)
,

V r,s
0 (ET ) = L∞

(
0, T ;Lr(E)

)
∩ Ls

(
0, T ;W 1,s

0 (E)
)
,

both equipped with the norm

‖v‖V r,s(ET ) = ess sup
0<t<T

‖v(·, t)‖r,E + ‖Dv‖s,ET
;

when r = s, let V r,r(ET ) = V r(ET ) and V r,r
0 (ET ) = V r

0 (ET ). Both spaces are
embedded in Lq(ET ), for some q > s (for a proof one can see [4]).

Proposition 3.1. If v ∈ V r,s
0 (ET ), then there exists a positive constant γ, depend-

ing only upon N, r, and s, such that∫∫
ET

|v|q dx dt ≤ γq
( ∫∫

ET

|Dv|s dx dt
)(

ess sup
0<t<T

∫
E

|v|rdx
)s/N

with q = sN+r
N . In particular

‖v‖q,ET
≤ γ‖v‖V r,s(ET ).

Note that, taking r = s in the previous proposition, and applying Hölder in-
equality, one obtains the following result.
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Proposition 3.2. If v ∈ V r
0 (ET ), then there exists a positive constant γ depending

only upon N and r, such that

‖v‖r
r,ET

≤ γ
∣∣{|v| > 0}

∣∣ r
N+r ‖v‖r

V r(ET ).

Given (y, s) ∈ ET , and λ,R > 0, we will denote by KR(y) the cube centered at
y with edge 2R; i.e.,

KR(y) =
{
x ∈ RN : max

1≤i≤N
|xi − yi| < R

}
,

and let ∂KR(y) be its boundary. Let (y, s) +QR(λ) be the generic cylinder

(y, s) +Qρ(λ) = Kρ(y)× [s− λ, s].

If k ∈ R, introduce the truncated functions

(u− k)± = max{±(u− k), 0}.
The following lemma, proved in [2], will be very useful in the sequel.

Lemma 3.3. Let v ∈ W 1,1(Kρ(y)) and let k, l ∈ R, with k < l. There exists a
constant γ = γ(N, p) independent of k, l, v, y, ρ such that

(l − k)|{v > l}| ≤ γ
ρN+1

|{v < k}|

∫
{k<v<l}

|Dv| dx. (3.1)

Let us state now a lemma on fast geometric convergence one can find in [2]; for
a simple proof see again [4] and [6].

Lemma 3.4. Let {Yn}n∈N be a sequence of positive numbers satisfying

Yn+1 ≤ CbnY 1+α
n ,

being C, b > 1 and α > 0. If
Y0 ≤ C−

1
α b−

1
α2 ,

then Yn converges to 0, as n tends to +∞.

Let us prove energy estimates we will need later. We start with estimates for
super-solutions, then we will state the analogous ones for sub-solutions.

Proposition 3.5 (Energy estimates for super-solutions). Let u be a local, weak
super-solution to (2.1)-(2.2) in ET . There exists a positive constant γ, depending
only upon the data, such that for every cylinder (y, s) + QR(λ) ⊂ ET , every level
k ∈ R and every non-negative, piecewise smooth cutoff function ζ vanishing on
∂KR(y),

ess sup
s−λ<t≤s

∫
KR(y)

( ∫ k

u

(k − s)+sn−1ds
)
ζ2(x, t) dx

+
∫∫

(y,s)+QR(λ)

|u|nm−1
∣∣D[(u− k)−ζ]

∣∣2 dx dτ
≤ γ

{∫
KR(y)

( ∫ k

u

(k − s)+sn−1ds
)
ζ2(x, s− λ) dx

+
∫∫

(y,s)+QR(λ)

( ∫ k

u

(k − s)+sn−1ds
)
ζ|ζτ | dx dτ

+
∫∫

(y,s)+QR(λ)

|u|nm−1(u− k)2−|Dζ|2 dx dτ
}
.

(3.2)
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Proof. After a translation we may assume that (y, s) coincides with the origin and
it suffices to prove (3.2) for the cylinder QR(λ). In the weak formulation of (2.2),
take the test function

ϕ = −(u− k)−ζ2

over Qt = KR × (−λ , t], where −λ < t ≤ 0.
Taking into account that

∂

∂τ

( ∫ k

u

(k − s)+sn−1ds
)

= −un−1(u− k)−uτ ,

and estimating the various terms separately, we have first

−
∫∫

Qt

(un)τ (u− k)−ζ2 dx dτ = n

∫∫
Qt

∂

∂τ

( ∫ k

u

(k − s)+sn−1ds
)
ζ2 dx dτ

≥ n

∫
KR

( ∫ k

u

(k − s)+sn−1ds
)
ζ2(x, t) dx

− n

∫
KR

( ∫ k

u

(k − s)+sn−1ds
)
ζ2(x,−λ) dx

− 2n
∫∫

Qt

( ∫ k

u

(k − s)+sn−1ds
)
ζ|ζτ | dx dτ.

From the structure conditions (2.1) and Young’s inequality it follows that

−
∫∫

Qt

Ã(x, τ, u,Du)D
[
(u− k)−ζ2

]
dx dτ

= −
∫∫

Qt

Ã(x, τ, u,Du)D(u− k)−ζ2 dx dτ

− 2
∫∫

Qt

Ã(x, τ, u,Du)(u− k)−ζDζ dx dτ

≥ nmC0

∫∫
Qt

|u|nm−1|D(u− k)−|2ζ2 dx dτ

− 2nmC1

∫∫
Qt

|u|nm−1|D(u− k)−|(u− k)−ζ|Dζ| dx dτ

≥ nm
C0

2

∫∫
Qt

|u|nm−1
∣∣D[(u− k)−ζ]

∣∣2 dx dτ
− 2nm

C2
1

C0

∫∫
Qt

|u|nm−1(u− k)2−|Dζ|2 dx dτ.

Combining these estimates and taking the supremum over t ∈ (−λ, 0], completes
the proof. �

Proposition 3.6 (Energy estimates for sub-solutions). Let u be a local, weak sub-
solution to (2.1)-(2.2) in ET . There exists a positive constant γ, depending only
upon the data, such that for every cylinder (y, s) +QR(λ) ⊂ ET , every level k ∈ R
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and every non-negative, piecewise smooth cutoff function ζ vanishing on ∂KR(y),

ess sup
s−λ<t≤s

∫
KR(y)

( ∫ u

k

(s− k)+sn−1ds
)
ζ2(x, t) dx

+
∫∫

(y,s)+QR(λ)

|u|nm−1
∣∣D[(u− k)+ζ]

∣∣2 dx dτ
≤ γ

{∫
KR(y)

( ∫ u

k

(s− k)+sn−1ds
)
ζ2(x, s− λ) dx

+
∫∫

(y,s)+QR(λ)

( ∫ u

k

(s− k)+sn−1ds
)
|ζτ | dx dτ

+
∫∫

(y,s)+QR(λ)

|u|nm−1(u− k)2+|Dζ|2 dx dτ
}
.

(3.3)

Proof. The proof is analogous to the previous one; we just need to take the test
function ϕ = (u− k)+ζ2 and observe that

∂

∂τ

( ∫ u

k

(s− k)+sn−1ds
)

= un−1(u− k)+uτ . �

Let us introduce the logarithmic function

ψ(Hn, (un − kn)+, νn) = log+
( Hn

Hn − (un − kn)+ + νn

)
,

where
Hn = ess sup

(y,s)+QR(λ)

(un − kn)+, 0 < νn < min{1,Hn},

and for s > 0
log+ s = max{log s, 0}.

Proposition 3.7 (Logarithmic estimates). Let u be a local, weak solution to (2.1)-
(2.2) in ET . There exists a positive constant γ, depending only upon the data,
such that for every cylinder (y, s) + QR(λ) ⊂ ET , every level k ∈ R and every
non-negative, piecewise smooth cutoff function ζ = ζ(x)

ess sup
s−λ<t≤s

∫
KR(y)

ψ2
(
Hn, (un − kn)+, νn

)
(x, t) ζ2(x) dx

≤
∫

KR(y)

ψ2 (Hn, (un − kn)+, νn) (x, s− λ)ζ2(x) dx

+ γ

∫∫
(y,s)+QR(λ)

|u|n(m−1)ψ (Hn, (un − kn)+, νn) |Dζ|2 dx dτ.

(3.4)

Proof. Again we assume that (y, s) coincides with the origin. Put v = un and, in
the weak formulation of (2.2), take the test function

ϕ =
∂ψ2

∂v
ζ2 = 2ψψ′ζ2,

over Qt = KR × (−λ, t], where −λ < t ≤ 0.
By direct calculation (

ψ2
)′′

= 2(1 + ψ)(ψ′)2 ∈ L∞loc(ET ), (3.5)
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which implies that such a ϕ is an admissible testing function. Estimating the
various terms separately, we have∫∫

Qt

vτ
∂ψ2

∂v
ζ2 dx dτ =

∫∫
Qt

∂

∂τ
ψ2ζ2 dx dτ

=
∫

KR

ψ2(x, t)ζ2(x) dx−
∫

KR

ψ2(x,−λ)ζ2(x) dx;

using (3.5) and the structure conditions (2.1)∫∫
Qt

Ã(x, τ, u,Du)D
(∂ψ2

∂v
ζ2

)
dx dτ

=
∫∫

Qt

Ã(x, τ, u,Du)Dv(ψ2)′′ζ2 dx dτ + 2
∫∫

Qt

(ψ2)′ζÃ(x, τ, u,Du)Dζ dx dτ

= 2n
∫∫

Qt

un−1Ã(x, τ, u,Du)Du(1 + ψ)(ψ′)2ζ2 dx dτ

+ 4
∫∫

Qt

ψψ′ζÃ(x, τ, u,Du)Dζ dx dτ

≥ 2n2mC0

∫∫
Qt

un−1|u|nm−1|D(u− k)+|2(1 + ψ)(ψ′)2ζ2 dx dτ

− 4nmC1

∫∫
Qt

|u|nm−1|D(u− k)+|ζ|Dζ|ψψ′ dx dτ.

Applying Young’s inequality, we obtain∫∫
Qt

Ã(x, τ, u,Du)D
(∂ψ2

∂v
ζ2

)
dx dτ

≥ 2nm(nC0 − C1ε
2)

∫∫
Qt

|u|nm−1|u|n−1|D(u− k)+|2ψ(ψ′)2ζ2 dx dτ

− 2nm
C1

ε2

∫∫
Qt

|u|n(m−1)|Dζ|2ψ dx dτ.

Combining these estimates, discarding the term with the gradient on the left-hand
side, and taking the supremum over t ∈ (−λ , 0], proves the proposition. �

4. Reduction of the oscillation

To obtain the Hölder regularity, we argue as usual with this kind of estimate by
a reduction-of-oscillation procedure. Let us state the basic result.

Theorem 4.1. Let (y, s) ∈ ET , and ρ, ω > 0 such that

(y, s) +Q2θρ

( (2ρ)2

ωnm−1

)
⊂ ET , ess osc

(y,s)+Q2θρ

(
(2ρ)2

ωnm−1

)u ≤ ω ,

where
θ = ω

1−n
2 .

Then, there exist η∗, c0 ∈ (0, 1), depending only upon data, such that

ess osc
Q∗

u ≤ η∗ω ,
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where
Q∗ = (y, s) +Qθρ

(
θ∗ρ

2
)
, θ∗ =

c0
2
ω1−nm .

As we show at the end, the local Hölder continuity of locally bounded solutions
is a straightforward consequence of Theorem 4.1. The proof of this theorem splits
into two alternatives.

Let ε ∈ (0, 1), R > 0, and (y, s) ∈ ET . Consider the cylinder

Qε := K
R1−ε n−1

2
(y)× (s−R2−ε(nm−1), s] ⊂ ET ,

and set
µ+ ≥ ess sup

(y,s)+Qε

u , µ− ≤ ess inf
(y,s)+Qε

u , ω = µ+ − µ− .

Let us recall that, without loss of generality, we can assume µ+ > 0, µ− < 0 and

µ+ ≥ |µ−|.

Indeed, otherwise just change the sign of u and work with the new function.
If we take 2ρ < R, and assume without loss of generality

ω > Rε, (4.1)

then we guarantee that

(y, s) +Q2θρ

( (2ρ)2

ωnm−1

)
⊂ Qε.

5. The first alternative

We distinguish two alternatives; the first of them consists in assuming∣∣∣{u < µ− +
ω

2

}
∩

{
(y, s) +Q2θρ

( (2ρ)2

ωnm−1

)}∣∣∣ ≤ c0

∣∣∣Q2θρ

( (2ρ)2

ωnm−1

)∣∣∣, (5.1)

being c0 ∈ (0, 1) a constant to be determined later.
Let us prove now the following De Giorgi type lemma.

Lemma 5.1. There exists a number c0 ∈ (0, 1), depending only upon data, such
that if (5.1) holds, then

u ≥ µ− +
ω

4
a.e. in (y, s) +Qθρ

( ρ2

ωnm−1

)
. (5.2)

Proof. Without loss of generality we may assume (y, s) = (0, 0) and for k = 0, 1, . . .,
set

ρk = ρ+
ρ

2k
, K̃k = Kθρk

, Q̃k = K̃k ×
(
− ρ2

k

ωnm−1
, 0

]
.

Let ζk be a piecewise smooth cutoff function in Q̃k vanishing on the parabolic
boundary of Q̃k such that 0 ≤ ζk ≤ 1, ζk = 1 in Q̃k+1 and

|Dζk| ≤
2k+2

ρ
ω

n−1
2 , 0 ≤ ζk,t ≤

2k

ρ2
ωnm−1.

We consider the following levels

hk = µ− +
ω

4
+

ω

2k+2
if µ− ≥ −ω

8
,

hk = µ− +
ω

25
+

ω

2k+5
if µ− < −ω

8
.

(5.3)
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We first treat the least favorable case in which u might be close to zero; i.e., we
assume first that

µ− ≥ −ω
8
. (5.4)

Write down the energy estimates (3.2) for (u−hk)− over the cylinder Q̃k, to obtain

ess sup
−

ρ2
k

ωnm−1 <t≤0

∫
eKk

( ∫ hk

u

(hk − s)+sn−1ds
)
ζ2
k(x, t) dx

+
∫∫

eQk

|u|nm−1
∣∣D[(u− hk)−ζk]

∣∣2 dx dτ
≤ γ

{∫∫
eQk

( ∫ hk

u

(hk − s)+sn−1ds
)
|ζk,τ | dx dτ

+
∫∫

eQk

|u|nm−1(u− hk)2−|Dζk|2 dx dτ
}
.

Let us introduce the truncation

v = max
(
u,
ω

24

)
,

in order to estimate the terms with the integral over [u, hk]; we have∫ hk

u

(hk − s)+sn−1ds ≥
∫ hk

v

(hk − s)+sn−1ds

≥ vn−1 (v − hk)2−
2

≥
( ω

24

)n−1 (v − hk)2−
2

.

(5.5)

On the other hand, as (u− hk)− ≤ ω and −ω
8 ≤ µ− < 0, we have∫ hk

u

(hk − s)+sn−1ds ≤ hn−1
k

(u− hk)2−
2

≤ ωn+1

2
. (5.6)

By the definition of v, we obtain∫∫
eQk

vnm−1
∣∣D[(v − hk)−ζk]

∣∣2 dx dτ
=

∫∫
eQk∩{u> ω

24 }
|u|nm−1

∣∣D[(u− hk)−ζk]
∣∣2 dx dτ

+
∫∫

eQk∩{u≤ ω
24 }

( ω
24

)nm−1 ( ω
24
− hk

)2

−
|Dζk|2 dx dτ

≤
∫∫

eQk

|u|nm−1
∣∣D[(u− hk)−ζk]

∣∣2 dx dτ +
22(k+1)

ρ2
ωn(m+1)|Ak| ,

(5.7)

where
Ak = {u < hk} ∩ Q̃k.

Let us observe that
Ak = Ãk := {v < hk} ∩ Q̃k. (5.8)

Indeed, the inclusion Ak ⊇ Ãk follows by the definition of v; let us now prove the
other one: if v = u there is nothing to prove; if v = ω

24 , by (5.4) we have

hk = µ− +
ω

4
+

ω

2k+2
≥ ω

8
+

ω

2k+2
≥ ω

24
.
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Taking into account that |u| ≤ ω, (5.5)-(5.8) yield( ω
24

)n−1

ess sup
−

ρ2
k

ωnm−1 <t≤0

∫
eKk

(v − hk)2−ζ
2
k(x, t) dx+

∫∫
eQk

vnm−1
∣∣D[(v − hk)−ζk]

∣∣2 dx dτ
≤ γ

22k

ρ2
ωn(m+1)|Ãk|,

and again, thanks to the definition of v, it follows that

ess sup
−

ρ2
k

ωnm−1 <t≤0

∫
eKk

(v − hk)2−ζ
2
k(x, t) dx+

( ω
24

)n(m−1)
∫∫

eQk

∣∣D[(v − hk)−ζk]
∣∣2 dx dτ

≤ γ
22k

ρ2
ωnm+1|Ãk|.

(5.9)

The change of variables
x̄ = x θ−1, t̄ = ωnm−1τ

maps the cube K̃k into Kρk
, and the cylinder Q̃k into Qk = Kρk

× (−ρ2
k, 0]. With

(x̄, t̄) → u(x̄, t̄) denoting again the transformed function, the assumption (5.1) of
the lemma implies ∣∣∣{v < µ− +

ω

2

}
∩Q0

∣∣∣ ≤ c0|Q0|. (5.10)

Performing such a change of variables in (5.9), we have

ess sup
−ρ2

k<t≤0

∫
Kρk

(v − hk)2−ζ
2
k(x̄, t) dx̄+

∫∫
Qk

∣∣D[(v − hk)−ζk]
∣∣2dx̄dt̄

≤ γ
22k

ρ2
ω2|Āk|,

where
Āk = {v < hk} ∩Qk.

This implies ∥∥(v − hk)−ζk
∥∥2

V 2(Qk)
≤ γ

22k

ρ2
ω2|Āk|. (5.11)

Then from Proposition 3.2 with r = 2 and (5.11), one obtains∫∫
Qk+1

(v − hk)2−dx̄dt̄ ≤
∫∫

Qk

(v − hk)2−ζ
2
k dx̄dt̄

≤ γ|{v < hk} ∩Qk|
2

N+2
∥∥(v − hk)−ζk

∥∥2

V 2(Qk)

≤ γ
22k

ρ2
ω2|Āk|1+

2
N+2 ;

the left-hand side is estimated by∫∫
Qk+1

(v − hk)2−dx̄dt̄ =
∫∫

Qk+1∩{v<hk}
(hk − v)2dx̄dt̄

≥
∫∫

Qk+1∩{v<hk+1}
(hk − v)2dx̄dt̄

≥ (hk − hk+1)2|Āk+1|
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=
( ω

2k+3

)2

|Āk+1|.

Combining the previous estimates yields

|Āk+1| ≤ γ
24k

ρ2
|Āk|1+

2
N+2 ,

and setting

Yk =
|Āk|
|Qk|

,

it follows that
Yk+1 ≤ γ 24k Y

1+ 2
N+2

k .

Thanks to Lemma 3.4, we deduce that Yk tends to zero as k →∞, provided

Y0 =
|{v < h0} ∩Q0|

|Q0|
=
|
{
v < µ− + ω

2

}
∩Q0|

|Q0|
≤ γ−

N+2
2 2−(N+2)2 ,

that is (5.10), with c0 := γ−
N+2

2 2−(N+2)2 .
Therefore,

v ≥ µ− +
ω

4
a.e. in Kρ × (−ρ2, 0].

Returning to the variables x, t, we have

v ≥ µ− +
ω

4
a.e. in Qθρ

( ρ2

ωnm−1

)
; (5.12)

this implies that u = v in Qθρ

(
ρ2

ωnm−1

)
and, consequently, (5.2). In fact, by contra-

diction, if there were a point (x, t) ∈ Qθρ

(
ρ2

ωnm−1

)
such that v(x, t) = ω

24 , by (5.12)
and (5.4), we would obtain

ω

24
≥ µ− +

ω

4
≥ ω

8
.

Assume now that (5.4) is violated; that is, µ− < −ω
8 . Choosing the levels hk

according to (5.3), we have

hk = µ− +
ω

25
+

ω

2k+5
< −ω

8
+
ω

25
+

ω

2k+5
≤ − ω

25
.

Thus on the set {u ≤ hk}, one has

|u|nm−1 ≥
( ω

25

)nm−1

.

It follows that |u|nm−1 can be estimate above and below by ωnm−1 up to a constant,
depending only upon the data; the proof can be repeated as before, but in this case
there is no need to introduce the truncated function v. �

Therefore under assumption (5.1),

− ess inf
Qθρ( ρ2

ωnm−1 )

u ≤ −µ− −
ω

4
;

adding ess sup
Qθρ( ρ2

ωnm−1 )

u, gives

ess osc
Qθρ( ρ2

ωnm−1 )

u ≤ ess sup
Qθρ( ρ2

ωnm−1 )

u− µ− −
ω

4
≤ 3

4
ω.
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6. The second alternative

Let us recall the two fundamental hypotheses we assume, namely

µ+ > 0 , µ− < 0 , µ+ ≥ |µ−|.
Throughout this new section, let us assume that (5.1) does not hold; i.e.,∣∣∣{u ≥ µ− +

ω

2
}
∩

{
(y, s) +Q2θρ

( (2ρ)2

ωnm−1

)}∣∣∣ < (1− c0)
∣∣∣Q2θρ

( (2ρ)2

ωnm−1

)∣∣∣.
For simplicity in the following we assume (y, s) = (0, 0).

Lemma 6.1. There exists a time level t∗ in the interval
(
− (2ρ)2

ωnm−1 ,− c0
2

(2ρ)2

ωnm−1

)
such that ∣∣∣{u(·, t∗) < µ− +

ω

2
}
∩K2θρ

∣∣∣ > c0
2
|K2θρ|. (6.1)

This in turn implies∣∣∣{u(·, t∗) ≥ µ+ −
ω

4
}
∩K2θρ

∣∣∣ ≤ (
1− c0

2

)
|K2θρ|. (6.2)

Proof. By contradiction, suppose that (6.1) does not hold for any t∗ in the indicated
range; then∣∣∣{u < µ− +

ω

2
}
∩Q2θρ

( (2ρ)2

ωnm−1

)∣∣∣ =
∫ − c0

2
(2ρ)2

ωnm−1

− (2ρ)2

ωnm−1

∣∣∣{u(·, t∗) < µ− +
ω

2
}
∩K2θρ

∣∣∣dt∗
+

∫ 0

− c0
2

(2ρ)2

ωnm−1

∣∣∣{u(·, t∗) < µ− +
ω

2
}
∩K2θρ

∣∣∣dt∗
≤ c0

2
|K2θρ|

(
1− c0

2

) (2ρ)2

ωnm−1
+ |K2θρ|

c0
2

(2ρ)2

ωnm−1

< c0
∣∣Q2θρ

( (2ρ)2

ωnm−1

)∣∣.
This proves (6.1); (6.2) follows by the fact that (6.1) is equivalent to∣∣∣{u(·, t∗) ≥ µ− +

ω

2
}
∩K2θρ

∣∣∣ < (
1− c0

2

)
|K2θρ|,

and µ− + ω
2 ≤ µ+ − ω

4 . �

The next lemma asserts that a property similar to (6.2) continues to hold for all
time levels from t∗ up to zero.

Lemma 6.2. There exists a positive integer j∗, depending upon the data and c0,
such that ∣∣∣{u(·, t) > µ+ −

ω

2j∗

}
∩K2θρ

∣∣∣ < (
1− c20

4
)
|K2θρ|,

for all times t∗ < t < 0.

Proof. Consider the logarithmic estimates (3.4) written over the cylinder K2θρ ×
(t∗, 0) for the function (un − kn)+ and for the level k =

(
µn

+ − (ω
4 )n

)1/n. Notice
that, thanks to our assumptions, µ+ > ω

4 , so k > 0. The number ν in the definition
of the logarithmic function is taken as ν = ω

2j+2 , where j is a positive number to
be chosen. Thus we have

ψ (Hn, (un − kn)+, νn) = log+
( Hn

Hn − (un − kn)+ + ωn

2(j+2)n

)
,
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where
Hn = ess sup

K2θρ×(t∗,0)

[
un −

(
µn

+ − (
ω

4
)n

)]
+
.

The cutoff function x→ ζ(x) is taken such that

ζ = 1 on K(1−σ)2θρ for σ ∈ (0, 1), |Dζ| ≤ 1
σθρ

.

With these choices, inequality (3.4) yields∫
K(1−σ)2θρ

ψ2(x, t) dx

≤
∫

K2θρ

ψ2(x, t∗) dx+ γ

∫ 0

t∗

∫
K2θρ

|u|n(m−1)ψ|Dζ|2 dx dτ,
(6.3)

for all t∗ ≤ t ≤ 0. Let us observe that

ψ ≤ log
( ωn

22n

ωn

2(j+2)n

)
= jn log 2.

To estimate the first integral on the right-hand side of (6.3), observe that ψ vanishes
on the set {un < kn} and that µn

+ −
(

ω
4

)n ≥
(
µ+ − ω

4

)n; therefore by (6.2)∫
K2θρ

ψ2(x, t∗) dx ≤ j2n2 log2 2
(
1− c0

2

)
|K2θρ|.

The remaining integral is estimated as follows

γ

∫ 0

t∗

∫
K2θρ

|u|n(m−1)ψ|Dζ|2 dx dτ

≤ γ

(σθρ)2
jn log 2

(2ρ)2

ωnm−1
ωn(m−1)|K2θρ| =

γ

σ2
jn|K2θρ|.

Combining the previous estimates,∫
K(1−σ)2θρ

ψ2(x, t) dx ≤
{
j2n2 log2 2

(
1− c0

2

)
+

γ

σ2
jn

}
|K2θρ| (6.4)

for all t∗ ≤ t ≤ 0. The left-hand side of (6.4) is estimated below by integrating over
the smaller set {

un > µn
+ −

ωn

2(j+2)n

}
;

on such a set, since ψ is a decreasing function of Hn, we have

ψ2 ≥ log2
( ωn

22n

ωn

2(j+1)n

)
= (j − 1)2n2 log2 2;

hence, for all t∗ ≤ t ≤ 0, we obtain∣∣∣{un(·, t) > µn
+ −

ωn

2(j+2)n

}
∩K(1−σ)2θρ

∣∣∣ ≤ {( j

j − 1
)2

(
1− c0

2

)
+

γ

σ2j

}
|K2θρ|.

On the other hand,∣∣∣{un(·, t) > µn
+ −

ωn

2(j+2)n

}
∩K2θρ

∣∣∣
≤

∣∣∣{un(·, t) > µn
+ −

ωn

2(j+2)n

}
∩K(1−σ)2θρ

∣∣∣ + |K2θρ \K(1−σ)2θρ|
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≤
∣∣∣{un(·, t) > µn

+ −
ωn

2(j+2)n

}
∩K(1−σ)2θρ

∣∣∣ +Nσ|K2θρ|.

Then∣∣∣{un(·, t) > µn
+ −

ωn

2(j+2)n

}
∩K2θρ

∣∣∣ ≤ {( j

j − 1

)2(
1− c0

2

)
+

γ

σ2j
+Nσ

}
|K2θρ|.

for all t∗ ≤ t ≤ 0. Now choose σ so small and then j so large as to obtain∣∣∣{u(·, t) > (
µn

+ −
ωn

2(j+2)n

)1/n}
∩K2θρ

∣∣∣ ≤ (
1− c20

4
)
|K2θρ| ∀t∗ ≤ t ≤ 0.

Notice that our hypotheses imply µ+ ≥ ω
2 , µ+ < ω; therefore,(

µn
+ −

ωn

2(j+2)n

)1/n

<
(
µn

+ −
µn

+

2(j+2)n

)1/n

= µ+

(
1− 1

2(j+2)n

)1/n

≤ µ+

(
1− 1

2(j+2)n n

)
≤ µ+ −

ω

2(j+2)n+1 n
.

The proof is completed once we choose j∗ as the smallest integer such that

µ+ −
ω

2(j+2)n+1 n
≤ µ+ −

ω

2j∗
. �

Corollary 6.3. For all j ≥ j∗ and for all times − c0
2

(2ρ)2

ωnm−1 < t < 0,∣∣∣{u(·, t) > µ+ −
ω

2j

}
∩K2θρ

∣∣∣ < (
1− c20

4

)
|K2θρ|. (6.5)

Motivated by Corollary 6.3, introduce the cylinder

Q∗ = K2θρ ×
(
− θ∗(2ρ)2, 0

]
, with θ∗ =

c0
2
ω1−nm.

Lemma 6.4. For every ν∗ ∈ (0, 1), there exists a positive integer q∗ = q∗(data, ν∗)
such that ∣∣∣{u ≥ µ+ −

ω

2j∗+q∗

}
∩Q∗

∣∣∣ ≤ ν∗|Q∗|.

Proof. Write down the energy estimates (3.3) for the truncated functions (u−kj)+,
with kj = µ+ − ω

2j , for j = j∗, . . . , j∗ + q∗ over the cylinder

Q̃ = K4θρ ×
(
− c0

(2ρ)2

ωnm−1
, 0

]
⊃ Q∗ ;

the cutoff function ζ is taken to be one on Q∗, vanishing on the parabolic boundary
of Q̃ and such that

|Dζ| ≤ 1
θρ
, 0 ≤ ζt ≤

ωnm−1

c0ρ2
.

Thanks to these choices, the energy estimates (3.3) take the form∫∫
Q̃

|u|nm−1|D(u− kj)+|2ζ2 dx dτ

≤ γ
{ωnm−1

c0ρ2

∫∫
Q̃

( ∫ u

kj

(s− kj)+sn−1ds
)
dx dτ

+
ωn−1

ρ2

∫∫
Q̃

|u|nm−1(u− kj)2+ dx dτ
}
.
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Estimating ∫ u

kj

(s− kj)+sn−1ds ≤ un−1 (u− kj)2+
2

≤ ωn−1 (u− kj)2+
2

,

and taking into account that (u− kj)+ ≤ ω
2j , yields∫∫

Q̃

|u|nm−1|D(u− kj)+|2ζ2 dx dτ ≤ γ
( ω

2j

)2

ωn−1ω
nm−1

c0 ρ2
|Q∗|.

Note that u > kj ≥ ω
4 : indeed the second inequality is equivalent to

µ+ ≥ |µ−|
(1

4
+

1
2j

)(3
4
− 1

2j

)−1

,

and this is implied by our assumptions. Thus we can estimate∫∫
eQ |u|

nm−1|D(u− kj)+|2ζ2 dx dτ ≥
∫∫

Q∗

|u|nm−1|D(u− kj)+|2 dx dτ

≥
(ω

4

)nm−1
∫∫

Q∗

|D(u− kj)+|2 dx dτ ;

it follows that ∫∫
Q∗

|D(u− kj)+|2 dx dτ ≤ γ
( ω

2j

)2

ωn−1 1
c0ρ2

|Q∗|. (6.6)

Next, apply the isoperimetric inequality (3.1) to the function u(·, t), for t in the
range (−θ∗(2ρ)2, 0], over the cube K2θρ, and for the levels

k = kj < l = kj+1;

in this way (l − k) = ω
2j+1 .

Taking into account (6.5), this gives
ω

2j+1
|{u(·, t) > kj+1} ∩K2θρ|

≤ (2θρ)N+1

|{u(·, t) < kj} ∩K2θρ|

∫
{kj<u(·,t)<kj+1}∩K2θρ

|Du| dx

≤ 8θρ
c20

∫
{kj<u(·,t)<kj+1}∩K2θρ

|Du| dx;

integrating in dt over the indicated interval and applying the Hölder inequality, one
gets

ω

2j+1
|Aj+1| ≤

8θρ
c20

( ∫∫
Q∗

|D(u− kj)+|2 dx dt
)1/2

(|Aj | − |Aj+1|)1/2,

where
Aj = {u > kj} ∩Q∗.

Square both sides of this inequality and estimate above the term containing |D(u−
kj)+| by inequality (6.6), to obtain

|Aj+1|2 ≤
γ

c50
|Q∗| (|Aj | − |Aj+1|) .
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Add these recursive inequalities for j = j∗ + 1, . . . , j∗ + q∗ − 1, where q∗ is to be
chosen. Majorizing the right-hand side with the corresponding telescopic series,
gives

(q∗ − 2)|Aj∗+q∗ |2 ≤
j∗+q∗−1∑
j=j∗+1

|Aj+1|2 ≤
γ

c50
|Q∗|2.

From this

|Aj∗+q∗ | ≤
1√
q∗ − 2

√
γ

c50
|Q∗|.

The number ν∗ being fixed, choose q∗ from
1√
q∗ − 2

√
γ

c50
= ν∗. �

Now let ξ ∈ (0, 1
2 ), a ∈ (0, 1) be fixed numbers.

Lemma 6.5. There exists a number c∗ ∈ (0, 1), depending upon the data, ξ, and
a, such that if

| {u ≥ µ+ − ξω} ∩Q∗| ≤ c∗|Q∗|, (6.7)
then

u ≤ µ+ − aξω a.e. in Qθρ(θ∗ρ2).

Proof. For k = 0, 1, . . ., set

ρk = ρ+
ρ

2k
, Kk = Kθρk

, Qk = Kk × (−θ∗ρ2
k, 0].

Let ζ(x, t) = ζ1(x)ζ2(t) be a piecewise smooth cutoff function in Qk such that

ζ1 =

{
1 in Kk+1

0 in RN \Kk,
|Dζ1| ≤

2k+2

θρ
,

ζ2 =

{
1 if t ≥ − ρ2

k+1
ωnm−1

0 if t < − ρ2
k

ωnm−1 ,
0 ≤ ζ2,t ≤

2k

θ∗ρ2
.

Choose the sequence of truncating levels

hk = µ+ − ξkω, where ξk = aξ +
1− a

2k
ξ,

and write down the energy estimates (3.3) for (u− hk)+ over the cylinder Qk,

ess sup
−

ρ2
k

ωnm−1 <t≤0

∫
Kk

( ∫ u

hk

(s− hk)+sn−1ds
)
ζ2(x, t) dx

+
∫∫

Qk

|u|nm−1
∣∣D[(u− hk)+ζ]

∣∣2 dx dτ
≤ γ

{∫∫
Qk

( ∫ u

hk

(s− hk)+sn−1ds
)
|ζt| dx dτ

+
∫∫

Qk

|u|nm−1(u− hk)2+|Dζ|2 dx dτ
}
.

Let us estimate ∫ u

hk

(s− hk)+sn−1ds ≥ hn−1
k

(u− hk)2+
2

,
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hk

(s− hk)+sn−1ds ≤ un−1 (u− hk)2+
2

≤ ωn−1 (u− hk)2+
2

.

Taking into account that (u− hk)+ ≤ ξω and the definition of θ and θ∗, one has

ess sup
−

ρ2
k

ωnm−1 <t≤0

hn−1
k

∫
Kk

(u− hk)2+
2

ζ2(x, t) dx +
∫∫

Qk

|u|nm−1
∣∣D[(u− hk)+ζ]

∣∣2 dx dτ
≤ γ(ξω)2

{
ωn−1 2k

θ∗ρ2
+ ωnm−1 22k

(θρ)2
}
|Ak|

= γ
22k

ρ2
(ξω)2ωn−1 ωnm−1|Ak|,

where
Ak = {u < hk} ∩Qk.

Note that u > hk ≥
(

1
2 − ξ

)
ω: indeed the last inequality is equivalent to

µ+ ≥ |µ−|
(1

2
− ξ + ξk

)(1
2

+ ξ − ξk

)−1

,

and this follows by our hypotheses. Therefore, we obtain

ess sup
−

ρ2
k

ωnm−1 <t≤0

∫
Kk

(u− hk)2+ζ
2(x, t) dx ≤ γ

22k

ρ2

(1
2
− ξ

)1−n

(ξω)2 ωnm−1|Ak|,

∫∫
Qk

|D[(u− hk)+ζ]|2 dx dτ ≤ γ
22k

ρ2

(1
2
− ξ

)1−nm

(ξω)2ωn−1|Ak|.

(6.8)

By (u− hk)+ ≥ 1−a
2k+1 ξω, applying the Hölder inequality, and then Proposition 3.1,

(6.8) yields

(1− a)2

22(k+1)
(ξω)2|Ak+1| ≤

∫∫
Qk+1

(u− hk)2+ dx dτ ≤
∫∫

Qk

(u− hk)2+ζ
2 dx dτ

≤
( ∫∫

Qk

[(u− hk)+ζ]
2(N+2)

N dx dτ
)N/(N+2)

|Ak|2/(N+2)

≤ γ
( ∫∫

Qk

∣∣D[(u− hk)+ζ]
∣∣2 dx dτ)N/(N+2)

×
(

ess sup
−

ρ2
k

ωnm−1 <t≤0

∫
Kk

[(u− hk)+ζ]2dx
)2/(N+2)

|Ak|2/(N+2)

≤ γ
22k

ρ2
(ξω)2ω

2(nm−1)+N(n−1)
N+2

(1
2
− ξ

)N(1−nm)+2(1−n)
N+2 |Ak|1+

2
N+2 .

It follows that

|Ak+1| ≤ γ
24k

(1− a)2ρ2
ω

2(nm−1)+N(n−1)
N+2

(1
2
− ξ

)N(1−nm)+2(1−n)
N+2 |Ak|1+

2
N+2 .

Setting

Yk =
|Ak|
|Qk|

,
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we obtain

Yk+1 ≤ γ
24k

(1− a)2ρ2
ω

2(nm−1)+N(n−1)
N+2

(1
2
− ξ

)N(1−nm)+2(1−n)
N+2

ρ2(θNθ∗)
2

N+2Y
1+ 2

N+2
k

= γ
24k

(1− a)2
(1

2
− ξ

)N(1−nm)+2(1−n)
N+2

Y
1+ 2

N+2
k .

Applying Lemma 3.4, Yk tends to zero as k →∞, provided

Y0 =
|{u > h0} ∩Q0|

|Q0|
=
|{u > µ+ − ξω} ∩Q0|

|Q0|

≤ γ−
N+2

2

(1− a)−(N+2)

(1
2
− ξ

)N(nm−1)+2(n−1)
2

2−(N+2)2 ,

which is (6.7) with c∗ := γ−
N+2

2

(1−a)−(N+2)

(
1
2−ξ

)N(nm−1)+2(n−1)
2 2−(N+2)2 . This completes

the proof. �

Thanks to Lemma 6.4, we can apply Lemma 6.5 with ξ = 1
2j∗+q∗ and a = 1

2 ,
getting

u ≤ µ+ −
ω

2j∗+q∗+1
a.e. in Qθρ

(
θ∗ρ

2
)
,

which implies

ess sup
Qθρ(θ∗ρ2)

u ≤ µ+ −
ω

2j∗+q∗+1
.

Hence

ess osc
Qθρ(θ∗ρ2)

u ≤ µ+ − ess inf
Qθρ(θ∗ρ2)

u− ω

2j∗+q∗+1
≤ ω

(
1− 1

2j∗+q∗+1

)
.

7. Conclusion

The two alternatives just discussed can be combined to prove Theorem 4.1.

Proof of Theorem 4.1. The concluding statement of the first alternative says that

ess osc
Qθρ( ρ2

ωnm−1 )

u ≤ 3
4
ω;

analogously, the conclusion of the second alternative is that

ess osc
Q∗

u = ess osc
Qθρ(θ∗ρ2)

u ≤ ω
(
1− 1

2j∗+q∗+1

)
.

Recalling the definition of θ∗, we observe that

Q∗ = Qθρ(θ∗ρ2) ⊂ Qθρ

( ρ2

ωnm−1

)
.

The thesis follows by defining

η∗ := 1− 1
2j∗+q∗+1

.

�

We are now ready to prove the local Hölder regularity.
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Proof of Theorem 1.1. Let us remind that we fixed ε ∈ (0, 1), R > 0, (y, s) ∈ ET ,
and we considered the cylinder

Qε = K
R1−ε n−1

2
(y)× (s−R2−ε(nm−1), s] ⊂ ET .

Let now β, δ ∈ (0, 1) to be chosen, and let us introduce the sequences

Rk := βkR, ωk := δkω, θk := ω
1−n

2
k , Qk := (y, s) +QθkRk

( R2
k

ωnm−1
k

)
,

for k ∈ N. The thesis follows by standard arguments once we prove that
Qk+1 ⊂ Qk ⊂ Qε ⊂ ET ∀k ∈ N,

ess osc
Qk

u ≤ ωk.
(7.1)

The inclusion Q0 ⊂ Qε immediately follows by assumption (4.1), while Qk+1 ⊂ Qk

is equivalent to
β ≤ min{δ

n−1
2 , δ

nm−1
2 } = δ

n−1
2 .

To prove (7.1), we will argue by induction. The validity for k = 0 is true by
construction since

ess osc
Q0

u ≤ ess osc
Qε

u ≤ ω.

Assume that (7.1) holds for k and apply Theorem 4.1 taking ρ = Rk

2 and ω = ωk;
thanks to these choices

θ = θk , (y, s) +Q2θρ

( (2ρ)2

ωnm−1

)
= Qk .

The assumptions of Theorem 4.1 are satisfied because (7.1) holds for k; hence, we
have ess oscQ∗ u ≤ η∗ωk, where in this setting

Q∗ = (y, s) +Q
θk

Rk
2

(c0
8
ω1−nm

k R2
k

)
.

This leads us to choose δ = η∗ ∈ (0, 1), so that η∗ωk = ωk+1. It remains only to
check Qk+1 ⊂ Q∗, which by a simple calculation is equivalent to

β ≤ min
{1

2
δ

n−1
2 ,

√
c0
8
δ

nm−1
2

}
.

We conclude by choosing β small enough. �
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