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EXISTENCE AND UNIQUENESS FOR BOUNDARY-VALUE
PROBLEM WITH ADDITIONAL SINGLE POINT CONDITIONS

OF THE STOKES-BITSADZE SYSTEM

MUHAMMAD TAHIR

Abstract. This article shows the uniqueness of a solution to a Bitsadze sys-
tem of equations, with a boundary-value problem that has four additional
single point conditions. It also shows how to construct the solution.

1. Introduction

The planar Stokes flow based on stream function ψ(x, y) and stress function
φ(x, y), is expressed as

φxx − φyy = −4ηψxy,

−φxy = η(ψyy − ψxx),
(1.1)

where η is a material constant, see for the details [4, 5, 9]. The re-scaling (2ηψ → ψ)
reduces the system (1.1) to

φxx − φyy + 2ψxy = 0,
ψxx − ψyy − 2φxy = 0,

(1.2)

which is the famous second order elliptic system called the Bitsadze system of
equations and is identified as Stokes-Bitsadze system [10]. In the literature Bitsadze
appears to have been the first to question the uniqueness and existence or even the
well-posedness of (1.2) subject to certain boundary conditions, see for reference
[2, 3, 7]. Oshorov [8] finds well-posed problems for the Cauchy-Riemann system
and extends those to the Bitsadze system (1.2). Vaitekhovich [12] discusses Dirichlet
and Schwarz problems for the inhomogeneous Bitsadze equation for a circular ring
domain. In the interior of unit disc a boundary value problem for the Bitsadze
equation is considered by Babayan [1] and is proved to be Noetherian. In his
paper Babayan also proposes solvability conditions for the inhomogeneous Bitsadze
equation. The unique solvability in a unit disc for the inhomogeneous Bitsadze
system is discussed in [6].

The Stokes-Bitsadze system (1.2) can be expressed in the matrix form as

AUxx + 2BUxy + CUyy = 0, (1.3)
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where

A =
(

1 0
0 1

)
, B =

(
0 1
−1 0

)
, C = −A, U(x, y) =

(
φ
ψ

)
.

In a domain Ω ⊂ R2 with boundary Γ a linear boundary value problem of Poincaré
for the system (1.3) can be formulated as

p1Ux + p2Uy + qU = α(x, y), (x, y) ∈ Γ (1.4)

where p1, p2, q are real 2×2 matrices and α(x, y) a real vector given on the boundary
Γ. The boundary-value problems of Poincaré for the Stokes-Bitsadze system will be
discussed elsewhere. In this paper we are interested in a boundary value problem
with four additional single point conditions.

2. A boundary value problem with additional single point conditions

We consider the Stokes-Bitsadze system (1.2) in domain Ω ⊂ R2 with boundary
Γ subject to the following boundary conditions.

ψ = f, ψn = g on Γ, (2.1)

and

φ = φP , ∇φ = (∇φ)P , ∆φ = (∆φ)P , at a single point P ∈ Ω̄. (2.2)

Theorem 2.1. For f, g ∈ C(Γ), the boundary value problem (2.1)–(2.2) for the
Stokes-Bitsadze system (1.2) has a unique solution (φ, ψ) ∈ C4(Ω)× C4(Ω).

Proof. Suppose φ, ψ ∈ C4(Ω). If (φ, ψ) satisfies (1.2), then φ and ψ are biharmonic
in Ω, and for f, g ∈ C(Γ) the problem

∆2ψ = 0 in Ω
ψ = f on Γ
ψn = g on Γ

(2.3)

has a unique solution ψ ∈ C4(Ω), [11], that satisfies (1.2) and (2.1). Let the unique
solution be denoted by ψ̃. Now we show that for the unique ψ̃ if there exists
φ satisfying (1.2) and (2.1)–(2.2) then that φ is unique. Assume that the pairs
(φ1, ψ̃) and (φ2, ψ̃) with φ1 6= φ2 satisfy (1.2) and (2.1)–(2.2) and that δ = φ1−φ2.
Then from (1.2) it immediately follows that

δxx − δyy = 0, δxy = 0 on Ω. (2.4)

But (2.2) then yields

δ = 0, ∇δ = 0, ∆δ = 0 at P, (2.5)

and the general solution of the system (2.4) becomes,

δ = ax+ by + c(x2 + y2) + d, (2.6)

which on imposing the conditions (2.5) gives δ ≡ 0 in Ω̄ and uniqueness of φ thus
follows. Hence there exists at most one pair (φ, ψ) ∈ C4(Ω) × C4(Ω) that can
satisfy (1.2) and (2.1)–(2.2). We are now in a position to assume (without proof)
that (φ̃, ψ̃) is a solution of (1.2) and (2.1)–(2.2).

Next, we suppose that P (xP , yP ) and Q(x, yP ) are the points in Ω̄, refer to the
Figure 1.
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Figure 1. Boundary conditions and additional single point conditions

At point P the expressions (1.2)(a) and (2.2)(c) respectively take the form

φP
xx − φP

yy = −2ψP
xy,

φP
xx + φP

yy = ∆φP ,
(2.7)

from which it is obvious that φP
xx and φP

yy are known at P . Since (φ̃, ψ̃) satisfies
(1.2)(b), therefore

φ̃xyy =
1
2
[ψ̃xxy − ψ̃yyy], (2.8)

and on integration along PQ we have

φ̃yy(x, yP ) = φP
yy +

1
2

∫ x

xP

[ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )]dλ, (2.9)

φ̃y(x, yP ) = φP
y +

1
2

∫ x

xP

[ψ̃xx(λ, yP )− ψ̃yy(λ, yP )]dλ. (2.10)

Since all the terms on right hand sides of (2.9) and (2.10) are known therefore φ̃yy

and φ̃y are known along PQ. Since (φ̃, ψ̃) satisfies (1.2)(a), we have

φ̃xx = φ̃yy − 2ψ̃xy, (2.11)

and using (2.9), can further be expressed as

φ̃xx(x, yP ) = φP
yy +

1
2

∫ x

xP

[ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )]dλ− 2ψ̃xy(λ, yP ). (2.12)

Further on integration along PQ, we have

φ̃x(x, yP ) = φP
x +

∫ x

xP

[
φP

yy +
1
2

∫ µ

xP

[ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )]
]
dλ dµ

− 2
∫ x

xP

ψ̃xy(λ, yP ) dλ,
(2.13)
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whence

φ̃(x, yP )

= φP + (x− xP )φP
x +

1
2
(x− xP )2φP

yy − 2
∫ x

xP

∫ µ

xP

ψ̃xy(λ, yP )dλ dµ

+
1
2

∫ x

xP

∫ ν

xP

∫ µ

xP

[
ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )

]
dλ dµ dν.

(2.14)

Since all the terms on right hand sides of (2.11), (2.12), (2.13) are known therefore
φ̃xx, φ̃x and φ̃ are known along PQ and hence we know φ̃,∇φ̃ and ∆φ̃ at Q(x, yP ).

Now from the point Q we draw the line QR where R(x, y) ∈ Ω̄ is an arbitrary
point. Again, since (φ̃, ψ̃) satisfies (1.2)(b); therefore

φ̃xxy =
1
2
[ψ̃xxx − ψ̃xyy], (2.15)

which on integration, along QR, gives

φ̃xx(x, y) = φ̃xx(x, yP ) +
1
2

∫ y

yP

[ψ̃xxx(x, λ)− ψ̃xyy(x, λ)]dλ, (2.16)

φ̃x(x, y) = φ̃x(x, yP ) +
1
2

∫ y

yP

[ψ̃xx(x, λ)− ψ̃yy(x, λ)]dλ. (2.17)

But the following expression from (1.2)(a)

φ̃yy = φ̃xx + 2ψ̃xy, (2.18)

on integration along QR gives

φ̃y(x, y) = φ̃y(x, yP ) +
∫ y

yP

[φ̃xx(x, λ) + 2ψ̃xy(x, λ)] dλ. (2.19)

Using (2.10) and (2.16) the expression (2.19) takes the form

φ̃y(x, y) = φP
y +

1
2

∫ x

xP

[ψ̃xx(λ, yP )− ψ̃yy(λ, yP )]dλ+ (y − yP )φ̃xx(x, yP )

+
1
2

∫ y

yP

∫ µ

yP

[ψ̃xxx(x, λ)− ψ̃xyy(x, λ)]dλ dµ+ 2
∫ y

yP

ψ̃xy(x, λ)dλ.
(2.20)

Integrating along QR we obtain from (2.20) as follows.

φ̃(x, y) = φ̃(x, yP ) + (y − yP )φP
y +

1
2
(y − yP )2φ̃xx(x, yP )

+
1
2
(y − yP )

∫ x

xP

[ψ̃xx(λ, yP )− ψ̃yy(λ, yP )]dλ

+
1
2

∫ y

yP

∫ ν

yP

∫ µ

yP

[ψ̃xxx(x, λ)− ψ̃xyy(x, λ)]dλ dµdν

+ 2
∫ y

yP

∫ µ

yP

ψ̃xy(x, λ)dλ dµ.

(2.21)



EJDE-2012/202 EXISTENCE AND UNIQUENESS 5

Using (2.12) and (2.14) we finally obtain the following expression for φ̃(x, y) at an
arbitrary point (x, y) ∈ Ω̄.

φ̃(x, y)

= φP + (x− xP )φP
x + (y − yP )φP

y +
1
2
[(x− xP )2 + (y − yP )2]φP

yy

− (y − yP )2ψ̃xy(x, yP ) +
1
2
(y − yP )

∫ x

xP

[ψ̃xx(λ, yP )− ψ̃yy(λ, yP )] dλ

+
1
4
(y − yP )2

∫ x

xP

[ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )]dλ

− 2
∫ x

xP

∫ µ

xP

ψ̃xy(λ, yP ) dλ dµ+ 2
∫ y

yP

∫ µ

yP

ψ̃xy(x, λ)dλ dµ

+
1
2

∫ x

xP

∫ ν

xP

∫ µ

xP

[ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )]dλ dµ dν

+
1
2

∫ y

yP

∫ ν

yP

∫ µ

yP

[ψ̃xxx(x, λ)− ψ̃xyy(x, λ)]dλ dµ dν.

(2.22)

Obviously we have obtained an explicit representation for φ̃ in terms of the point
conditions and ψ̃, on the assumption that (φ̃, ψ̃) satisfies (1.2) and (2.1)–(2.2). Next
we show that (φ̃, ψ̃) actually satisfies the Bitsadze system (1.2) and the conditions
(2.2).

From expression (2.22) it is easy to verify that φ̃(xP , yP ) = φP . We use (2.13)
in (2.17) to obtain

φ̃x(x, y) = φP
x +

∫ x

xP

[φP
yy +

1
2

∫ µ

xP

[ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )]dλ] dµ

− 2
∫ x

xP

ψ̃xy(λ, yP ) dλ+
1
2

∫ y

yP

[ψ̃xx(x, λ)− ψ̃yy(x, λ)]dλ,

and it can be easily verified that φ̃x(xP , yP ) = φP
x . Similarly from (2.10) and (2.20)

we have

φ̃y(x, y) = φP
y +

1
2

∫ x

xP

[ψ̃xx(λ, yP )− ψ̃yy(λ, yP )] dλ+
∫ y

yP

[φ̃xx(x, λ) + 2ψ̃xy(x, λ)] dλ,

and it follows that φ̃y(xP , yP ) = φP
y . Again, from (2.12)and (2.16) we obtain

φ̃xx(x, y) = φP
yy +

1
2

∫ x

xP

[ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )] dλ− 2ψ̃xy(x, yP )

+
1
2

∫ y

yP

[ψ̃xxx(x, λ)− ψ̃xyy(x, λ)] dλ,

which at P yields
φ̃xx(xP , yP ) = φP

yy − 2ψ̃xy(xP , yP ), (2.23)

and from (2.7)(a) we obtain φ̃xx(xP , yP ) = φP
xx. Also from (2.18) it is obvious that

φ̃yy(xP , yP ) = φ̃xx(xP , yP ) + 2ψ̃xy(xP , yP ), (2.24)

and (2.23)–(2.24) yield φ̃yy(xP , yP ) = φP
yy.
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Now we verify that φ̃(x, y) satisfies (1.2)(a). Using (2.10) in (2.20) and then
differentiating with respect to x we obtain

φ̃xy(x, y) =
1
2
[ψ̃xx(x, yP )− ψ̃yy(x, yP )] +

1
2
(y − yP )[ψ̃xxy(x, yP )− ψ̃yyy(x, yP )]

− 2(y − yP )ψ̃xxy(x, yP ) +
1
2

∫ y

yp

∫ µ

yP

[ψ̃xxxx(x, λ)− ψ̃xxyy(x, λ)] dλ dµ

+ 2ψ̃xx(x, y)− 2ψ̃xx(x, yP ),

which, since ∆2ψ̃ = 0, can be simplified as

φ̃xy(x, y)

= −1
2
[3ψ̃xx(x, yP ) + ψ̃yy(x, yP )]− 1

2
(y − yP )[3ψ̃xxy(x, yP ) + ψ̃yyy(x, yP )]

− 1
2
[3ψ̃xx(x, yP ) + ψ̃yy(x, y)] +

1
2
[3ψ̃xx(x, yP ) + ψ̃yy(x, yP )]

+
1
2
(y − yP )[3ψ̃xxy(x, yP ) + ψ̃yyy(x, yP )] + 2ψ̃xx(x, y),

(2.25)

and we obtain

φ̃xy(x, y) =
1
2
[ψ̃xx(x, y)− ψ̃yy(x, y)]. (2.26)

Then, to verify that φ̃(x, y) satisfies (1.2)(b), we use (2.22) to obtain

φ̃xx(x, y)− φ̃yy(x, y)

= −(y − yP )2ψ̃xxxy(x, yP ) +
1
2
(y − yP )[ψ̃xxx(x, yP )− ψ̃xyy(x, yP )]

+
1
4
(y − yP )2[ψ̃xxxy(x, yP )− ψ̃xyyy(x, yP )]

+ 2
∫ y

yP

∫ µ

yP

ψ̃xxxy(x, λ)dλ dµ+
1
2

∫ x

xP

[ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )] dλ

+
1
2

∫ y

yP

∫ ν

yP

∫ µ

yP

[ψ̃xxxxx(x, λ)− ψ̃xxxyy(x, λ)] dλ dµ dν

− 1
2

∫ x

xP

[ψ̃xxy(λ, yP )− ψ̃yyy(λ, yP )]dλ− 2ψ̃xy(x, y)

− 1
2

∫ y

yP

[ψ̃xxx(x, λ)− ψ̃xyy(x, λ)] dλ,

which can further be simplified to obtain

φ̃xx(x, y)− φ̃yy(x, y)

= −1
4
(y − yP )2[3ψ̃xxxy(x, yP ) + ψ̃xyyy(x, yP )]

− 1
2
(y − yP )[3ψ̃xxx(x, yP ) + ψ̃xyy(x, yP )]

− 1
2

∫ y

yP

[3ψ̃xxx(x, λ) + ψ̃xyy(x, λ)] dλ+
1
2
(y − yP )[3ψ̃xxx(x, yP ) + ψ̃xyy(x, yP )]

+
1
4
(y − yP )2[3ψ̃xxxy(x, yP ) + ψ̃xyyy(x, yP )]
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− 2ψ̃xy(x, y) +
1
2

∫ y

yP

[3ψ̃xxx(x, λ) + ψ̃xyy(x, λ)]dλ,

and finally we have

φ̃xx(x, y)− φ̃yy(x, y) = −2ψ̃xy(x, y),

which completes the proof. �

Conclusion. It has been proved by construction that there exists a unique solution
(φ̃, ψ̃) in C4(Ω)×C4(Ω) to the Stokes-Bitsadze system (1.2) subject to the boundary
conditions (2.1) along with additional single point conditions (2.2).
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