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EXISTENCE OF SOLUTIONS FOR QUASILINEAR ELLIPTIC
EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS

AND INDEFINITE WEIGHT

GUOQING ZHANG, XIANGPING LIU, SANYANG LIU

Abstract. In this article, we establish the existence and non-existence of
solutions for quasilinear equations with nonlinear boundary conditions and
indefinite weight. Our proofs are based on variational methods and their ge-
ometrical features. In addition, we prove that all the weak solutions are in
C1,β(Ω) for some β ∈ (0, 1).

1. Introduction

In this article, we consider the problem

div(a(x)|Du|p−2Du) = |u|p−2u, in Ω,

a(x)|Du|p−2 ∂u

∂ν
+ |u|q−2u + h(x) = λV (x)|u|p−2u, on ∂Ω,

(1.1)

where Ω is a bounded domain in RN , with a C2,α boundary for some α ∈ (0, 1),
1 < p < N , q < p? = (N−1)p

N−p , ∂
∂ν is the outer normal derivative, 0 < a0 ≤ a(x) ∈

L∞(Ω). The functions V (x), h(x) are defined on ∂Ω and satisfy the assumption
(H1) V ∈ Ls(∂Ω), V (x) is a indefinite weight, i.e.

V +(x) = max{V (x), 0} 6= 0, x ∈ ∂Ω,

where s > N−1
p−1 , and h(x) ∈ Ls(∂Ω).

Elliptic problems with nonlinear boundary conditions arise in many and diverse
contexts, such as differential geometry (e.g., in the scalar curvature problem and
the Yamabe problem [6]), Non-Newtonian fluid mechanics [3], and mathematical
biology problem (e.g., a prototype of pattern formation in biology and the steady-
state problem for a chemotactic aggregation model [7]). In this paper, we consider
the quasilinear problems with mixed nonlinear boundary condition and the indefi-
nite character; i.e. V (x) may change sign on ∂Ω. Some existence and non-existence
results are obtained.

On the other hand, the regularity for elliptic problems with nonlinear boundary
conditions have been studied. For the semilinear elliptic problem, Ebmeyer [5]
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obtained that every weak solution belongs to Cβ(Ω)(0 < β < 1). Using the result
of Dibenedetto [4], Anane, Chakrone, Moradi [1] obtained that the eigenfunction of
the first eigenvalue is in C1,β(Ω)(0 < β < 1) for the linear eigenvalue problem of the
p-Laplacian. In this paper, for problem (1.1) with nonlinear boundary conditions
and indefinite weight, we obtain that all weak solutions are in L∞(∂Ω) ∩ L∞(Ω)
and C1,β(Ω) for some β ∈ (0, 1).

This article is organized as follows: In Section 2, we state our main results. In
section 3, we obtain some existence and non-existence results. Section 4 is devoted
to proving the regularity of the solutions for the problem (1.1).

2. Main results

Let Ω be a bounded smooth domain in RN , and V (x) satisfies (H1). We denote
the Sobolev space

Lp(∂Ω; V ) = {u : ∂Ω → R;
∫

∂Ω

V (x)|u|pdσ < +∞}, (2.1)

and the norm ‖u‖Lp(∂Ω;V ) = (
∫

∂Ω
V (x)|u|pdσ)1/p. Consider the Sobolev trace em-

bedding W 1,p(Ω) ↪→ Lp(∂Ω; V ), we obtain that the embedding is compact when
V (x) satisfies (H1) (see [2]), where the norm in W 1,p(Ω) is defined as

‖u‖W 1,p(Ω) =
( ∫

Ω

[|∇u|p + |u|p]dx
)1/p

.

As the function a(x) satisfies 0 < a0 ≤ a(x) ∈ L∞(Ω), we define the space E is the
reflexive Banach space under the norm

‖u‖a,Ω =
( ∫

Ω

[a(x)|Du|p + |u|p]dx
)1/p

.

Of course, E ∼ W 1,p(Ω), we obtain that the embedding E ↪→ Lp(∂Ω; V ) is compact
and there exists a C̃ = C̃(Ω, V (x), p) > 0 such that

C̃‖v‖p
Lp(∂Ω;V ) ≤ ‖v‖p

a,Ω for any v ∈ E. (2.2)

Now, we state the main results in this article.

Theorem 2.1. If p < q < p? and
∫

∂Ω
hϕ dσ ≥ 0 for all ϕ ∈ E with ϕ|∂Ω > 0, then

there exists λ0 > 0 such that

(1) if λ < λ0, then (1.1) does not have any weak solutions,
(2) if λ > λ0, then (1.1) has at least one weak solution.

We remark that there are functions h such that
∫

∂Ω
hϕ dσ ≥ 0 for all ϕ ∈ E with

ϕ|∂Ω > 0: For p = 2 and Ω is a unit circle, let x = eiα, x ∈ ∂Ω, and

h =

{
1 + α2, 0 < α ≤ 2π,

−1, α = 0.

Theorem 2.2. If u is a weak solution of (1.1) and q < p2−2p+N
N−p , then u has the

following properties:

(1) u ∈ L∞(Ω) ∩ L∞(∂Ω),
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(2) u ∈ C1,β(Ω) for some β ∈ (0, 1), and ‖u‖C1,β(Ω) ≤ K, where

K = K
(
p, N,G, ‖u‖Ls′q0 (∂Ω), ‖V ‖Ls(∂Ω)

)
,

G =
( ∫

∂Ω

|(|u|q−2u + h)|sdσ
)1/s

,

s > N−1
p−1 , s′q0 ∈ [s′p, p?], and s′ is the conjugate of s.

3. Proof of Theorem 2.1

For this proof we use direct methods in variational methods.
(1) We prove only that (1.1) does not have any weak solutions for λ small enough.

Indeed, assume that u ∈ E is a weak solution of (1.1); then we have∫
Ω

a(x)|Du|p−2DuDϕ dx +
∫

Ω

|u|p−2uϕ dx +
∫

∂Ω

|u|q−2uϕ dσ +
∫

∂Ω

hϕ dσ

= λ

∫
∂Ω

V (x)|u|p−2uϕ dσ,

(3.1)

for any ϕ ∈ E. Taking ϕ = u in (3.1), we obtain

‖u‖p
a,Ω + ‖u‖q

Lq(∂Ω) +
∫

∂Ω

hu dσ = λ‖u‖p
Lp(∂Ω;V ). (3.2)

Clearly, for p < q < p?, problem (1.1) does not have non-trivial solution whenever
λ ≤ 0.

Furthermore, by (2.2) and (3.2), we have

λ‖u‖p
Lp(∂Ω;V ) ≥ ‖u‖p

a,Ω ≥ C̃‖u‖p
Lp(∂Ω;V ).

i.e., λ ≥ C̃, which implies that when λ0 ≤ C̃, problem (1.1) still does not have weak
solution. This completes the proof of (1) of Theorem 2.1.

(2) Let the functional Jλ : E → R be

Jλ(u) =
1
p
‖u‖p

a,Ω +
1
q
‖u‖q

Lq(∂Ω) +
∫

∂Ω

hudσ − λ

p
‖u‖p

Lp(∂Ω;V ). (3.3)

By (H1), we obtain the weak solution of the problem (1.1) is the critical point of
the functional Jλ.

Firstly, we prove that the functional Jλ is coercive. Indeed, fix a w ∈ E\{0}, by
(2.2) and p < q, we have

Jλ(tw) =
tp

p
‖w‖p

a,Ω +
tq

q
‖w‖q

Lq(∂Ω) + t

∫
∂Ω

hwdσ − λtp

p
‖w‖p

Lp(∂Ω;V )

≥ tp

p
(1− λ

pC̃
)‖w‖p

a,Ω +
tq

q
‖w‖q

Lq(∂Ω) + t

∫
∂Ω

hwdσ.
(3.4)

Obviously we have Jλ(tw) → +∞ when t → +∞. So the coercivity of the functional
Jλ is obtained.

Let {un}∞n=1 be a minimizing sequence of Jλ in E, which is bounded in E by
the coercivity of Jλ. By the non-negativity of the norm and

∫
∂Ω

hϕ dσ ≥ 0 for all
ϕ ∈ E, we assume that {un}∞n=1 is non-negative, converges weakly to some u ∈ E
and pointwise converges to u.
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Secondly, we prove that the non-negative limit u ∈ E is a weak solution of (1.1).
Indeed, We already know that limn→∞ Jλ(un) = infu′∈X Jλ(u′); i.e.,

lim
n→∞

Jλ(un) ≤ Jλ(u′), for all u′ ∈ E. (3.5)

So we only need to prove

Jλ(u) ≤ lim
n→∞

inf Jλ(un). (3.6)

By (H1), we have ∫
∂Ω

hu dσ = lim
n→∞

∫
∂Ω

hun dσ,

and by the weak lower semicontinuity of the norm, we have
1
p
‖u‖p

a,Ω +
1
q
‖u‖q

Lq(∂Ω) ≤ lim
n→∞

inf(
1
p
‖un‖p

a,Ω +
1
q
‖un‖q

Lq(∂Ω)).

On the other hand, the boundedness of {un}∞n=1 and the compact imbedding E ↪→
Lp(∂Ω; V ) implies that

‖u‖Lp(∂Ω;V ) = lim
n→∞

‖un‖Lp(∂Ω;V ).

So (3.6) is established. Then by (3.5) and (3.6) we have

Jλ(u) = inf
u′∈E

Jλ(u′).

Thus, u is a global minimizer of Jλ in E.
Thirdly, we show that the weak limit u is a non-trivial weak solution of (1.1) if

λ > 0 is large enough. Indeed, Jλ(0) = 0. Hence, we only need to prove that there
exists λ0 > 0, such that

inf
u′∈E

Jλ(u′) < 0 for all λ > λ0.

Consider the minimization problem

λ0 := inf{1
p
‖φ‖p

a,Ω +
1
q
‖φ‖q

Lq(∂Ω) +
∫

∂Ω

hφ dσ : φ ∈ E and ‖φ‖p
Lp(∂Ω;V ) = p}. (3.7)

Let {κn}∞n=1 ∈ E be a minimizing sequence of (3.7), which is obviously bounded in
E. Hence, without loss of generality, we assume that it converges weakly to some
κ ∈ E, with ‖κ‖p

Lp(∂Ω;V ) = p. By the weak lower semicontinuity of ‖ · ‖, We can
deduce that

λ0 =
1
p
‖κ‖p

a,Ω +
1
q
‖κ‖q

Lq(∂Ω) +
∫

∂Ω

hκ dσ.

So Jλ(κ) = λ0 − λ < 0 for any λ > λ0. Now we denote

λ0 := sup{λ > 0 : problem (1.1) does not have weak solutions},
λ1 := inf{λ > 0 : problem (1.1) admits a weak solution}.

Of course λ1 ≥ λ0 > 0.
Lastly, we prove two facts: (i) problem (1.1) has a weak solution for any λ > λ1;

(ii) λ0 = λ1.
Now, we fix λ > λ1, by the definition of λ1, there exists µ ∈ (λ1, λ), such that

Jµ has a non-trivial critical point uµ ∈ E; i.e.,

‖uµ‖p
a,Ω + ‖uµ‖q

Lq(∂Ω) +
∫

∂Ω

huµdσ = µ‖uµ‖p
Lp(∂Ω;V ),
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Clearly, uµ is a sub-solution of problem (1.1). So next we need to find a super-
solution of problem (1.1) which is greater than uµ.

Consider the minimization problem

inf{1
p
‖φ‖p

a,Ω +
1
q
‖φ‖q

Lq(∂Ω) +
∫

∂Ω

hφ dσ − λ

p
‖φ‖p

Lp(∂Ω;V ) : φ ∈ E and φ ≥ uµ}.

From above argument, we can know that the minimization problem has a solution
uλ ≥ uµ, which is also a weak solution of (1.1) provided λ > λ1. So for the fixed λ,
we have a sub-solution uµ and a super-solution uλ with uλ ≥ uµ, using [8, Theorem
2.4], we obtain a weak solution. Let us recall the definition of λ1, we obtain that
(1.1) does not have solutions for any λ < λ1. Then by the define of λ0, immediately
we have λ1 ≤ λ0, so λ1 = λ0.

4. Proof of Theorem 2.2

This is an adaptation of the proof in [1], and is presented here, for the reader’s
convenience. Let g = −|u|q−2u− h, then by q < p2−2p+N

N−p , we have g ∈ Ls(∂Ω).

Lemma 4.1. If u ∈ E is a weak solution of (1.1), then there exists a constant
C > 0, such that

(‖u‖qn

Lqn (Ω) + ‖u‖s′qn

Ls′qn (∂Ω)
)1/qn ≤ C, for all n > n0,

where the sequence {qn}∞n=0 is defined as

s′q0 ∈ [s′p, p?], p? =
(N − 1)p
N − p

, qn+1 =
q0

p
qn.

Furthermore, u ∈ Lqn(Ω) and u ∈ Ls′qn(∂Ω) for all n ≥ 0, where s′ = s/(s− 1).

Proof. Assume that u ∈ E is a weak solution of (1.1). By E ∼ W 1,p(Ω), u is also
in W 1,p(Ω). Since s > N−1

p−1 , we have 1 < s′ = s
s−1 < N−1

N−p , and [p, p?]∩ [s′p, s′p?] =
[s′p, p?] 6= ∅.

Let q0 ∈ [p, p?/s′]. Then

W 1,p(Ω) ↪→ Lq0(Ω) and W 1,p(Ω) ↪→ Lq0s′(∂Ω).

Obviously, u ∈ Lq0(Ω) and u ∈ Ls′q0(∂Ω). Of course, u is also in Lq0(∂Ω). Suppose
that ‖u‖Ls′q0 (∂Ω) ≥ 1, if not we consider u0 = u/‖u‖Ls′q0 (∂Ω), which is a solution
of

div(a(x)|Du|p−2Du) = |u|p−2u in Ω,

a(x)|Du|p−2 ∂u

∂ν
= λV (x)|u|p−2u + g′ on ∂Ω,

with g′ = (‖u‖Ls′q0 (∂Ω))
p−1g ∈ Ls(∂Ω).

Using mathematical induction, suppose that u ∈ Lqn(Ω), u ∈ Ls′qn(∂Ω) and
‖u‖Ls′qn (∂Ω) ≥ 1, we show that

u ∈ Lqn+1(Ω), u ∈ Lqn+1(∂Ω), u ∈ Ls′qn+1(∂Ω), ‖u‖
Ls′qn+1 (∂Ω)

≥ 1.

Define a sequence {ωk}∞k=0 in E by

ωk(x) =


k, if u(x) ≥ k;
u(x), if − k ≤ u(x) ≤ k, ∀x ∈ Ω;
−k, if u(x) ≤ −k;
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Obviously, {ωk}∞k=0 is in W 1,p(Ω). Set δ = qn − p > 0, then take the test function
|ωk|δωk in (3.1), we obtain

〈div(a(x)|Du|p−2Du), |ωk|δωk〉 =
∫

Ω

|u|p−2u|ωk|δωkdx

≥
∫

Ω

|ωk|δ+pdx =
∫

Ω

|ωk|qndx,

(4.1)

and
〈div(a(x)|Du|p−2Du), |ωk|δωk〉

= −
∫

Ω

a(x)|Du|p−2DuD(|ωk|δωk)dx + λ

∫
∂Ω

(V (x)|u|p−2u + g)|ωk|δωkdσ

≤ λ

∫
∂Ω

|u|qn |V (x)|dσ + G‖ωδ+1
k ‖Ls′ (∂Ω) −Bn‖D(|ωk|

δ
p ωk)‖p

Lp(Ω)

≤ λ‖u‖qn

Ls′qn (∂Ω)
‖V ‖Ls(∂Ω) + G‖ωk‖δ+1

L(δ+1)s′ (∂Ω)
−Bn‖D(|ωk|

δ
p ωk)‖p

Lp(Ω),

(4.2)

where

G =
( ∫

∂Ω

||u|q−2u + h|sdσ
)1/s

, Bn = a0(δ + 1)(
p

qn
)p.

Then by (4.1) and (4.2), we have∫
Ω

|ωk|qndx

≤ λ‖u‖qn

Ls′qn (∂Ω)
‖V ‖Ls(∂Ω) + G‖ωk‖δ+1

L(δ+1)s′ (∂Ω)
−Bn‖D(|ωk|

δ
p ωk)‖p

Lp(Ω).

(4.3)

Since W 1,p(Ω) ↪→ Lq0(Ω), there exists C1 = C1(Ω, p, q0) > 0, such that

‖D(|ωk|
δ
p ωk)‖p

Lp(Ω) ≥ C1‖|ωk|
δ+p

p ‖p
Lq0 (Ω) − ‖|ωk|

δ+p
p ‖p

Lp(Ω)

≥ C1‖ωk‖qn

Lqn+1 (Ω)
− ‖ωk‖δ+p

Lδ+p(Ω)
.

(4.4)

By (4.3) and (4.4), we have

‖ωk‖qn

Lqn+1 (Ω)

≤ An(λ‖u‖qn

Ls′qn (∂Ω)
‖V ‖Ls(∂Ω) + G‖ωk‖δ+1

L(δ+1)s′ (∂Ω)
+ Dn‖ωk‖qn

Lqn (Ω)),
(4.5)

where An = 1
BnC1

and Dn = Bn − 1. By δ + 1 < qn, we have

‖ωk‖δ+1
L(δ+1)s′ (∂Ω)

≤ ‖u‖δ+1
L(δ+1)s′ (∂Ω)

≤ ‖u‖δ+1
Ls′qn (∂Ω)

(measσ(∂Ω)
p−1
s′qn ).

Suppose that measσ(∂Ω) ≤ 1 and with the assumption ‖u‖Ls′qn (∂Ω) ≥ 1, we obtain

‖ωk‖δ+1
L(δ+1)s′ (∂Ω)

≤ ‖u‖δ+1
Ls′qn (∂Ω)

≤ ‖u‖qn

Ls′qn (∂Ω)
. (4.6)

So by (4.5) and (4.6), we obtain

‖ωk‖qn

Lqn+1 (Ω)
≤ An[(λ‖V ‖Ls(∂Ω) + G)‖u‖qn

Ls′qn (∂Ω)
+ |Dn|‖u‖qn

Lqn (Ω)]

≤ An max(R, |Dn|)(‖u‖qn

Ls′qn (∂Ω)
+ ‖u‖qn

Lqn (Ω)),

where R = λ‖V ‖Ls(Ω) + G. Then we deduce that

‖u‖qn

Lqn+1 (Ω)
≤ lim
|k|→+∞

inf(‖ωk‖qn

Lqn+1 (Ω)
)

≤ An max(R, |Dn|)(‖u‖qn

Ls′qn (∂Ω)
+ ‖u‖qn

Lqn (Ω))
(4.7)
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Thus u ∈ Lqn+1(Ω).
Next we prove u ∈ Ls′qn+1(∂Ω) (so u ∈ Lqn+1(∂Ω)), and ‖u‖

Ls′qn+1 (∂Ω)
≥ 1. By

(4.3) and (4.6), we have∫
Ω

|ωk|qndx + Bn‖D(|ωk|
δ
p ωk)‖p

Lp(Ω) ≤ R‖u‖qn

Ls′qn (∂Ω)
. (4.8)

The embedding W 1,p(Ω) ↪→ Ls′q0(∂Ω) implies the existence of C2 = C2(Ω, p, s′q0) >
0 such that

‖D(|ωk|
δ
p ωk)‖p

Lp(Ω) ≥ C2‖|ωk|
δ+p

δ ‖p

Ls′q0(∂Ω)
− ‖|ωk|

δ+p
p ‖p

Lp(Ω)

≥ C2‖ωk‖qn

Ls′qn+1 (∂Ω)
− ‖ωk‖δ+p

Lδ+p(Ω)

(4.9)

Then by (4.8) and (4.9), we obtain

Bn(C2‖ωk‖qn

Ls′qn+1 (∂Ω)
− ‖ωk‖δ+p

Lδ+p(Ω)
) ≤ R‖u‖qn

Ls′qn (∂Ω)
−

∫
Ω

|ωk|qndx.

Then

‖ωk‖qn

Ls′qn+1 (∂Ω)
≤ B′

n(R‖u‖qn

Ls′qn (∂Ω)
+ |Dn|‖ωk‖qn

Lqn (Ω))

≤ B′
n max(R, |Dn|)(‖u‖qn

Ls′qn (∂Ω)
+ ‖u‖qn

Lqn (Ω)),

where B′
n = 1/(C2Bn). Then

‖u‖qn

Ls′qn+1 (∂Ω)
≤ lim
|k|→+∞

inf(‖ωk‖qn

Ls′qn+1 (∂Ω)
)

≤ B′
n max(R, |Dn|)(‖u‖qn

Ls′qn (∂Ω)
+ ‖u‖qn

Lqn (Ω)).
(4.10)

Consequently, u ∈ Ls′qn+1(∂Ω) and ‖u‖
Ls′qn+1 (∂Ω)

> ‖u‖Ls′qn (∂Ω) ≥ 1. Thus

u ∈ Lqn(Ω), u ∈ Ls′qn(∂Ω), ‖u‖Ls′qn (∂Ω) ≥ 1, for all n ≥ 0

Lastly, we have to show that there exists C > 0 such that

(‖u‖qn

Lqn (Ω) + ‖u‖s′qn

Ls′qn (∂Ω)
)1/qn ≤ C, for all n > n0,

By (4.7) and (4.10), we have

‖u‖qn+1

Ls′qn+1 (∂Ω)
+ ‖u‖qn+1

Lqn+1 (Ω)
≤ Tn(max(R, |Dn|)(‖u‖qn

Ls′qn (∂Ω)
+ ‖u‖qn

Lqn (Ω)))
q0/p,

where

Tn =
(
(

1
C1

+
1
C2

)
1

Bn

)q0/p

.

Obviously, limn→+∞Bn = 0, so we have limn→+∞ |Dn| = 1; so there exists n0 ∈
N+, such that |Dn| ≤ 2 when n > n0. Consequently,

‖u‖qn+1

Ls′qn+1 (∂Ω)
+ ‖u‖qn+1

Lqn+1 (Ω)
≤ C(qn)q0(‖u‖qn

Ls′qn (∂Ω)
+ ‖u‖qn

Lqn (Ω))
q0
p ,

where

C =
1

pq0

(
(

1
C1

+
1
C2

) max(R, 2)
)q0/p

.

Setting

vn =
(
‖u‖qn

Ls′qn (∂Ω)
+ ‖u‖qn

Lqn (Ω)

)1/qn
,
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we have v
qn+1
n+1 ≤ C(qn)q0(vqn

n )q0/p for all n ≥ n0, and

ln(vn+1) ≤
B

qn+1
+p

ln(qn)
qn

+ln(vn) ≤ B
∑

n0+1≤k≤n+1

(
1
qk

)+p
∑

n0≤k≤n

(
ln(qk)

qk
)+ln(vn0),

for all n ≥ n0, where B = ln(C). By 0 < p
q0

< 1, we have∑
n0+1≤k≤n+1

(
1
qk

) ≤ q0

q0 − p
.

Since∑
n0≤k≤n

ln(qk)
qk

=
∑

n0≤k≤n

(
ln(q0)

q0
+

ln(q0)− ln(p)
q0

k)(
p

q0
)k :=

∑
n0≤k≤n

(θ + ηk)(
p

q0
)k

≤
∑
k≥0

(θ + ηk)(
p

q0
)k =

θq0

q0 − p
+

ηpq0

(q0 − p)2
,

we have

ln(vn) ≤ q

(q0 − p)
(B + θp) +

ηp2q0

(q0 − p)2
+ ln(vn0) := A, ∀n ≥ n0.

Thus
vn = (‖u‖qn

Ls′qn (∂Ω)
+ ‖u‖qn

Lqn (Ω)) ≤ expA := C, ∀n ≥ n0.

�

Lemma 4.2. Let ∂Ω be C2,α(∂Ω) with α ∈ (0, 1) and u be in E ∩L∞(Ω) such that
div(a(x)|Du|p−2Du) ∈ L∞(Ω), then u ∈ C1,β(Ω) for some β ∈ (0, 1) and

‖u‖C1,β(Ω) ≤ K
(
N, p, ‖u‖L∞(Ω), ‖div(a(x)|Du|p−2Du)‖L∞(Ω)

)
.

The above lemma is similar to [5, Lemma 2.2], and is also a result in [4].

Proof of Theorem 2.2. (1) By Lemma 4.1 we know that

‖u‖Lqn (Ω) ≤ C, ‖u‖Ls′qn (∂Ω) ≤ C, ∀n ≥ n0.

then we obtain

‖u‖L∞(Ω) ≤ lim
n→+∞

sup ‖u‖Lqn (Ω) ≤ C,

‖u‖L∞(∂Ω) ≤ lim
n→+∞

sup ‖u‖Ls′qn (∂Ω) ≤ C.

Hence, (1) of Theorem 2.2 is proved.
(2) By (1) of Theorem 2.2, we obtain that the solution u is in E ∩ L∞(Ω).

Using ‖div(a(x)|Du|p−2Du)‖L∞(Ω) = ‖u‖p−1
L∞(Ω), we have div(a(x)|Du|p−2Du) =

|u|p−2u ∈ L∞(Ω). So u is in C1,β(Ω) for some β ∈ (0, 1) and ‖u‖C1,β(Ω) ≤
K(N, p, ‖u‖L∞(Ω)). Indeed, we have ‖u‖L∞(Ω) ≤ C for 1 < p < N , where C
depends on G, ‖u‖Ls′q0 (∂Ω), and ‖V ‖Ls(∂Ω), then we have

K = K
(
p, N,G, ‖u‖Ls′q0 (∂Ω), ‖V ‖Ls(∂Ω)

)
.

�
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