Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 208, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR FRACTIONAL SYSTEMS IN BOUNDED DOMAINS

IMED BACHAR

Abstract

We prove the existence of positive continuous solutions to the nonlinear fractional system $$
\begin{aligned} & \left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} u+\lambda g(., v)=0, \\ & \left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} v+\mu f(., u)=0 \end{aligned}
$$ in a bounded $C^{1,1}$-domain D in $\mathbb{R}^{n}(n \geq 3)$, subject to Dirichlet conditions, where $0<\alpha \leq 2, \lambda$ and μ are nonnegative parameters. The functions f and g are nonnegative continuous monotone with respect to the second variable and satisfying certain hypotheses related to the Kato class.

1. Introduction and statement of main results

Let $\chi=\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, X_{t}, \theta_{t}, P^{x}\right)$ be a Brownian motion in $\mathbb{R}^{n}, n \geq 3$ and $\pi=$ $\left(\Omega, \mathcal{G}, T_{t}\right)$ be an $\frac{\alpha}{2}$-stable process subordinator starting at zero, where $0<\alpha \leq 2$ and such that χ and π are independent. Let D be a bounded $C^{1,1}$-domain in \mathbb{R}^{n} and Z_{α}^{D} be the subordinate killed Brownian motion process. This process is obtained by killing χ at τ_{D}, the first exit time of χ from D giving the process χ^{D} and then subordinating this killed Brownian motion using the $\alpha / 2$-stable subordinator T_{t}. For more description of the process Z_{α}^{D} we refer to [7, 9, 14, 15, Note that the infinitesimal generator of the process Z_{α}^{D} is the fractional power $\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2}$ of the negative Dirichlet Laplacian in D, which is a prototype of non-local operator and a very useful object in analysis and partial differential equations, see, for instance [13, 16].

In this article, we will deal with the existence of positive continuous solutions for the nonlinear fractional system

$$
\begin{align*}
\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} u+\lambda g(., v) & =0 \quad \text { in } D, \text { in the sense of distributions } \\
\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} v+\mu f(., u) & =0 \quad \text { in } D, \text { in the sense of distributions } \tag{1.1}\\
\lim _{x \rightarrow z \in \partial D} \frac{u(x)}{M_{\alpha}^{D} 1(x)} & =\varphi(z), \quad \lim _{x \rightarrow z \in \partial D} \frac{v(x)}{M_{\alpha}^{D} 1(x)}=\psi(z)
\end{align*}
$$

[^0]where λ, μ are nonnegative parameters, φ, ψ are positive continuous functions on ∂D and $M_{\alpha}^{D} 1$ is the nonnegative harmonic function with respect to Z_{α}^{D} given by the formula (see [7, Theorem 3.1],
\[

$$
\begin{equation*}
M_{\alpha}^{D} 1(x)=\frac{1-\frac{\alpha}{2}}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{0}^{\infty} t^{-2+\frac{\alpha}{2}}\left(1-P_{t}^{D} 1(x)\right) d t \tag{1.2}
\end{equation*}
$$

\]

where $\left(P_{t}^{D}\right)_{t>0}$ is the semi-group corresponding to the killed Brownian motion χ^{D}.
Note that from [15, remark 3.3], there exists a constant $C>0$ such that

$$
\begin{equation*}
\frac{1}{C}(\delta(x))^{\alpha-2} \leq M_{\alpha}^{D} 1(x) \leq C(\delta(x))^{\alpha-2}, \quad \text { for all } x \in D \tag{1.3}
\end{equation*}
$$

where $\delta(x)$ denotes the Euclidian distance from x to the boundary of D.
In the classical case (i.e. $\alpha=2$), there exist a lot of work related to the existence and nonexistence of solutions for the problem 1.1); see for example, the papers of Cirstea and Radulescu [3], Ghanmi et al [6, Ghergu and Radulescu [8], Lair and Wood [10, 11 and references therein. Most of the studies of these papers turn about the existence or the nonexistence of positive radial ones. In [11, the authors studied the system (1.1) with $\alpha=2$, in the case $\mu f(., u)=p u^{s}, \lambda g(., v)=q v^{r}$, $s>0, r>0$ and p, q are nonnegative continuous and not necessarily radial. They showed that entire positive bounded solutions exist if p and q satisfy the following condition

$$
p(x)+q(x) \leq C|x|^{-(2+\gamma)}
$$

for some positive constant γ and $|x|$ large.
Throughout this article, we denote by G_{α}^{D} the Green function of Z_{α}^{D}. We recall the following interesting sharp estimates on G_{α}^{D} due to [14]. Namely, there exists a positive constant $C>0$ such that for all x, y in D, we have

$$
\begin{equation*}
\frac{1}{C} H(x, y) \leq G_{\alpha}^{D}(x, y) \leq C H(x, y) \tag{1.4}
\end{equation*}
$$

where

$$
H(x, y)=\frac{1}{|x-y|^{n-\alpha}} \min \left(1, \frac{\delta(x) \delta(y)}{|x-y|^{2}}\right)
$$

We also denote by $M_{\alpha}^{D} \varphi$ the unique positive continuous solution of

$$
\begin{align*}
\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} u= & 0 \quad \text { in } D, \text { in the sense of distributions } \\
& \lim _{x \rightarrow z \in \partial D} \frac{u(x)}{M_{\alpha}^{D 1(x)}}=\varphi(z), \tag{1.5}
\end{align*}
$$

which is given (see [7]) by

$$
\begin{equation*}
M_{\alpha}^{D} \varphi(x)=\frac{1}{\Gamma(\alpha / 2)} E^{x}\left(\varphi\left(X_{\tau_{D}}\right) \tau_{D}^{\frac{\alpha}{2}-1}\right) \tag{1.6}
\end{equation*}
$$

We aim at giving two existence results for 1.1 as f and g are nondecreasing or nonincreasing with respect to the second variable. More precisely, to state our first existence result, we assume that $f, g: D \times[0, \infty) \rightarrow[0, \infty)$ are Borel measurable functions satisfying
(H1) The functions f and g are continuous and nondecreasing with respect to the second variable.
(H2) The functions

$$
\widetilde{p}(y):=\frac{1}{M_{\alpha}^{D} \psi(y)} f\left(y, M_{\alpha}^{D} \varphi(y)\right) \quad \text { and } \quad \widetilde{q}(y):=\frac{1}{M_{\alpha}^{D} \varphi(y)} g\left(y, M_{\alpha}^{D} \psi(y)\right)
$$

belong to the Kato class $K_{\alpha}(D)$, defined below.
Definition 1.1 ([5]). A Borel measurable function q in D belongs to the Kato class $K_{\alpha}(D)$ if

$$
\lim _{r \rightarrow 0}\left(\sup _{x \in D} \int_{(|x-y| \leq r(\cap D} \frac{\delta(y)}{\delta(x)} G_{\alpha}^{D}(x, y)|q(y)| d y\right)=0
$$

This class is quite rich, it contains for example any function belonging to $L^{s}(D)$, with $s>n / \alpha$ (see Example 2.1 below). On the other hand, it has been shown in [5], that

$$
\begin{equation*}
x \rightarrow(\delta(x))^{-\gamma} \in K_{\alpha}(D), \quad \text { for } \gamma<\alpha \tag{1.7}
\end{equation*}
$$

For more examples of functions belonging to $K_{\alpha}(D)$, we refer to [5]. Note that for the classical case (i.e. $\alpha=2$), the class $K_{2}(D)$ was introduced and studied in 12 .

Our first existence result is the following.
Theorem 1.2. Assume that (H1), (H2) are satisfied. Then there exist two constants $\lambda_{0}>0$ and $\mu_{0}>0$ such that for each $\lambda \in\left[0, \lambda_{0}\right)$ and each $\mu \in\left[0, \mu_{0}\right)$, problem (1.1) has a positive continuous solution such that

$$
\begin{aligned}
& \left(1-\frac{\lambda}{\lambda_{0}}\right) M_{\alpha}^{D} \varphi \leq u \leq M_{\alpha}^{D} \varphi \quad \text { in } D \\
& \left(1-\frac{\mu}{\mu_{0}}\right) M_{\alpha}^{D} \psi \leq v \leq M_{\alpha}^{D} \psi \quad \text { in } D
\end{aligned}
$$

In particular $\lim _{x \rightarrow z \in \partial D} u(x)=\infty$ and $\lim _{x \rightarrow z \in \partial D} v(x)=\infty$.
We note that in [6], the authors studied a problem similar to 1.1 for the case $\alpha=2$. They have obtained positive continuous bounded solution (u,v). Here, we are interesting in the fractional setting.

As second existence result, we aim at proving the existence of blow-up positive continuous solutions for the system

$$
\begin{align*}
\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} u+p(x) g(v) & =0 \quad \text { in } D, \text { in the sense of distributions } \\
\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} v+q(x) f(u) & =0 \quad \text { in } D, \text { in the sense of distributions } \tag{1.8}\\
\lim _{x \rightarrow z \in \partial D} \frac{u(x)}{M_{\alpha}^{D} 1(x)} & =\varphi(z), \quad \lim _{x \rightarrow z \in \partial D} \frac{v(x)}{M_{\alpha}^{D 1(x)}}=\psi(z),
\end{align*}
$$

where φ, ψ are positive continuous functions on ∂D and p, q are nonnegative Borel measurable functions in D. To this end, we fix ϕ a positive continuous functions on ∂D, we put $h_{0}=M_{\alpha}^{D} \phi$ and we assume the following:
(H3) The functions $f, g:(0, \infty) \rightarrow[0, \infty)$ are continuous and nonincreasing.
(H4) The functions $p_{0}:=p \frac{f\left(h_{0}\right)}{h_{0}}$ and $q_{0}:=q \frac{g\left(h_{0}\right)}{h_{0}}$ belongs to the class $K_{\alpha}(D)$.
As a typical example of nonlinearity f and p satisfying (H3)-(H4), we have $f(t)=t^{-\nu}$, for $\nu>0$, and p a nonnegative Borel measurable function such that

$$
p(x) \leq \frac{C}{(\delta(x))^{r}}, \quad \text { for all } x \in D
$$

for some $C>0$ and $r+(1+\nu)(\alpha-2)<\alpha$.

Indeed, since there exists a constant $c>0$, such that for all $x \in D, h_{0}(x) \geq$ $c(\delta(x))^{\alpha-2}$, we deduce by (1.7), that the function $p_{0}:=p \frac{f\left(h_{0}\right)}{h_{0}} \in K_{\alpha}(D)$. Using the Schauder's fixed point theorem, we prove the following result.

Theorem 1.3. Under the assumptions (H3), (H4), there exists a constant $c>1$ such that if $\varphi \geq c \phi$ and $\psi \geq c \phi$ on ∂D, then problem 1.8 has a positive continuous solution (u, v) satisfying for each $x \in D$,

$$
\begin{aligned}
& h_{0} \leq u \leq M_{\alpha}^{D} \varphi \text { in } D, \\
& h_{0} \leq v \leq M_{\alpha}^{D} \psi \quad \text { in } D .
\end{aligned}
$$

In particular $\lim _{x \rightarrow z \in \partial D} u(x)=\infty$ and $\lim _{x \rightarrow z \in \partial D} v(x)=\infty$.
This result extends the one of Athreya [1], who considered the problem

$$
\begin{align*}
\Delta u & =g(u), \quad \text { in } \Omega \\
u & =\varphi \quad \text { on } \partial \Omega \tag{1.9}
\end{align*}
$$

where Ω is a simply connected bounded C^{2}-domain and $g(u) \leq \max \left(1, u^{-\alpha}\right)$, for $0<\alpha<1$. Then he proved that there exists a constant $c>1$ such that if $\varphi \geq c \widetilde{h_{0}}$ on $\partial \Omega$, where $\widetilde{h_{0}}$ is a fixed positive harmonic function in Ω, problem (*) has a positive continuous solution u such that $u \geq \widetilde{h_{0}}$.

The content of this article is organized as follows. In Section 2, we collect some properties of functions belonging to the Kato class $K_{\alpha}(D)$, which are useful to establish our results. Our main results are proved in Section 3.

As usual, let $B^{+}(D)$ be the set of nonnegative Borel measurable functions in D. We denote by $C_{0}(D)$ the set of continuous functions in \bar{D} vanishing continuously on ∂D. Note that $C_{0}(D)$ is a Banach space with respect to the uniform norm $\|u\|_{\infty}=\sup _{x \in D}|u(x)|$. The letter C will denote a generic positive constant which may vary from line to line. When two positive functions ρ and θ are defined on a set S, we write $\rho \approx \theta$ if the two sided inequality $\frac{1}{C} \theta \leq \rho \leq C \theta$ holds on S. For $\rho \in B^{+}(D)$, we define the potential kernel G_{α}^{D} of Z_{α}^{D} by

$$
G_{\alpha}^{D} \rho(x):=\int_{D} G_{\alpha}^{D}(x, y) \rho(y) d y, \quad \text { for } x \in D
$$

and we denote by

$$
\begin{equation*}
a_{\alpha}(\rho):=\sup _{x, y \in D} \int_{D} \frac{G_{\alpha}^{D}(x, z) G_{\alpha}^{D}(z, y)}{G_{\alpha}^{D}(x, y)} \rho(y) d y \tag{1.10}
\end{equation*}
$$

2. The Kato Class $K_{\alpha}(D)$

Example 2.1. For $s>\frac{n}{\alpha}$, we have $L^{s}(D) \subset K_{\alpha}(D)$. Indeed, let $0<r<1$ and $q \in L^{s}(D)$ with $s>\frac{n}{\alpha}$. Using (1.4), there exists a constant $C>0$, such that for each $x, y \in D$

$$
\begin{equation*}
\frac{\delta(y)}{\delta(x)} G_{\alpha}^{D}(x, y) \leq C \frac{1}{|x-y|^{n-\alpha}} \tag{2.1}
\end{equation*}
$$

This fact and the Hölder inequality imply that

$$
\int_{B(x, r) \cap D}\left(\frac{\delta(y)}{\delta(x)}\right) G_{\alpha}^{D}(x, y)|q(y)| d y
$$

$$
\begin{aligned}
& \leq C \int_{B(x, r) \cap D} \frac{|q(y)|}{|x-y|^{n-\alpha}} d y \\
& \leq C\left(\int_{D}|q(y)|^{s} d y\right)^{1 / s}\left(\int_{B(x, r)}|x-y|^{(\alpha-n) \frac{s}{s-1}} d y\right)^{\frac{s-1}{s}} \\
& \leq C\left(\int_{0}^{r} t^{(\alpha-n) \frac{s}{s-1}+n-1} d t\right)^{\frac{s-1}{s}} \rightarrow 0
\end{aligned}
$$

as $r \rightarrow 0$, since $(\alpha-n) \frac{s}{s-1}+n-1>-1$ when $s>\frac{n}{\alpha}$.
Proposition 2.2 ([5). Let q be a function in $K_{\alpha}(D)$, then we have
(i) $a_{\alpha}(q)<\infty$.
(ii) Let h be a positive excessive function on D with respect to Z_{α}^{D}. Then we have

$$
\begin{equation*}
\int_{D} G_{\alpha}^{D}(x, y) h(y)|q(y)| d y \leq a_{\alpha}(q) h(x) \tag{2.2}
\end{equation*}
$$

Furthermore, for each $x_{0} \in \bar{D}$, we have

$$
\begin{equation*}
\lim _{r \rightarrow 0}\left(\sup _{x \in D} \frac{1}{h(x)} \int_{B\left(x_{0}, r\right) \cap D} G_{\alpha}^{D}(x, y) h(y)|q(y)| d y\right)=0 \tag{2.3}
\end{equation*}
$$

(iii) The function $x \rightarrow(\delta(x))^{\alpha-1} q(x)$ is in $L^{1}(D)$.

Lemma 2.3. Let q be a nonnegative function in $K_{\alpha}(D)$, then the family of functions

$$
\Lambda_{q}=\left\{\frac{1}{M_{\alpha}^{D} \varphi(x)} \int_{D} G_{\alpha}^{D}(x, y) M_{\alpha}^{D} \varphi(y) \rho(y) d y,|\rho| \leq q\right\}
$$

is uniformly bounded and equicontinuous in \bar{D}. Consequently Λ_{q} is relatively compact in $C_{0}(D)$.
Proof. Taking $h \equiv M_{\alpha}^{D} \varphi$ in 2.2 , we deduce that for ρ such that $|\rho| \leq q$ and $x \in D$, we have

$$
\begin{equation*}
\left|\int_{D} \frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)} M_{\alpha}^{D} \varphi(y) \rho(y) d y\right| \leq \int_{D} \frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)} M_{\alpha}^{D} \varphi(y) q(y) d y \leq a_{\alpha}(q)<\infty \tag{2.4}
\end{equation*}
$$

So the family Λ_{q} is uniformly bounded.
Next we aim at proving that the family Λ_{q} is equicontinuous in \bar{D}. Let $x_{0} \in \bar{D}$ and $\varepsilon>0$. By (2.3), there exists $r>0$ such that

$$
\sup _{z \in D} \frac{1}{M_{\alpha}^{D} \varphi(z)} \int_{B\left(x_{0}, 2 r\right) \cap D} G_{\alpha}^{D}(z, y) M_{\alpha}^{D} \varphi(y) q(y) d y \leq \frac{\varepsilon}{2} .
$$

If $x_{0} \in D$ and $x, x^{\prime} \in B\left(x_{0}, r\right) \cap D$, then for ρ such that $|\rho| \leq q$, we have

$$
\begin{aligned}
& \left|\int_{D} \frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)} M_{\alpha}^{D} \varphi(y) \rho(y) d y-\int_{D} \frac{G_{\alpha}^{D}\left(x^{\prime}, y\right)}{M_{\alpha}^{D} \varphi\left(x^{\prime}\right)} M_{\alpha}^{D} \varphi(y) \rho(y) d y\right| \\
& \leq \int_{D}\left|\frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)}-\frac{G_{\alpha}^{D}\left(x^{\prime}, y\right)}{M_{\alpha}^{D} \varphi\left(x^{\prime}\right)}\right| M_{\alpha}^{D} \varphi(y) q(y) d y \\
& \leq 2 \sup _{z \in D} \int_{B\left(x_{0}, 2 r\right) \cap D} \frac{1}{M_{\alpha}^{D} \varphi(z)} G_{\alpha}^{D}(z, y) M_{\alpha}^{D} \varphi(y) q(y) d y \\
& \quad+\int_{\left(\left|x_{0}-y\right| \geq 2 r\right) \cap D}\left|\frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)}-\frac{G_{\alpha}^{D}\left(x^{\prime}, y\right)}{M_{\alpha}^{D} \varphi\left(x^{\prime}\right)}\right| M_{\alpha}^{D} \varphi(y) q(y) d y
\end{aligned}
$$

$$
\leq \varepsilon+\int_{\left(\left|x_{0}-y\right| \geq 2 r\right) \cap D}\left|\frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)}-\frac{G_{\alpha}^{D}\left(x^{\prime}, y\right)}{M_{\alpha}^{D} \varphi\left(x^{\prime}\right)}\right| M_{\alpha}^{D} \varphi(y) q(y) d y
$$

On the other hand, for every $y \in B^{c}\left(x_{0}, 2 r\right) \cap D$ and $x, x^{\prime} \in B\left(x_{0}, r\right) \cap D$, by using (1.4) and the fact that $M_{\alpha}^{D} \varphi(z) \approx(\delta(z))^{\alpha-2}$, we have

$$
\begin{aligned}
& \left|\frac{1}{M_{\alpha}^{D} \varphi(x)} G_{\alpha}^{D}(x, y)-\frac{1}{M_{\alpha}^{D} \varphi\left(x^{\prime}\right)} G_{\alpha}^{D}\left(x^{\prime}, y\right)\right| M_{\alpha}^{D} \varphi(y) \\
& \leq \frac{M_{\alpha}^{D} \varphi(y)}{M_{\alpha}^{D} \varphi(x)} G_{\alpha}^{D}(x, y)+\frac{M_{\alpha}^{D} \varphi(y)}{M_{\alpha}^{D} \varphi\left(x^{\prime}\right)} G_{\alpha}^{D}\left(x^{\prime}, y\right) \\
& \leq C\left[\frac{(\delta(x))^{3-\alpha}(\delta(y))^{\alpha-1}}{|x-y|^{n+2-\alpha}}+\frac{\left(\delta\left(x^{\prime}\right)\right)^{3-\alpha}(\delta(y))^{\alpha-1}}{\left|x^{\prime}-y\right|^{n+2-\alpha}}\right] \\
& \leq C\left[\frac{1}{|x-y|^{n+2-\alpha}}+\frac{1}{\left|x^{\prime}-y\right|^{n+2-\alpha}}\right](\delta(y))^{\alpha-1} \\
& \leq C(\delta(y))^{\alpha-1}
\end{aligned}
$$

Now since $x \mapsto \frac{1}{M_{\alpha}^{D} \varphi(x)} G_{\alpha}^{D}(x, y)$ is continuous outside the diagonal and $q \in$ $K_{\alpha}(D)$, we deduce by the dominated convergence theorem and Proposition 2.2 (iii), that

$$
\int_{\left(\left|x_{0}-y\right| \geq 2 r\right) \cap D}\left|\frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)}-\frac{G_{\alpha}^{D}\left(x^{\prime}, y\right)}{M_{\alpha}^{D} \varphi\left(x^{\prime}\right)}\right| M_{\alpha}^{D} \varphi(y) q(y) d y \rightarrow 0 \quad \text { as }\left|x-x^{\prime}\right| \rightarrow 0
$$

If $x_{0} \in \partial D$ and $x \in B\left(x_{0}, r\right) \cap D$, then

$$
\left|\int_{D} \frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)} M_{\alpha}^{D} \varphi(y) \rho(y) d y\right| \leq \frac{\varepsilon}{2}+\int_{\left(\left|x_{0}-y\right| \geq 2 r\right) \cap D} \frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)} M_{\alpha}^{D} \varphi(y) q(y) d y
$$

Now, since $\frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)} \rightarrow 0$ as $\left|x-x_{0}\right| \rightarrow 0$, for $\left|x_{0}-y\right| \geq 2 r$, then by same argument as above, we obtain

$$
\int_{\left(\left|x_{0}-y\right| \geq 2 r\right) \cap D} \frac{G_{\alpha}^{D}(x, y)}{M_{\alpha}^{D} \varphi(x)} M_{\alpha}^{D} \varphi(y) q(y) d y \rightarrow 0 \quad \text { as }\left|x-x_{0}\right| \rightarrow 0
$$

So the family Λ_{q} is equicontinuous in \bar{D}. Therefore by Ascoli's theorem, the family Λ_{q} becomes relatively compact in $C_{0}(D)$.

3. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. Put

$$
\lambda_{0}:=\inf _{x \in D} \frac{M_{\alpha}^{D} \varphi(x)}{G_{\alpha}^{D}\left(g\left(., M_{\alpha}^{D} \psi\right)\right)(x)}, \quad \mu_{0}:=\inf _{x \in D} \frac{M_{\alpha}^{D} \psi(x)}{G_{\alpha}^{D}\left(f\left(., M_{\alpha}^{D} \varphi\right)\right)(x)}
$$

Using (H2) and 2.2 we deduce that $\lambda_{0}>0$ and $\mu_{0}>0$.
Let $\lambda \in\left[0, \lambda_{0}\right)$ and $\mu \in\left[0, \mu_{0}\right)$. Then for each $x \in D$, we have

$$
\begin{aligned}
\lambda_{0} G_{\alpha}^{D}\left(g\left(., M_{\alpha}^{D} \psi\right)\right)(x) & \leq M_{\alpha}^{D} \varphi(x) \\
\mu_{0} G_{\alpha}^{D}\left(f\left(., M_{\alpha}^{D} \varphi\right)\right)(x) & \leq M_{\alpha}^{D} \psi(x)
\end{aligned}
$$

So we define the sequences $\left(u_{k}\right)_{k \geq 0}$ and $\left(v_{k}\right)_{k \geq 0}$ by

$$
\begin{gathered}
v_{0}=1 \\
u_{k}(x)=1-\frac{\lambda}{M_{\alpha}^{D} \varphi(x)} \int_{D} G_{\alpha}^{D}(x, y) g\left(y, v_{k}(y) M_{\alpha}^{D} \psi(y)\right) d y
\end{gathered}
$$

$$
v_{k+1}(x)=1-\frac{\mu}{M_{\alpha}^{D} \psi(x)} \int_{D} G_{\alpha}^{D}(x, y) f\left(y, u_{k}(y) M_{\alpha}^{D} \varphi(y)\right) d y
$$

By induction, we can see that

$$
\begin{gathered}
0<\left(1-\frac{\lambda}{\lambda_{0}}\right) \leq u_{k} \leq 1 \\
0<\left(1-\frac{\mu}{\mu_{0}}\right) \leq v_{k+1} \leq 1
\end{gathered}
$$

Next, we prove that the sequence $\left(u_{k}\right)_{k \geq 0}$ is nondecreasing and the sequence $\left(v_{k}\right)_{k \geq 0}$ is nonincreasing. Indeed, we have

$$
v_{1}-v_{0}=-\frac{\mu}{M_{\alpha}^{D} \psi} G_{\alpha}^{D}\left(f\left(., u_{0} M_{\alpha}^{D} \varphi\right)\right) \leq 0
$$

and therefore by (H1), we obtain that

$$
u_{1}-u_{0}=\frac{\lambda}{M_{\alpha}^{D} \varphi} G_{\alpha}^{D}\left[g\left(., v_{0} M_{\alpha}^{D} \psi\right)-g\left(., v_{1} M_{\alpha}^{D} \psi\right)\right] \geq 0
$$

By induction, we assume that $u_{k} \leq u_{k+1}$ and $v_{k+1} \leq v_{k}$. Then we have

$$
v_{k+2}-v_{k+1}=\frac{\mu}{M_{\alpha}^{D} \psi} G_{\alpha}^{D}\left[f\left(., u_{k} M_{\alpha}^{D} \varphi\right)-f\left(., u_{k+1} M_{\alpha}^{D} \varphi\right)\right] \leq 0
$$

and

$$
u_{k+2}-u_{k+1}=\frac{\lambda}{M_{\alpha}^{D} \varphi} G_{\alpha}^{D}\left[g\left(., v_{k+1} M_{\alpha}^{D} \psi\right)-g\left(., v_{k+2} M_{\alpha}^{D} \psi\right)\right] \geq 0
$$

Therefore, the sequences $\left(u_{k}\right)_{k \geq 0}$ and $\left(v_{k}\right)_{k \geq 0}$ converge respectively to two functions \widetilde{u} and \widetilde{v} satisfying

$$
\begin{align*}
& 0<\left(1-\frac{\lambda}{\lambda_{0}}\right) \leq \widetilde{u} \leq 1 \tag{3.1}\\
& 0<\left(1-\frac{\mu}{\mu_{0}}\right) \leq \widetilde{v} \leq 1
\end{align*}
$$

On the other hand, using (H1), Proposition 2.2 and the dominate convergence theorem, we deduce that

$$
\begin{aligned}
\widetilde{u}(x) & =1-\frac{\lambda}{M_{\alpha}^{D} \varphi(x)} \int_{D} G_{\alpha}^{D}(x, y) g\left(y, \widetilde{v}(y) M_{\alpha}^{D} \psi(y)\right) d y \\
\widetilde{v}(x) & =1-\frac{\mu}{M_{\alpha}^{D} \psi(x)} \int_{D} G_{\alpha}^{D}(x, y) f\left(y, \widetilde{u}(y) M_{\alpha}^{D} \varphi(y)\right) d y .
\end{aligned}
$$

Now by using (H1), (H2) and similar arguments as in the proof of Lemma 2.3 , we deduce that \widetilde{u} and \widetilde{v} belongs to $C(\bar{D})$.

Put $u=\widetilde{u} M_{\alpha}^{D} \varphi$ and $v=\widetilde{v} M_{\alpha}^{D} \psi$. Then u and v are continuous in D and satisfy

$$
\begin{align*}
u(x) & =M_{\alpha}^{D} \varphi(x)-\lambda \int_{D} G_{\alpha}^{D}(x, y) g(y, v(y)) d y \\
v(x) & =M_{\alpha}^{D} \psi(x)-\mu \int_{D} G_{\alpha}^{D}(x, y) f(y, u(y)) d y \tag{3.2}
\end{align*}
$$

In addition, since for each $x \in D, f(y, u(y)) \leq C(\delta(y))^{\alpha-2} \widetilde{p}(y)$ and $g(y, u(y)) \leq$ $C(\delta(y))^{\alpha-2} \widetilde{q}(y)$, we deduce by Proposition 2.2 (iii) that the map $y \rightarrow f(y, u(y)) \in$ $L_{\mathrm{loc}}^{1}(D)$ and $y \rightarrow g(y, u(y)) \in L_{\mathrm{loc}}^{1}(D)$. On the other hand, by 3.2 , we have that $G_{\alpha}^{D} f(., u) \in L_{\mathrm{loc}}^{1}(D)$ and $G_{\alpha}^{D} g(., v) \in L_{\mathrm{loc}}^{1}(D)$. Hence, applying $\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2}$ on both sides of (3.2), we conclude by [9, p. 230] that (u, v) is the required solution.

Example 3.1. Let $\nu \geq 0, \sigma \geq 0, r+(1-\sigma)(\alpha-2)<\alpha$ and $\beta+(1-\nu)(\alpha-2)<\alpha$. Let p and q be two positive Borel measurable functions such that

$$
p(x) \leq C(\delta(x))^{-r}, \quad q(x) \leq C(\delta(x))^{-\beta} \quad \text { for all } x \in D
$$

Let φ and ψ be positive continuous functions on ∂D. Therefore by Theorem 1.2 , there exist two constants $\lambda_{0}>0$ and $\mu_{0}>0$ such that for each $\lambda \in\left[0, \lambda_{0}\right)$ and each $\mu \in\left[0, \mu_{0}\right)$, the problem

$$
\begin{aligned}
\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} u+\lambda p(x) v^{\sigma} & =0 \quad \text { in } D, \text { in the sense of distributions } \\
\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} v+\mu q(x) u^{\nu} & =0 \quad \text { in } D, \text { in the sense of distributions } \\
\lim _{x \rightarrow z \in \partial D} \frac{u(x)}{M_{\alpha}^{D} 1(x)} & =\varphi(z), \quad \lim _{x \rightarrow z \in \partial D} \frac{v(x)}{M_{\alpha}^{D} 1(x)}=\psi(z)
\end{aligned}
$$

has a positive continuous solution (u, v) such that

$$
\begin{aligned}
& \left(1-\frac{\lambda}{\lambda_{0}}\right) M_{\alpha}^{D} \varphi \leq u \leq M_{\alpha}^{D} \varphi \quad \text { in } D \\
& \left(1-\frac{\mu}{\mu_{0}}\right) M_{\alpha}^{D} \psi \leq v \leq M_{\alpha}^{D} \psi \quad \text { in } D
\end{aligned}
$$

In particular, $\lim _{x \rightarrow z \in \partial D} u(x)=\infty$ and $\lim _{x \rightarrow z \in \partial D} v(x)=\infty$.
Proof of Theorem 1.3. Let $c:=1+a_{\alpha}\left(p_{0}\right)+a_{\alpha}\left(q_{0}\right)$, where $a_{\alpha}\left(p_{0}\right)$ and $a_{\alpha}\left(q_{0}\right)$ are the constant defined by the formula 1.10 . We recall that from (H4) and Proposition 2.2 (i), we have $a_{\alpha}\left(p_{0}\right)<\infty$ and $a_{\alpha}\left(q_{0}\right)<\infty$. Let φ, ψ be positive continuous functions on ∂D such that $\varphi \geq c \phi$ and $\psi \geq c \phi$ on ∂D. It follows from the integral representation of $M_{\alpha}^{D} \varphi(x)$ and $M_{\alpha}^{D} \psi(x)$ (see [5, p. 265]), that for each $x \in D$ we have

$$
\begin{equation*}
M_{\alpha}^{D} \varphi(x) \geq c h_{0}(x) \quad \text { and } \quad M_{\alpha}^{D} \psi(x) \geq c h_{0}(x) \tag{3.3}
\end{equation*}
$$

Let Λ be the nonempty closed convex set given by

$$
\Lambda=\left\{\omega \in C(\bar{D}): \frac{h_{0}}{M_{\alpha}^{D} \varphi} \leq \omega \leq 1\right\}
$$

We define the operator T on Λ by

$$
\begin{equation*}
T(\omega)=1-\frac{1}{M_{\alpha}^{D} \varphi} G_{\alpha}^{D}\left(p f\left[M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega M_{\alpha}^{D} \varphi\right)\right)\right]\right) \tag{3.4}
\end{equation*}
$$

We will prove that T has a fixed point. Since for $\omega \in \Lambda$, we have $\omega \geq \frac{h_{0}}{M_{\alpha}^{D} \varphi}$, then we deduce from hypotheses (H3), (H4) and 2.2 that

$$
\begin{equation*}
G_{\alpha}^{D}\left(q g\left(\omega M_{\alpha}^{D} \varphi\right)\right) \leq G_{\alpha}^{D}\left(q g\left(h_{0}\right)\right)=G_{\alpha}^{D}\left(q_{0} h_{0}\right) \leq a_{\alpha}\left(q_{0}\right) h_{0} \tag{3.5}
\end{equation*}
$$

So by using 3.3 and (3.5, we obtain

$$
\begin{aligned}
M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega M_{\alpha}^{D} \varphi\right)\right) & \geq M_{\alpha}^{D} \psi-a_{\alpha}\left(q_{0}\right) h_{0} \\
& \geq \operatorname{ch}_{0}-a_{\alpha}\left(q_{0}\right) h_{0} \\
& =\left(1+a_{\alpha}\left(p_{0}\right)\right) h_{0} \\
& \geq h_{0}>0
\end{aligned}
$$

Hence, by using again (H3), (H4) and 2.2 , we deduce that

$$
\begin{equation*}
G_{\alpha}^{D}\left(p f\left[M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega M_{\alpha}^{D} \varphi\right)\right)\right]\right) \leq G_{\alpha}^{D}\left(p f\left(h_{0}\right)\right)=G_{\alpha}^{D}\left(p_{0} h_{0}\right) \leq a_{\alpha}\left(p_{0}\right) h_{0} \tag{3.6}
\end{equation*}
$$

Using the fact that $M_{\alpha}^{D} \varphi \approx h_{0}$ and Lemma 2.3, we deduce that the family of functions

$$
\left\{\frac{1}{M_{\alpha}^{D} \varphi} G_{\alpha}^{D}\left(p f\left[M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega M_{\alpha}^{D} \varphi\right)\right)\right]\right): \omega \in \Lambda\right\}
$$

is relatively compact in $C_{0}(D)$. Therefore, the set $T \Lambda$ is relatively compact in $C(\bar{D})$.

Next, we shall prove that T maps Λ into it self.
Since $M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega M_{\alpha}^{D} \varphi\right)\right) \geq h_{0}>0$, we have for all $\omega \in \Lambda, T \omega \leq 1$. Moreover, form (3.6), we obtain $T \omega \geq 1-\frac{a_{\alpha}\left(p_{0}\right) h_{0}}{M_{\alpha}^{D} \varphi} \geq \frac{h_{0}}{M_{\alpha}^{D} \varphi}$, which proves that $T(\Lambda) \subset \Lambda$.

Now, we shall prove the continuity of the operator T in Λ in the supremum norm. Let $\left(\omega_{k}\right)_{k \in \mathbb{N}}$ be a sequence in Λ which converges uniformly to a function ω in Λ. Then, for each $x \in D$, we have

$$
\begin{aligned}
\left|T \omega_{k}(x)-T \omega(x)\right| \leq & \frac{1}{M_{\alpha}^{D} \varphi(x)} G_{\alpha}^{D}\left[p \mid f\left(M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega_{k} M_{\alpha}^{D} \varphi\right)\right)\right)\right. \\
& \left.-f\left(M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega M_{\alpha}^{D} \varphi\right)\right)\right) \mid\right](x)
\end{aligned}
$$

On the other hand, by similar arguments as above, we have

$$
\begin{aligned}
& p\left|f\left(M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega_{k} M_{\alpha}^{D} \varphi\right)\right)\right)-f\left(M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega M_{\alpha}^{D} \varphi\right)\right)\right)\right| \\
& \quad \leq p\left[f\left(M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega_{k} M_{\alpha}^{D} \varphi\right)\right)\right)+f\left(M_{\alpha}^{D} \psi-G_{\alpha}^{D}\left(q g\left(\omega M_{\alpha}^{D} \varphi\right)\right)\right)\right] \\
& \leq 2 p_{0} h_{0}
\end{aligned}
$$

By the fact that $M_{\alpha}^{D} \varphi \approx h_{0}, \sqrt{2.2}$ and the dominated convergence theorem, We conclude that for all $x \in D$,

$$
T \omega_{k}(x) \rightarrow T \omega(x) \quad \text { as } k \rightarrow+\infty .
$$

Consequently, as $T(\Lambda)$ is relatively compact in $C(\bar{D})$, we deduce that the pointwise convergence implies the uniform convergence, namely,

$$
\left\|T \omega_{k}-T \omega\right\|_{\infty} \rightarrow 0 \quad \text { as } k \rightarrow+\infty
$$

Therefore, T is a continuous mapping from Λ into itself. So, since $T(\Lambda)$ is relatively compact in $C(\bar{D})$, it follows that T is compact mapping on Λ.

Finally, the Schauder fixed-point theorem implies the existence of a function $\omega \in \Lambda$ such that $\omega=T \omega$. Put

$$
u(x)=\omega(x) M_{\alpha}^{D} \varphi(x) \quad \text { and } \quad v(x)=M_{\alpha}^{D} \psi(x)-G_{\alpha}^{D}(q g(u))(x), \quad \text { for } x \in D
$$

Then (u, v) satisfies

$$
\begin{aligned}
& u(x)=M_{\alpha}^{D} \varphi(x)-G_{\alpha}^{D}(p f(v))(x), \\
& v(x)=M_{\alpha}^{D} \psi(x)-G_{\alpha}^{D}(q g(u))(x) .
\end{aligned}
$$

Finally, we verify that (u, v) is the required solution.
Example 3.2. Let $\nu>0, \sigma>0, r+(1+\nu)(\alpha-2)<\alpha$ and $\beta+(1+\sigma)(\alpha-2)<\alpha$. Let p and q be two nonnegative Borel measurable functions such that

$$
p(x) \leq C(\delta(x))^{-r}, \quad q(x) \leq C(\delta(x))^{-\beta} \quad \text { for all } x \in D
$$

Let φ, ψ and ϕ be positive continuous functions on ∂D. Then there exists a constant $c>1$ such that if $\varphi \geq c \phi$ and $\psi \geq c \phi$ on ∂D, then the problem

$$
\begin{aligned}
\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} u+p(x) v^{-\sigma} & =0 \quad \text { in } D, \text { in the sense of distributions } \\
\left(-\left.\Delta\right|_{D}\right)^{\alpha / 2} v+q(x) u^{-\nu} & =0 \quad \text { in } D, \text { in the sense of distributions } \\
\lim _{x \rightarrow z \in \partial D} \frac{u(x)}{M_{\alpha}^{D} 1(x)} & =\varphi(z), \quad \lim _{x \rightarrow z \in \partial D} \frac{v(x)}{M_{\alpha}^{D} 1(x)}=\psi(z),
\end{aligned}
$$

has a positive continuous solution (u, v) satisfying that for each $x \in D$,

$$
\begin{aligned}
& M_{\alpha}^{D} \phi \leq u \leq M_{\alpha}^{D} \varphi \quad \text { in } D \\
& M_{\alpha}^{D} \phi \leq v \leq M_{\alpha}^{D} \psi \quad \text { in } D .
\end{aligned}
$$

In particular $u(x) \approx(\delta(x))^{\alpha-2} \approx v(x)$ in D.
Acknowledgements. The research is supported by NPST Program of King Saud University; project number 11-MAT1716-02. The author is thankful to the referees for their careful reading of the paper, and for their helpful comments and suggestions.

References

[1] S. Athreya: On a singular semilinear elliptic boundary value problem and the boundary Harnack principle, Potential Analysis (3) 17 (2002), 293-301.
[2] J. Bliedtner, W. Hansen: Potential Theory. An Analytic and Probabilistic Approach to Balayage,.(Springer Berlin, 1986).
[3] F. C. Cirstea, V. D. Radulescu: Entire solutions blowing up at infinity for semilinear elliptic systems, J. Math. Pures Appl. 81 (2002), 827-846.
[4] F. David: Radial solutions of an elliptic system, Houston J. Math. 15 (1989), 425-458.
[5] A. Dhifli, H. Mâagli, M. Zribi: On the subordinate killed B.M in bounded domains and existence results for nonlinear fractional Dirichlet problems, Math. Ann. (2) 352 (2012), 259-291.
[6] A. Ghanmi, H. Mâagli, S. Turki, N. Zeddini: Existence of Positive Bounded Solutions for Some Nonlinear Elliptic Systems, J. Math. Anal. Appl. 352 (2009), 440-448.
[7] J. Glover, Z. Pop-Stojanovic, M. Rao, H. Šiki ć, R. Song, Z. Vondraček: Harmonic functions of subordinate killed Brownian motion, J. Funct. Anal. 215 (2004), 399-426.
[8] M. Ghergu, V. D. Radulescu: On a class of singular Gierer-Meinhart systems arising in morphogenesis, C. R. Math. Acad. Sci. Paris. Ser. I 344 (2007), 163-168.
[9] J. Glover, M. Rao, H. Šikić, R. Song: Г-potentials, In: GowriSankaran K., et al. (eds.) Classical and modern potential theory and applications (Chateau de Bonas, 1993), pp. 217232. (Kluwer Acad.Publ. Dordrecht, 1994).
[10] A. V. Lair, A. W. Wood: solutions of semilinear elliptic equations with nonlinear gradient terms, Int. J. Math. Sci. 22 (1999), 869-883.
[11] A.V. Lair, A.W. Wood: Existence of entire large positive solutions of semilinear elliptic systems, J. Differential Equations (2) 164 (2000), 380-394.
[12] H. Mâagli, M. Zribi: On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of \mathbb{R}^{n}, Positivity. 9 (2005), 667-686.
[13] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations,.(Spinger New York, 1983).
[14] R. Song: Sharp bounds on the density, Green function and jumping function of subordinate killed BM, Probab. Theory Relat. Fields 128 (2004), 606-628.
[15] R. Song, Z. Vondraček: Potential theory of subordinate killed Brownian motion in a domain, Probab.Theory Relat. Fields 125 (2003), 578-592.
[16] K, Yosida: Functional Analysis. (Springer Berlin, 1980).

Imed Bachar
King Saud University College of Science Mathematics Department P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia

E-mail address: abachar@ksu.edu.sa

[^0]: 2000 Mathematics Subject Classification. 35J60, 34B27, 35B44.
 Key words and phrases. Fractional nonlinear systems; Green function; positive solutions; blow-up solutions.
 (C) 2012 Texas State University - San Marcos.

 Submitted September 8, 2012. Published November 25, 2012.

