Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 212, pp. 1–11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ALMOST AUTOMORPHIC MILD SOLUTIONS OF HYPERBOLIC EVOLUTION EQUATIONS WITH STEPANOV-LIKE ALMOST AUTOMORPHIC FORCING TERM

INDIRA MISHRA, DHIRENDRA BAHUGUNA

ABSTRACT. This article concerns the existence and uniqueness of almost automorphic solutions to the semilinear parabolic boundary differential equations

$$x'(t) = A_m x(t) + f(t, x(t)), \quad t \in \mathbb{R},$$

 $Lx(t)=\phi(t,x(t)),\quad t\in\mathbb{R},$

where $A := A_m|_{\ker L}$ generates a hyperbolic analytic semigroup on a Banach space X, with Stepanov-like almost automorphic nonlinear term, defined on some extrapolated space $X_{\alpha-1}$, for $0 < \alpha < 1$ and ϕ takes values in the boundary space ∂X .

1. INTRODUCTION

In this article, we prove existence and uniqueness results of almost automorphic solutions to the following semilinear parabolic boundary differential equations, with Stepanov-like almost automorphic nonlinear term using the techniques initiated by Diagana and N'Guèrèkata in [4].

$$x'(t) = A_m x(t) + h(t, x(t)), \quad t \in \mathbb{R},$$

$$Lx(t) = \phi(t, x(t)), \quad t \in \mathbb{R},$$
(1.1)

where the first equation stands in the complex Banach space X, called the state space and the second equation lies in a boundary space ∂X ; $(A_m, D(A_m))$ is a densely defined linear operator on X and $L : D(A_m) \to \partial X$ is a bounded linear operator.

Motivation for this paper come basically from the following three sources.

The first one is a nice paper by Boulite et al [1]. They have established the existence and uniqueness of almost automorphic solutions to the semilinear boundary differential equation (1.1) using extrapolation methods.

The second source of motivation is a recent paper by Baroun et al [2], where the authors have considered the same equation as (1.1) and proved the existence of almost periodic (almost automorphic) solutions, when the nonlinear term h is almost periodic (almost automorphic), whereas we prove the assertion by taking

²⁰⁰⁰ Mathematics Subject Classification. 34K06, 34A12, 37L05.

Key words and phrases. Almost automorphic; evolution equation; hyperbolic semigroups; extrapolation spaces; interpolation spaces; neutral differential equation; mild solution. ©2012 Texas State University - San Marcos.

Submitted December 1, 2011. Published November 27, 2012.

h to be Stepanov-like almost automorphic function. The functions *h* and ϕ are defined on some continuous interpolation space X_{β} , $0 \leq \beta < 1$, with respect to the sectorial operator $A := A_m|_{\ker L}$.

To prove our results, we make use of the techniques initiated by Diagana and N'Guèrèkata [4], which is also our third source of motivation.

Likewise [1, 2] we solve the (1.1) by transforming the semilinear boundary differential equation (1.1) into an equivalent semilinear evolution equation,

$$x'(t) = A_{\alpha-1}x(t) + h(t, x(t)) + (\lambda - A_{\alpha-1})L_{\lambda}\phi(t, x(t)), \quad t \in \mathbb{R},$$
(1.2)

where $A_{\alpha-1} \ 0 \le \beta < \alpha < 1$, is the continuous extension of $A := A_m|_{kerL}$ to the extrapolated Banach space $X_{\alpha-1}$ of X_{α} with respect to A and the semilinear term $h(t,x) + (\lambda - A_{\alpha-1})L_{\lambda}\phi(t,x) := f(t,x)$ is an $X_{\alpha-1}$ valued function. As in [1, 2] we also assume Greiner's assumption introduced by Greiner [8], which is stated in Section 4. Under Greiner's assumption on L, the operator $L_{\lambda} := (L|_{\ker(\lambda-A_m)})^{-1}$, called the Drichilet map of A_m , is a bounded linear map from ∂X to X, where $X_{\alpha-1}$ is a larger Banach space than X. The extrapolation theory was introduced by Da Prato, Grisvard [3] and Nagel [7] and is used for various purposes. One can see Section 2 for the mentioned notion (cf. [7, 11] for more details).

These days people have increasing interest in showing almost automorphy of the solutions of the functional differential equations see for e.g. [1, 2, 4, 6, 9, 10, 13]. We refer [9], for the more details on the topic.

Our results generalize the existing ones in [1], in the sense that the function h is assumed to be Stepanov-like almost automorphic functions.

2. Preliminaries

In this section, we begin with fixing some notation and recalling the definitions and basic results on generators of interpolation and extrapolation spaces. Let X be a complex Banach space and (A, D(A)) be a sectorial operator on X; that is, there exist the constants $\omega \in \mathbb{R}$, $\phi \in (\frac{\pi}{2}, \pi)$ and M > 0 such that

$$\|R(\lambda, A - \omega)\|_{\mathcal{L}(X)} \le \frac{M}{|\lambda - \omega|}, \quad \forall \lambda \in \Sigma_{\omega, \phi},$$

where $\Sigma_{\omega, \phi} := \{\lambda \in \mathbb{C} : \lambda \neq \omega, |\arg(\lambda - \omega)| \le \phi\} \subset \rho(A).$

The real *interpolation space* X_{α} for $\alpha \in (0, 1)$, is a Banach space endowed with the norm,

$$\|x\|_{\alpha} := \sup_{\lambda > 0} \|\lambda^{\alpha} (A - \omega) R(\lambda, A - \omega) x\|.$$
(2.1)

Here we denote by, $X_0 := X$, $X_1 := D(A)$, $||x||_0 = ||x||$, and $||x||_1 = ||(A - \omega)x||$. The *extrapolation space* X_{-1} associated with A, is defined to be the completion of $(\hat{X}, ||\cdot||_{-1})$, where $\hat{X} := \overline{D(A)}$, endowed with the norm $||\cdot||_{-1}$ given by

$$||x||_{-1} := ||(\omega - A)^{-1}x||, \quad x \in X.$$

In a similar fashion, we can define the space $X_{\alpha-1} := (X_{-1})_{\alpha} = \overline{\hat{X}}^{\|\cdot\|_{\alpha-1}}$, with $\|x\|_{\alpha-1} = \sup_{\lambda>0} \|\lambda^{\alpha} R(\lambda, A_{-1} - \omega)x\|$. The restriction $A_{\alpha-1} : X_{\alpha} \to X_{\alpha-1}$ of A_{-1} generates the analytic semigroup $(T_{\alpha-1}(t))_{t\geq 0}$ on $X_{\alpha-1}$ which is the extension of T(t) to $X_{\alpha-1}$. Observe that $\omega - A_{\alpha-1} : X_{\alpha} \to X_{\alpha-1}$ is an isometric isomorphism.

$$D(A) \hookrightarrow X_{\beta} \hookrightarrow D((\omega - A)^{\alpha}) \hookrightarrow X_{\alpha} \hookrightarrow X,$$

$$X \hookrightarrow X_{\beta-1} \hookrightarrow D((\omega - A_{-1})^{\alpha}) \hookrightarrow X_{\alpha-1} \hookrightarrow X_{-1},$$

for all $0 < \alpha < \beta < 1$.

Now we state certain propositions for the proofs of which one can see [2].

Proposition 2.1. Assume that $0 < \alpha \leq 1$ and $0 \leq \beta \leq 1$. Then the following assertions hold for $0 < t \leq t_0$, $t_0 > 0$ and $\tilde{\epsilon} > 0$ such that $0 < \alpha - \tilde{\epsilon} < 1$ with constants possibly depending on t_0 .

(i) The operator T(t) has continuous extensions $T_{\alpha-1}(t): X_{\alpha-1} \to X$ satisfying

$$\|T_{\alpha-1}(t)\|_{\mathcal{L}(X_{\alpha-1},X)} \le ct^{\alpha-1-\tilde{\epsilon}},\tag{2.2}$$

(ii) For $x \in X_{\alpha-1}$ we have

$$|T_{\alpha-1}(t)||_{\beta} \le ct^{\alpha-\beta-1-\tilde{\epsilon}} ||x||_{\alpha-1}.$$
(2.3)

Remark 2.2. We can remove $\tilde{\epsilon}$ in Proposition 2.1 by extending T(t) to operators from $D(\omega - A_{-1})^{\alpha \pm \tilde{\epsilon}}$ to X, with norms bounded by $t^{\alpha - 1 \pm \tilde{\epsilon}}$, where $0 < \alpha \pm \tilde{\epsilon} < 1$, and therefore by employing the reiteration theorem and the interpolation property, the inequality in the assertion (i) can be obtained without $\tilde{\epsilon}$. For a more general situation see [12].

Definition 2.3. An analytic semigroup $(T(t))_{t\geq 0}$ is said to be hyperbolic if it satisfies the following three conditions.

- (i) there exist two subspaces X_s (the stable space) and X_u (the unstable space) of X such that $X = X_s \oplus X_u$;
- (ii) T(t) is defined on X_u , $T(t)X_u \subset X_u$, and $T(t)X_s \subset X_s$ for all $t \ge 0$;
- (iii) there exist constants $M, \delta > 0$ such that

$$||T(t)P_s|| \le Me^{-\delta t}, t \ge 0, \quad ||T(t)P_u|| \le Me^{\delta t}, t \le 0,$$
 (2.4)

where P_s and P_u are the projections onto X_s and X_u , respectively.

Recall that an analytic semigroup $(T(t))_{t\geq 0}$ is hyperbolic if and only if $\sigma(A) \cap i\mathbb{R} = \phi$, (cf. [7, Prop. 1.15]). In the next proposition, we show the hyperbolicity of the extrapolated semigroup $(T_{\alpha-1}(t))_{t\geq 0}$. Before stating the proposition, we assume that the part of A, $A|_{P_u}: P_u(X) \to P_u(X)$ is bounded, which implies

$$\|AP_u\| \le C,$$

where C is some constant.

Proposition 2.4. Let $T(\cdot)$ be hyperbolic and $0 < \alpha \leq 1$. Then the operators P_s and P_u admit continuous extensions $P_{u,\alpha-1} : X_{\alpha-1} \to X$ and $P_{s,\alpha-1} : X_{\alpha-1} \to X_{\alpha-1}$ respectively. Moreover we have the following assertions.

- (i) $P_{u,\alpha-1}X_{\alpha-1} = P_uX;$
- (ii) $T_{\alpha-1}(t)P_{s,\alpha-1} = P_{s,\alpha-1}T_{\alpha-1}(t);$
- (iii) $T_{\alpha-1}(t) : P_{u,\alpha-1}(X_{\alpha-1}) \to P_{u,\alpha-1}(X_{\alpha-1})$ is an invertible function with inverse $T_{\alpha-1}(-t)$;

(iv) for $0 < \alpha - \tilde{\epsilon} < 1$, we have

$$||T_{\alpha-1}(t)P_{s,\alpha-1}x|| \le mt^{\alpha-1-\tilde{\epsilon}}e^{-\gamma t}||x||_{\alpha-1} \quad for \ x \in X_{\alpha-1} \ and \ t \ge 0,$$
(2.5)

$$||T_{\alpha-1}(t)P_{u,\alpha-1}x|| \le Ce^{\delta t} ||x||_{\alpha-1} \quad for \ x \in X_{\alpha-1} \ and \ t \le 0,$$
(2.6)

Proposition 2.5. For $x \in X_{\alpha-1}$ and $0 \le \beta \le 1$, $0 < \alpha < 1$, we have the following assertions.

(i) there is a constant $c(\alpha, \beta)$, such that

$$||T_{\alpha-1}(t)P_{u,\alpha-1}x||_{\beta} \le c(\alpha,\beta)e^{\delta t}||x||_{\alpha-1} \quad for \ t \le 0,$$
(2.7)

(ii) there is a constant $m(\alpha, \beta)$, such that for $t \ge 0$ and $0 < \alpha - \tilde{\epsilon} < 1$.

$$||T_{\alpha-1}(t)P_{s,\alpha-1}x||_{\beta} \le m(\alpha,\beta)e^{-\gamma t}t^{\alpha-\beta-\tilde{\epsilon}-1}||x||_{\alpha-1}.$$
(2.8)

Definition 2.6. A continuous function $f : \mathbb{R} \to X$, is called almost automorphic, if for every sequence $(\sigma_n)_{n \in \mathbb{N}}$ of real numbers, there is a subsequence $(s_n)_{n \in \mathbb{N}} \subset (\sigma_n)_{n \in \mathbb{N}}$ such that

$$\lim_{n,m\to\infty} f(t+s_n-s_m) = f(t), \quad \text{for each } t \in \mathbb{R}.$$

This is equivalent to

$$g(t) = \lim_{n \to \infty} f(t + s_n)$$
, and $f(t) = \lim_{n \to \infty} g(t - s_n)$,

are well defined for each $t \in \mathbb{R}$. The function g in the above definition measurable but not necessarily continuous.

Remark 2.7. An almost automorphic function is continuous but may not be uniformly continuous, for e.g. let $p(t) = 2 + \cos(t) + \cos(\sqrt{2}t)$ and $f : \mathbb{R} \to \mathbb{R}$ defined as $f := \sin(1/p)$, then $f \in AA(X)$, but f is not uniformly continuous on \mathbb{R} , so $f \notin AP(X)$.

Lemma 2.8. We have the following properties of almost automorphic functions:

- (a) For $f \in AA(X)$, the range $\mathcal{R}_f := \{f(t) : t \in \mathbb{R}\}$ is precompact in X, so that f is bounded.
- (b) For $f, g \in AA(X)$ then $f + g \in AA(X)$.
- (c) Assume that $f_n \in AA(X)$ and $f_n \to g$ uniformly on \mathbb{R} , then $g \in AA(X)$.
- (d) AA(X), equipped with the sup norm given by

$$||f|| = \sup_{t \in \mathbb{R}} ||f(t)||,$$
(2.9)

turns out to be a Banach space.

2.1. S^p -Almost automorphy.

Definition 2.9. [14] The Bochner transform $f^b(t, s), t \in \mathbb{R}, s \in [0, 1]$ of a function $f : \mathbb{R} \to X$ is defined by $f^b(t, s) := f(t + s)$.

Definition 2.10. The Bochner transform $f^b(t, s, u), t \in \mathbb{R}, s \in [0, 1], u \in X$ of a function f(t, u) on $\mathbb{R} \times X$, with values in X, is defined by

$$f^{b}(t,s,u) := f(t+s,u)$$

for each $x \in X$.

Definition 2.11. For $p \in (1, \infty)$, the space $BS^p(X)$ of all Stepanov bounded functions, with the exponent p, consists of all measurable functions $f : \mathbb{R} \to X$ such that f^b belongs to $L^{\infty}(\mathbb{R}; L^p((0,1), X))$. This is a Banach space with the norm

$$||f||_{S^p} := ||f^b||_{L^{\infty}(\mathbb{R}, L^p)} = \sup_{t \in \mathbb{R}} \left(\int_t^{t+1} ||f(\tau)||^p d\tau \right)^{1/p}.$$
 (2.10)

Definition 2.12. [13] The space $AS^p(X)$ of Stepanov almost automorphic functions (or S^p -almost automorphic) consists of all $f \in BS^p(X)$ such that $f^b \in AA(L^p(0,1;X))$. That is, a function $f \in L^p_{loc}(\mathbb{R},X)$ is said to be S^p -almost automorphic if its Bochner transform $f^b : \mathbb{R} \to L^p(0,1;X)$ is almost automorphic in the sense that, for every sequence $(s'_n)_{n\in\mathbb{N}}$ of real numbers, there exists a subsequence $(s_n)_{n\in\mathbb{N}}$ and a function $g \in L^p_{loc}(\mathbb{R},X)$ such that

$$\left[\int_{t}^{t+1} \|f(s_{n}+s) - g(s)\|^{p} ds\right]^{1/p} \to 0,$$
$$\left[\int_{t}^{t+1} \|g(s-s_{n}) - f(s)\|^{p} ds\right]^{1/p} \to 0,$$

as $n \to \infty$ pointwise on \mathbb{R} .

Remark 2.13. $AS^p(X_{\alpha-1})$ is the extrapolated space of $AS^p(X_{\alpha})$ equipped with norm $\|\cdot\|_{S^p_{\alpha-1}}$, given by

$$\|f\|_{S^p_{\alpha-1}} := \sup_{t \in \mathbb{R}} \left(\int_t^{t+1} \|f(\tau)\|_{\alpha-1}^p d\tau \right)^{1/p}.$$

Remark 2.14. It is clear that if $1 \leq p < q < \infty$ and $f \in L^q_{loc}(\mathbb{R}; X)$ is S^q -almost automorphic, then f is S^p -almost automorphic. Also if $f \in AA(X)$, then f is S^p -almost automorphic for any $1 \leq p < \infty$.

Let $(Y, \|\cdot\|_Y)$ be an abstract Banach space.

Definition 2.15. A function $F : \mathbb{R} \times Y \to X$, $(t, u) \mapsto F(t, u)$ with $F(\cdot, u) \in L^p_{\text{loc}}(\mathbb{R}; X)$ for each $u \in Y$, is said to be S^p -almost automorphic in $t \in \mathbb{R}$ uniformly in $u \in Y$ if $t \mapsto F(t, u)$ is S^p -almost automorphic for each $u \in Y$, that is for every sequence of real numbers $(s'_n)_{n \in \mathbb{N}}$, there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ and a function $G(\cdot, u) \in L^p_{\text{loc}}(\mathbb{R}, X)$ such that following statements hold

$$\left[\int_{t}^{t+1} \|F(s_{n}+s) - G(s)\|^{p} ds\right]^{1/p} \to 0,$$
$$\left[\int_{t}^{t+1} \|G(s-s_{n}) - F(s)\|^{p} ds\right]^{1/p} \to 0,$$

as $n \to \infty$ pointwise on \mathbb{R} for each $u \in Y$.

The collection of all S^p -almost automorphic functions from $f : \mathbb{R} \times Y \mapsto X$ will be denoted by $AS^p(\mathbb{R} \times Y)$. Now we have the following composition theorem due to Diagana [6].

Theorem 2.16. [6] Assume that $\phi \in AS^p(Y)$ such that $K := \{\phi(t) : t \in \mathbb{R}\} \subset Y$ is a relatively compact subset of X. Let $F \in AS^p(\mathbb{R} \times Y)$ and let the function $(t, u) \mapsto F(t, u)$ be Lipschitz continuous that is there exists a constant L > 0 such that

$$||F(t, u) - F(t, v)|| \le L ||u - v||_Y,$$

for all $t \in \mathbb{R}, (u, v) \in Y \times Y$. Then the function $\Gamma : \mathbb{R} \to X$ defined by $\Gamma(\cdot) := F(\cdot, \phi(\cdot))$ belongs to $AS^p(X)$.

3. Main results

In this section we discuss the existence and uniqueness of almost automorphic solutions of the following semilinear evolution equation,

$$x'(t) = A_{\alpha-1}x(t) + f(t, x(t)), \quad t \in \mathbb{R},$$
(3.1)

with the following assumptions;

- (A1) A is the sectorial operator and the generator of a hyperbolic analytic semigroup $(T(t))_{t\geq 0}$.
- (A2) $f : \mathbb{R} \times X_{\beta} \to X_{\alpha-1}$, is Stepanov-like almost automorphic in t, for each $x \in X_{\beta}$.
- (A3) f is uniformly Lipschitz with respect to the second argument, that is

$$\|f(t,x) - f(t,y)\|_{\alpha-1} \le k \|x - y\|_{\beta}, \tag{3.2}$$

for all $t \in \mathbb{R}$, $x, y \in X_{\beta}$, and some constant k > 0.

Definition 3.1. A continuous function $x : \mathbb{R} \to X_{\beta}$, is said to be a mild solution of (3.1), if it satisfies following variation of constants formula

$$x(t) = T(t-s)x(s) + \int_{s}^{t} T_{\alpha-1}(t-\sigma)f(\sigma, x(\sigma))d\sigma$$
(3.3)

for all $t \geq s, t, s \in \mathbb{R}$.

Definition 3.2. A function $u : \mathbb{R} \to X_{\beta}$, is said to be a bounded solution of (3.1) provided that

$$u(t) = \int_{-\infty}^{t} T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}f(\sigma, u(\sigma))d\sigma - \int_{t}^{\infty} T_{\alpha-1}(t-\sigma)P_{u,\alpha-1}f(\sigma, u(\sigma))d\sigma,$$
(3.4)

 $t \in \mathbb{R}$.

Throughout the rest of this paper, we assume $\mathcal{H}u(t) := H_1u(t) + H_2u(t)$, where

$$H_1u(t) := \int_{-\infty}^{t} T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}f(\sigma, u(\sigma))d\sigma,$$
$$H_2u(t) := \int_{t}^{\infty} T_{\alpha-1}(t-\sigma)P_{u,\alpha-1}f(\sigma, u(\sigma))d\sigma,$$

for all $t \in \mathbb{R}$.

Lemma 3.3. Assume that assumptions (A1)–(A3) are satisfied. If

$$M(\alpha,\beta,q,\gamma) := \sum_{n=1}^{\infty} \left[\int_{n-1}^{n} e^{-\gamma q \sigma} \sigma^{-q(\beta+1+\tilde{\epsilon}-\alpha)} d\sigma \right]^{1/q} < \infty,$$
(3.5)

then the operator \mathcal{H} maps $AA(X_{\beta}) \mapsto AA(X_{\beta})$.

<u>Proof.</u> Let u be in $AA(X_{\beta})$. Then $u \in AS^p(X_{\beta})$ and by Lemma 2.8 the set $\overline{\{u(t) : t \in \mathbb{R}\}}$ is compact in X_{β} . Since f is Lipschitz, then it follows from Theorem 2.16 (also see [5, Theorem 2.21]) that the function $\phi(t) := f(t, u(t))$ belongs to $AS^p(X_{\beta})$. Now we show that $\mathcal{H}u \in AA(X_{\beta})$.

For that we first define a sequence of integral operators $\{\phi_n\}$ as follows

$$\phi_n(t) := \int_{n-1}^n T_{\alpha-1}(t-\sigma) P_{s,\alpha-1}g(\sigma) d\sigma, \quad t \in \mathbb{R} \text{ and } n = 1, 2, 3 \dots$$
(3.6)

Putting $r = t - \sigma$,

$$\phi_n(t) := \int_{t-n}^{t-n+1} T_{\alpha-1}(r) P_{s,\alpha-1}g(t-r)dr.$$
(3.7)

Let $0 < \tilde{\epsilon} + \beta < \alpha, 0 < \alpha - \tilde{\epsilon} < 1$ and using Proposition 2.5 we have

$$\begin{split} \|\phi_n(t)\|_{\beta} &\leq \int_{t-n}^{t-n+1} m(\alpha,\beta) r^{\alpha-1-\beta-\tilde{\epsilon}} e^{-\gamma r} \|g(t-r)\|_{S^p_{\alpha-1}} dr \\ &\text{now, } r \to (t-r), \\ &\leq \int_{n-1}^n m(\alpha,\beta) (t-r)^{\alpha-1-\beta-\tilde{\epsilon}} e^{-\gamma(t-r)} \|g(r)\|_{S^p_{\alpha-1}} dr, \\ &\leq \int_{n-1}^n m(\alpha,\beta) \sigma^{\alpha-\beta-1-\tilde{\epsilon}} e^{-\gamma\sigma} \|g\|_{S^p_{\alpha-1}} d\sigma, \\ &\leq q(\alpha,\beta) \Big[\int_{n-1}^n e^{-\gamma q\sigma} \sigma^{q(\alpha-\beta-1-\tilde{\epsilon})} d\sigma \Big]^{1/q} \|g\|_{S^p_{\alpha-1}}. \end{split}$$

By Weierstrass theorem and (3.5), it follows that the series

$$\Phi(t) := \sum_{n=1}^{\infty} \phi_n(t)$$

is uniformly convergent on \mathbb{R} . Moreover $\Phi \in C(\mathbb{R}, X_{\beta})$;

$$\|\Phi(t)\|_{\beta} \le \sum_{n=1}^{\infty} \|\phi_n(t)\|_{\beta} \le q(\alpha, \beta) M(\alpha, \beta, q, \gamma) \|\phi\|_{S^p_{\alpha-1}}.$$
 (3.8)

We show that for all n = 1, 2, 3, $\phi_n \in AA(X_\beta)$. Since $g \in AS^p(X_{\alpha-1})$, which implies that for every sequence $(s'_n)_{n \in \mathbb{N}}$ of real numbers, there exist a subsequence $(s_n)_{n \in \mathbb{N}}$ and a function g' such that

$$\int_{t}^{t+1} \|g(\sigma + s_n) - g'(\sigma)\|_{\alpha-1}^{p} d\sigma \to 0.$$
(3.9)

Let us define another sequence of integral operators

$$\widehat{\phi_n}(t) = \int_{n-1}^n T_{\alpha-1}(t-\sigma) P_{s,\alpha-1} g'(\sigma) d\sigma \quad \text{for } n = 1, 2, 3, \dots$$
(3.10)

Now we show for n = 1, 2, 3, ... that $\phi_n \in AA(X_\beta)$. Since $g \in AS^p(X_{\alpha-1})$, for every sequence $(s'_n)_{n \in \mathbb{N}}$ of real numbers, there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ and a function g' such that

$$\int_{t}^{t+1} \|g(\sigma + s_n) - g'(\sigma)\|_{\alpha - 1}^{p} d\sigma \to 0.$$
(3.11)

Define for all n = 1, 2, 3, ... another sequence of integral operators

$$\widehat{\phi_n}(t) = \int_{n-1}^n T_{\alpha-1}(t-\sigma) P_{s,\alpha-1}g'(\sigma) d\sigma, \qquad (3.12)$$

for all $t \in \mathbb{R}$. Consider

$$\phi_n(t+s_{n_k}) - \phi_n(t)$$

I. MISHRA, D. BAHUGUNA

$$= \int_{n-1}^{n} T_{\alpha-1}(t+s_{n_{k}}-\sigma)P_{s,\alpha-1}g(\sigma)d\sigma - \int_{n-1}^{n} T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}g'(\sigma)d\sigma,$$

$$= \int_{n-1}^{n} T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}g(\sigma+s_{n_{k}})d\sigma - \int_{n-1}^{n} T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}g'(\sigma)d\sigma,$$

$$= \int_{n-1}^{n} T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}[g(\sigma+s_{n_{k}})-g'(\sigma)]d\sigma.$$

Using Proposition 2.5, we have

$$\begin{split} \|\phi_n(t+s_{n_k}) - \widehat{\phi_n}(t)\|_{\beta} \\ &\leq \int_{n-1}^n m(\alpha,\beta) e^{-\gamma(t-\sigma)} (t-\sigma)^{-(\beta-\alpha+\tilde{\epsilon}+1)} \|g(\sigma+s_{n_k}) - g'(\sigma)\|_{S^p_{\alpha-1}} d\sigma \\ &\to 0, \quad \text{as } k \to \infty, \ t \in \mathbb{R}, \quad (\text{since } g \in AS^p(X_{\alpha-1})). \end{split}$$

This implies that $\widehat{\phi_n}(t) = \lim_{k \to \infty} \phi_n(t + s_{n_k}), n = 1, 2, 3, \dots$ and $t \in \mathbb{R}$.

In a similar way, one can show that $\phi_n(t) = \lim_{k \to \infty} \widehat{\phi}_n(t-s_{n_k})$, for all $t \in \mathbb{R}$ and $n = 1, 2, 3, \ldots$. Therefore for each $n = 1, 2, 3, \ldots$, the sequence $\phi_n \in AA(X_\beta)$. \Box

Now we state the main result of this Section.

Theorem 3.4. Let $0 \leq \beta < \alpha$, $\tilde{\epsilon} > 0$ such that $0 < \alpha - \tilde{\epsilon} < 1$ and $0 < \beta + \tilde{\epsilon} < \alpha$, moreover assume that the constant

$$K := k \cdot m(\alpha, \beta) \gamma^{\beta - \alpha + \tilde{\epsilon}} \Gamma(\alpha - \beta - \tilde{\epsilon}) + c(\alpha, \beta) \delta^{-1} < 1$$

and equation (3.5) hold. Then under assumptions (A1)–(A3) and for $f \in AS^p(\mathbb{R} \times X_{\beta}, X_{\alpha-1})$, equation (3.1) has unique almost automorphic solution $u \in AA(X_{\beta})$, satisfying the following variation of constants formula.

$$u(t) = \int_{-\infty}^{t} T_{\alpha-1}(t-\sigma) P_{s,\alpha-1} f(\sigma, u(\sigma)) d\sigma - \int_{t}^{\infty} T_{\alpha-1}(t-\sigma) P_{u,\alpha-1} f(\sigma, u(\sigma)) d\sigma,$$

$$t \in \mathbb{R}.$$

Proof. We first show that \mathcal{H} is a contraction. Let $v, w \in AA(X_{\beta})$ and consider the following

$$\begin{split} \|H_{1}v(t) - H_{1}w(t)\|_{\beta} \\ &\leq \int_{-\infty}^{t} m(\alpha,\beta)(t-s)^{\alpha-\beta-1-\tilde{\epsilon}} e^{-\gamma(t-s)} \|f(s,v(s)) - f(s,w(s))\|_{\alpha-1} ds \\ &\leq \int_{-\infty}^{t} km(\alpha,\beta)(t-s)^{\alpha-\beta-1-\tilde{\epsilon}} e^{-\gamma(t-s)} \|v(s) - w(s)\|_{\beta} ds \\ &\leq k.m(\alpha,\beta)\gamma^{\beta-\alpha+\tilde{\epsilon}} \Gamma(\alpha-\beta-\tilde{\epsilon}) \|v-w\|_{\beta}, \end{split}$$

where $\Gamma(\alpha) := \int_0^\infty t^{\alpha-1} e^{-t} dt$. Similarly we have

$$\begin{aligned} \|H_2 v(t) - H_2 w(t)\|_{\beta} &\leq \int_t^\infty c(\alpha, \beta) e^{-\delta(t-s)} \|v(s) - w(s)\|_{\beta} ds \\ &\leq c(\alpha, \beta) \delta^{-1} \|v - w\|_{\beta}. \end{aligned}$$

Consequently,

$$\begin{aligned} \|\mathcal{H}v(t) - \mathcal{H}v(t)\|_{\beta} &\leq \left(k.m(\alpha,\beta)\gamma^{\beta-\alpha+\tilde{\epsilon}}\Gamma(\alpha-\beta-\tilde{\epsilon}) + c(\alpha,\beta)\delta^{-1}\right)\|v-w\|_{\beta}\\ &< \|v-w\|_{\beta}.\end{aligned}$$

Hence by the well-known Banach contraction principle, \mathcal{H} has unique fixed point u in $AA(X_{\beta})$ satisfying $\mathcal{H}u = u$ (cf. Lemma 3.3 for almost automorphy of solution).

4. Semilinear boundary differential equations

Consider the semilinear boundary differential equation

$$x'(t) = A_m x(t) + h(t, x(t)), \quad t \in \mathbb{R},$$

$$Lx(t) = \phi(t, x(t)), \quad t \in \mathbb{R},$$
(4.1)

where $(A_m, D(A_m))$ is a densely defined linear operator on a Banach space X and $L: D(A_m) \to \partial X$, the boundary Banach space and the functions $h: \mathbb{R} \times X_m \to \partial X$ and $\phi: \mathbb{R} \times X_m \to \partial X$ are continuous.

Likewise [1, 2] here we assume the assumptions introduced by Greiner [8] which are given as follows

- (H1) There exists a new norm $|\cdot|$ which makes the domain $D(A_m)$ complete and then denoted by X_m . The space X_m is continuously embedded in X and $A_m \in \mathcal{L}(X_m, X)$.
- (H2) The restriction operator $A := A_m|_{ker(L)}$ is a sectorial operator such that $\sigma(A) \cap i\mathbb{R} = \phi$.
- (H3) The operator $L: X_m \to \partial X$ is bounded and surjective.
- (H4) $X_m \hookrightarrow X_\alpha$ for some $0 < \alpha < 1$.
- (H5) $h : \mathbb{R} \times X_{\beta} \to X$ and $\phi : \mathbb{R} \times X_{\beta} \to \partial X$ are continuous for $0 \le \beta < \alpha$.

A function $x : \mathbb{R} \to X_{\beta}$ is a mild solution of (1.1) if we have the following

(i) $\int_{s}^{t} x(\tau) d\tau \in X_m$,

(ii)
$$x(t) - x(s) = A_m \int_a^t x(\tau) d\tau + \int_a^t h(\tau, x(\tau)) d\tau$$
,

(iii) $L \int_s^t x(\tau) d\tau = \int_s^t \phi(\tau, x(\tau)) d\tau$,

for all $t \geq s, t, s \in \mathbb{R}$.

Now we transform (1.1) to the equivalent semilinear evolution equation

$$x'(t) = A_{\alpha-1}x(t) + h(t, x(t)) - A_{\alpha-1}L_0\phi(t, x(t)), \quad t \in \mathbb{R},$$
(4.2)

where $L_0 := (L | Ker(A_m))^{-1}$.

Theorem 4.1. Assume that functions $\phi \in AS^p(\mathbb{R} \times X_\beta, \partial X)$ and $h \in AS^p(\mathbb{R} \times X_\beta, X)$, are globally Lipschitzian with small lipschitz constants. Then under the assumptions (H1)-(H5), the semilinear boundary differential equation (1.1) has a unique mild solution $x \in AA(X_\beta)$, satisfying the following formula for all $t \in \mathbb{R}$.

$$x(t) = \int_{-\infty}^{t} T(t-s)P_{s}h(s,x(s))ds - \int_{t}^{\infty} T(t-s)P_{u}h(s,x(s))ds - A\Big[\int_{-\infty}^{t} T(t-s)P_{s}L_{0}\phi(s,x(s))ds - \int_{t}^{\infty} T(t-s)P_{u}L_{0}\phi(s,x(s))ds\Big].$$
(4.3)

Proof. It is clear that $A_{\alpha-1}L_0$ is a bounded operator from $\partial X \to X_{\alpha-1}$. Since $\phi \in AS^p(\mathbb{R} \times X_\beta, \partial X)$ and $h \in AS^p(\mathbb{R} \times X_\beta, X)$ and from the injection $X \hookrightarrow X_{\alpha-1}$, the function $f(t, x) := h(t, x) - A_{\alpha-1}L_0\phi(t, x) \in AS^p(\mathbb{R} \times X_\beta, X_{\alpha-1})$. This function

is also globally Lipschitzian with a small constant. Hence by Theorem 3.4, there is a unique mild solution $x \in AA(X_{\beta})$ of (4.2), satisfying

$$x(t) = \int_{-\infty}^{t} P_{s,\alpha-1} T_{\alpha-1}(t-s) f(s,x(s)) ds - \int_{t}^{\infty} P_{u,\alpha-1} T_{\alpha-1}(t-s) f(s,x(s)) ds,$$

from which we deduce the variation of constants formula (4.3) and $x \in AA(X_{\beta})$ is the unique mild solution.

Example 4.2. Consider the partial differential equation

$$\frac{\partial}{\partial t}u(t,x) = \Delta u(t,x) + au(t,x), \quad t \in \mathbb{R}, \ x \in \Omega$$

$$\frac{\partial}{\partial n}u(t,x) = \Gamma(t,m(x)u(t,x)), \quad t \in \mathbb{R}, \ x \in \partial\Omega.$$
(4.4)

Where $a \in \mathbb{R}_+$ and m is a \mathbb{C}^1 function and $\Omega \subset \mathbb{R}^n$ is a bounded open subset of \mathbb{R}^n with smooth boundary $\partial\Omega$. Here we use the following notation/conventions: $X = L^2(\Omega), X_m = H^2(\Omega)$ and the boundary space $\partial X = H^{1/2}(\partial\Omega)$. The operators $A_m : X_m \to X$, given by $A_m \varphi = \Delta \varphi + a \phi$ and $L : X_m \to \partial X$, given by $L \varphi := \frac{\partial \varphi}{\partial n}$. The operator L is bounded and surjective, follows from Sections [15, 4.3.3, 4.6.1]. It is also known that the operator $A := A_m|_{\ker L}$ generates an analytic semigroup, moreover we also have $X_m \hookrightarrow X_\alpha$ for $\alpha < 3/4$ (cf. [15, Sections 4.3.3, 4.6.1]). The eigenvalues of Neumann Laplacian A is a decreasing sequence (λ_n) with $\lambda_0 = 0$, $\lambda_1 < 0$, taking $a = -\lambda_1/2$, we have $\sigma(A) \cap i\mathbb{R} = \phi$. Hence the analytic semigroup generated by A is hyperbolic.

$$\phi(t,\varphi)(x) = \Gamma(t,m(x)\varphi(x)) = \frac{kb(t)}{1+|m(x)\varphi(x)|}, \quad t \in \mathbb{R}, \ x \in \partial\Omega$$

where b(t) is S^p Stepanov-like almost automorphic function and $b(\cdot)$ has relatively compact range. It can be easily seen that ϕ is continuous on $\mathbb{R} \times H^{2\beta'}(\Omega)$ for some $\frac{1}{2} < \beta < \beta' < \frac{3}{4}$, which is embedded in $\mathbb{R} \times X_{\beta}$ (cf. [15]). Using the definitions of fractional Sobolev spaces, one can easily show that $\phi(t,\varphi)(.) \in H^{1/2}(\partial\Omega)$ for all $\varphi \in H^{2\beta'} \hookrightarrow H^1(\Omega)$. Moreover ϕ is globally Lipschitzian for each $\varphi \in X_{\beta}$. Now for a small constant k, all assumptions of Theorem 4.1 are satisfied. Hence (4.4) admits a unique almost automorphic mild solution u with values in X_{β} .

Acknowledgements. Authors are thankful to the anonymous referee for his/her useful comments/suggestions, which really helped us to improve our old manuscript. The first author would like to thank UGC-India for providing the financial support for this work. The second author acknowledges the financial support from the Department of Science and Technology, New Delhi, under project No. SR/S4/MS:796/12.

References

- S. Boulite, L. Maniar, G. M. N'Guerekata; Almost automorphic solutions for semilinear boundary differential equations, Proc. Amer. Math. Soc. 134 (2006) 3613-3624.
- [2] M. Baroun, L. Maniar, G. M. N'Guerekata; Almost periodic and almost automorphic solutions to semilinear parabolic boundary differential equations, Nonlinear Analysis 69(2008) 2114-2124.
- [3] G. Da Prato, P. Grisvard; On extrapolation spaces, Rend. Acad. Naz. Lincei. 72 (1982) 330-332.

- [4] T. Diagana, G. M. N'Guèrèkata; Stepanov-like almost automorphic functions and applications to some semilinear equations, Applicable Anal. 86 (2007), No. 6, pp. 723-733.
- [5] T. Diagana, Evolution Equations in Generalized Stepanov Pseudo-Almost Automorphic Spaces. Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 49, pp. 1-19.
- [6] T. Diagana; Existence of almost automorphic solutions to some classes of nonautonomous higher-order differential equations, Electron. J. Qual. Theory Differ. Equ., 2010, No. 22, 1-26.
- [7] K. J. Engel, R. Nagel; One Parameter Semigroups for Linear Evolution Equations, in: Graduate Texts in Mathematics, Springer-Verlag, 1974.
- [8] G. Greiner; Purturbing the boundary conditions of a generator, Houstan J. Math. 13 (1987) 213-229.
- [9] G. M. N'Guerekata; Almost automorphic functions and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plenum Publishers, New York, London, Moscow, 2001.
- [10] Indira Mishra, D. Bahuguna; Existence of almost automorphic solutions of neutral differential equations, Journal of Nonlinear Evolution Equations and Applications, Vol. 2012, No. 2, pp. 17-28.
- [11] A. Lunardi; Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser, Basel, Boston, Berlin, 1995.
- [12] L. Maniar, R. Schnaubelt; The fredholm alternative for the parabolic evolution equations with inhomogeneous boundary conditions, J. Differential Equations, 235 (1) (2007) 308-339.
- [13] G. M. N'Guerekata, A. Pankov; Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal. 68 (2008), No. 9, pp. 2658-2667.
- [14] A. Pankov; Bounded and almost periodic solutions of nonlinear operator differential equations, Kluwer, Dordrecht, 1990.
- [15] H. Triebel; Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

Indira Mishra

DEPARTMENT OF MATHEMATICS & STATISTICS, INDIAN INSTITUTE OF TECHNOLOGY-KANPUR, KAN-PUR - 208016, INDIA

E-mail address: indiram@iitk.ac.in

Dhirendra Bahuguna

Department of Mathematics & Statistics, Indian Institute of Technology-Kanpur, Kanpur - 208016, India

E-mail address: dhiren@iitk.ac.in