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ALMOST AUTOMORPHIC MILD SOLUTIONS OF HYPERBOLIC
EVOLUTION EQUATIONS WITH STEPANOV-LIKE ALMOST

AUTOMORPHIC FORCING TERM

INDIRA MISHRA, DHIRENDRA BAHUGUNA

Abstract. This article concerns the existence and uniqueness of almost auto-
morphic solutions to the semilinear parabolic boundary differential equations

x′(t) = Amx(t) + f(t, x(t)), t ∈ R,

Lx(t) = φ(t, x(t)), t ∈ R,

where A := Am|ker L generates a hyperbolic analytic semigroup on a Banach
space X, with Stepanov-like almost automorphic nonlinear term, defined on
some extrapolated space Xα−1, for 0 < α < 1 and φ takes values in the
boundary space ∂X.

1. Introduction

In this article, we prove existence and uniqueness results of almost automorphic
solutions to the following semilinear parabolic boundary differential equations, with
Stepanov-like almost automorphic nonlinear term using the techniques initiated by
Diagana and N’Guèrèkata in [4].

x′(t) = Amx(t) + h(t, x(t)), t ∈ R,

Lx(t) = φ(t, x(t)), t ∈ R,
(1.1)

where the first equation stands in the complex Banach space X, called the state
space and the second equation lies in a boundary space ∂X; (Am, D(Am)) is a
densely defined linear operator on X and L : D(Am) → ∂X is a bounded linear
operator.

Motivation for this paper come basically from the following three sources.
The first one is a nice paper by Boulite et al [1]. They have established the exis-

tence and uniqueness of almost automorphic solutions to the semilinear boundary
differential equation (1.1) using extrapolation methods.

The second source of motivation is a recent paper by Baroun et al [2], where
the authors have considered the same equation as (1.1) and proved the existence
of almost periodic (almost automorphic) solutions, when the nonlinear term h is
almost periodic (almost automorphic), whereas we prove the assertion by taking
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h to be Stepanov-like almost automorphic function. The functions h and φ are
defined on some continuous interpolation space Xβ , 0 ≤ β < 1, with respect to the
sectorial operator A := Am|ker L.

To prove our results, we make use of the techniques initiated by Diagana and
N’Guèrèkata [4], which is also our third source of motivation.

Likewise [1, 2] we solve the (1.1) by transforming the semilinear boundary dif-
ferential equation (1.1) into an equivalent semilinear evolution equation,

x′(t) = Aα−1x(t) + h(t, x(t)) + (λ−Aα−1)Lλφ(t, x(t)), t ∈ R, (1.2)

where Aα−1 0 ≤ β < α < 1, is the continuous extension of A := Am|kerL to the
extrapolated Banach space Xα−1 of Xα with respect to A and the semilinear term
h(t, x) + (λ − Aα−1)Lλφ(t, x) := f(t, x) is an Xα−1 valued function. As in [1, 2]
we also assume Greiner’s assumption introduced by Greiner [8], which is stated in
Section 4. Under Greiner’s assumption on L, the operator Lλ := (L|ker(λ−Am))−1,
called the Drichilet map of Am, is a bounded linear map from ∂X to X, where
Xα−1 is a larger Banach space than X. The extrapolation theory was introduced
by Da Prato, Grisvard [3] and Nagel [7] and is used for various purposes. One can
see Section 2 for the mentioned notion (cf. [7, 11] for more details).

These days people have increasing interest in showing almost automorphy of the
solutions of the functional differential equations see for e.g. [1, 2, 4, 6, 9, 10, 13].
We refer [9], for the more details on the topic.

Our results generalize the existing ones in [1], in the sense that the function h is
assumed to be Stepanov-like almost automorphic functions.

2. Preliminaries

In this section, we begin with fixing some notation and recalling the definitions
and basic results on generators of interpolation and extrapolation spaces. Let X
be a complex Banach space and (A,D(A)) be a sectorial operator on X; that is,
there exist the constants ω ∈ R, φ ∈ (π

2 , π) and M > 0 such that

‖R(λ, A− ω)‖L(X) ≤
M

|λ− ω|
, ∀λ ∈ Σω,φ,

where Σω,φ := {λ ∈ C : λ 6= ω, | arg(λ− ω)| ≤ φ} ⊂ ρ(A).

The real interpolation space Xα for α ∈ (0, 1), is a Banach space endowedwith the
norm,

‖x‖α := sup
λ>0

‖λα(A− ω)R(λ, A− ω)x‖. (2.1)

Here we denote by, X0 := X, X1 := D(A), ‖x‖0 = ‖x‖, and ‖x‖1 = ‖(A − ω)x‖.
The extrapolation space X−1 associated with A, is defined to be the completion of
(X̂, ‖ · ‖−1), where X̂ := D(A), endowed with the norm ‖ · ‖−1 given by

‖x‖−1 := ‖(ω −A)−1x‖, x ∈ X.

In a similar fashion, we can define the space Xα−1 := (X−1)α = X̂
‖.‖α−1

, with
‖x‖α−1 = supλ>0 ‖λαR(λ, A−1 − ω)x‖. The restriction Aα−1 : Xα → Xα−1 of A−1

generates the analytic semigroup (Tα−1(t))t≥0 on Xα−1 which is the extension of
T (t) to Xα−1. Observe that ω −Aα−1 : Xα → Xα−1 is an isometric isomorphism.
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We have the following continuous embedding of the spaces, which will be fre-
quently used here.

D(A) ↪→ Xβ ↪→ D((ω −A)α) ↪→ Xα ↪→ X,

X ↪→ Xβ−1 ↪→ D((ω −A−1)α) ↪→ Xα−1 ↪→ X−1,

for all 0 < α < β < 1.
Now we state certain propositions for the proofs of which one can see [2].

Proposition 2.1. Assume that 0 < α ≤ 1 and 0 ≤ β ≤ 1. Then the following
assertions hold for 0 < t ≤ t0, t0 > 0 and ε̃ > 0 such that 0 < α − ε̃ < 1 with
constants possibly depending on t0.

(i) The operator T (t) has continuous extensions Tα−1(t) : Xα−1 → X satisfy-
ing

‖Tα−1(t)‖L(Xα−1,X) ≤ ctα−1−ε̃, (2.2)

(ii) For x ∈ Xα−1 we have

‖Tα−1(t)‖β ≤ ctα−β−1−ε̃‖x‖α−1. (2.3)

Remark 2.2. We can remove ε̃ in Proposition 2.1 by extending T (t) to operators
from D(ω − A−1)α±ε̃ to X, with norms bounded by tα−1±ε̃, where 0 < α ± ε̃ < 1,
and therefore by employing the reiteration theorem and the interpolation property,
the inequality in the assertion (i) can be obtained without ε̃. For a more general
situation see [12].

Definition 2.3. An analytic semigroup (T (t))t≥0 is said to be hyperbolic if it
satisfies the following three conditions.

(i) there exist two subspaces Xs (the stable space) and Xu (the unstable space)
of X such that X = Xs ⊕Xu;

(ii) T (t) is defined on Xu, T (t)Xu ⊂ Xu, and T (t)Xs ⊂ Xs for all t ≥ 0;
(iii) there exist constants M, δ > 0 such that

‖T (t)Ps‖ ≤ Me−δt, t ≥ 0, ‖T (t)Pu‖ ≤ Meδt, t ≤ 0, (2.4)

where Ps and Pu are the projections onto Xs and Xu, respectively.

Recall that an analytic semigroup (T (t))t≥0 is hyperbolic if and only if σ(A) ∩
iR = φ, (cf. [7, Prop. 1.15]). In the next proposition, we show the hyperbolicity
of the extrapolated semigroup (Tα−1(t))t≥0. Before stating the proposition, we
assume that the part of A, A|Pu : Pu(X) → Pu(X) is bounded, which implies

‖APu‖ ≤ C,

where C is some constant.

Proposition 2.4. Let T (·) be hyperbolic and 0 < α ≤ 1. Then the operators Ps and
Pu admit continuous extensions Pu,α−1 : Xα−1 → X and Ps,α−1 : Xα−1 → Xα−1

respectively. Moreover we have the following assertions.

(i) Pu,α−1Xα−1 = PuX;
(ii) Tα−1(t)Ps,α−1 = Ps,α−1Tα−1(t);
(iii) Tα−1(t) : Pu,α−1(Xα−1) → Pu,α−1(Xα−1) is an invertible function with

inverse Tα−1(−t);
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(iv) for 0 < α− ε̃ < 1, we have

‖Tα−1(t)Ps,α−1x‖ ≤ mtα−1−ε̃e−γt‖x‖α−1 for x ∈ Xα−1 and t ≥ 0, (2.5)

‖Tα−1(t)Pu,α−1x‖ ≤ Ceδt‖x‖α−1 for x ∈ Xα−1 and t ≤ 0, (2.6)

Proposition 2.5. For x ∈ Xα−1 and 0 ≤ β ≤ 1, 0 < α < 1, we have the following
assertions.

(i) there is a constant c(α, β), such that

‖Tα−1(t)Pu,α−1x‖β ≤ c(α, β)eδt‖x‖α−1 for t ≤ 0, (2.7)

(ii) there is a constant m(α, β), such that for t ≥ 0 and 0 < α− ε̃ < 1.

‖Tα−1(t)Ps,α−1x‖β ≤ m(α, β)e−γttα−β−ε̃−1‖x‖α−1. (2.8)

Definition 2.6. A continuous function f : R → X, is called almost automorphic,
if for every sequence (σn)n∈N of real numbers, there is a subsequence (sn)n∈N ⊂
(σn)n∈N such that

lim
n,m→∞

f(t + sn − sm) = f(t), for each t ∈ R.

This is equivalent to

g(t) = lim
n→∞

f(t + sn), and f(t) = lim
n→∞

g(t− sn),

are well defined for each t ∈ R. The function g in the above definition measurable
but not necessarily continuous.

Remark 2.7. An almost automorphic function is continuous but may not be uni-
formly continuous, for e.g. let p(t) = 2 + cos(t) + cos(

√
2t) and f : R → R defined

as f := sin(1/p), then f ∈ AA(X), but f is not uniformly continuous on R, so
f /∈ AP (X).

Lemma 2.8. We have the following properties of almost automorphic functions:
(a) For f ∈ AA(X), the range Rf := {f(t) : t ∈ R} is precompact in X, so

that f is bounded.
(b) For f, g ∈ AA(X) then f + g ∈ AA(X).
(c) Assume that fn ∈ AA(X) and fn → g uniformly on R, then g ∈ AA(X).
(d) AA(X), equipped with the sup norm given by

‖f‖ = sup
t∈R

‖f(t)‖, (2.9)

turns out to be a Banach space.

2.1. Sp-Almost automorphy.

Definition 2.9. [14] The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1] of a function
f : R → X is defined by f b(t, s) := f(t + s).

Definition 2.10. The Bochner transform f b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of a
function f(t, u) on R×X, with values in X, is defined by

f b(t, s, u) := f(t + s, u)

for each x ∈ X.
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Definition 2.11. For p ∈ (1,∞), the space BSp(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f : R → X
such that f b belongs to L∞(R;Lp((0, 1), X)). This is a Banach space with the
norm

‖f‖Sp := ‖f b‖L∞(R,Lp) = sup
t∈R

( ∫ t+1

t

‖f(τ)‖pdτ
)1/p

. (2.10)

Definition 2.12. [13] The space ASp(X) of Stepanov almost automorphic func-
tions (or Sp-almost automorphic) consists of all f ∈ BSp(X) such that f b ∈
AA(Lp(0, 1;X)). That is, a function f ∈ Lp

loc(R, X) is said to be Sp-almost auto-
morphic if its Bochner transform f b : R → Lp(0, 1;X) is almost automorphic in the
sense that, for every sequence (s′n)n∈N of real numbers, there exists a subsequence
(sn)n∈N and a function g ∈ Lp

loc(R, X) such that[ ∫ t+1

t

‖f(sn + s)− g(s)‖pds
]1/p

→ 0,[ ∫ t+1

t

‖g(s− sn)− f(s)‖pds
]1/p

→ 0,

as n →∞ pointwise on R.

Remark 2.13. ASp(Xα−1) is the extrapolated space of ASp(Xα) equipped with
norm ‖ · ‖Sp

α−1
, given by

‖f‖Sp
α−1

:= sup
t∈R

( ∫ t+1

t

‖f(τ)‖p
α−1dτ

)1/p

.

Remark 2.14. It is clear that if 1 ≤ p < q < ∞ and f ∈ Lq
loc(R;X) is Sq-almost

automorphic, then f is Sp-almost automorphic. Also if f ∈ AA(X), then f is
Sp-almost automorphic for any 1 ≤ p < ∞.

Let (Y, ‖ · ‖Y ) be an abstract Banach space.

Definition 2.15. A function F : R × Y → X, (t, u) 7→ F (t, u) with F (·, u) ∈
Lp

loc(R;X) for each u ∈ Y , is said to be Sp-almost automorphic in t ∈ R uniformly
in u ∈ Y if t 7→ F (t, u) is Sp-almost automorphic for each u ∈ Y , that is for
every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N and a
function G(·, u) ∈ Lp

loc(R, X) such that following statements hold[ ∫ t+1

t

‖F (sn + s)−G(s)‖pds
]1/p

→ 0,[ ∫ t+1

t

‖G(s− sn)− F (s)‖pds
]1/p

→ 0,

as n →∞ pointwise on R for each u ∈ Y .

The collection of all Sp-almost automorphic functions from f : R× Y 7→ X will
be denoted by ASp(R × Y ). Now we have the following composition theorem due
to Diagana [6].

Theorem 2.16. [6] Assume that φ ∈ ASp(Y ) such that K := {φ(t) : t ∈ R} ⊂ Y
is a relatively compact subset of X. Let F ∈ ASp(R × Y ) and let the function
(t, u) 7→ F (t, u) be Lipschitz continuous that is there exists a constant L > 0 such
that

‖F (t, u)− F (t, v)‖ ≤ L‖u− v‖Y ,
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for all t ∈ R, (u, v) ∈ Y × Y . Then the function Γ : R → X defined by Γ(·) :=
F (·, φ(·)) belongs to ASp(X).

3. Main results

In this section we discuss the existence and uniqueness of almost automorphic
solutions of the following semilinear evolution equation,

x′(t) = Aα−1x(t) + f(t, x(t)), t ∈ R, (3.1)

with the following assumptions;
(A1) A is the sectorial operator and the generator of a hyperbolic analytic semi-

group (T (t))t≥0.
(A2) f : R × Xβ → Xα−1, is Stepanov-like almost automorphic in t, for each

x ∈ Xβ .
(A3) f is uniformly Lipschitz with respect to the second argument, that is

‖f(t, x)− f(t, y)‖α−1 ≤ k‖x− y‖β , (3.2)

for all t ∈ R, x, y ∈ Xβ , and some constant k > 0.

Definition 3.1. A continuous function x : R → Xβ , is said to be a mild solution
of (3.1), if it satisfies following variation of constants formula

x(t) = T (t− s)x(s) +
∫ t

s

Tα−1(t− σ)f(σ, x(σ))dσ (3.3)

for all t ≥ s, t, s ∈ R.

Definition 3.2. A function u : R → Xβ , is said to be a bounded solution of (3.1)
provided that

u(t) =
∫ t

−∞
Tα−1(t− σ)Ps,α−1f(σ, u(σ))dσ −

∫ ∞

t

Tα−1(t− σ)Pu,α−1f(σ, u(σ))dσ,

(3.4)
t ∈ R.

Throughout the rest of this paper, we assume Hu(t) := H1u(t) + H2u(t), where

H1u(t) :=
∫ t

−∞
Tα−1(t− σ)Ps,α−1f(σ, u(σ))dσ,

H2u(t) :=
∫ ∞

t

Tα−1(t− σ)Pu,α−1f(σ, u(σ))dσ,

for all t ∈ R.

Lemma 3.3. Assume that assumptions (A1)–(A3) are satisfied. If

M(α, β, q, γ) :=
∞∑

n=1

[ ∫ n

n−1

e−γqσσ−q(β+1+ε̃−α)dσ
]1/q

< ∞, (3.5)

then the operator H maps AA(Xβ) 7→ AA(Xβ).

Proof. Let u be in AA(Xβ). Then u ∈ ASp(Xβ) and by Lemma 2.8 the set
{u(t) : t ∈ R} is compact in Xβ . Since f is Lipschitz, then it follows from The-
orem 2.16 (also see [5, Theorem 2.21]) that the function φ(t) := f(t, u(t)) belongs
to ASp(Xβ). Now we show that Hu ∈ AA(Xβ).
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For that we first define a sequence of integral operators {φn} as follows

φn(t) :=
∫ n

n−1

Tα−1(t− σ)Ps,α−1g(σ)dσ, t ∈ R and n = 1, 2, 3 . . . (3.6)

Putting r = t− σ,

φn(t) :=
∫ t−n+1

t−n

Tα−1(r)Ps,α−1g(t− r)dr. (3.7)

Let 0 < ε̃ + β < α, 0 < α− ε̃ < 1 and using Proposition 2.5 we have

‖φn(t)‖β ≤
∫ t−n+1

t−n

m(α, β)rα−1−β−ε̃e−γr‖g(t− r)‖Sp
α−1

dr

now, r → (t− r),

≤
∫ n

n−1

m(α, β)(t− r)α−1−β−ε̃e−γ(t−r)‖g(r)‖Sp
α−1

dr,

≤
∫ n

n−1

m(α, β)σα−β−1−ε̃e−γσ‖g‖Sp
α−1

dσ,

≤ q(α, β)
[ ∫ n

n−1

e−γqσσq(α−β−1−ε̃)dσ
]1/q

‖g‖Sp
α−1

.

By Weierstrass theorem and (3.5), it follows that the series

Φ(t) :=
∞∑

n=1

φn(t)

is uniformly convergent on R. Moreover Φ ∈ C(R, Xβ);

‖Φ(t)‖β ≤
∞∑

n=1

‖φn(t)‖β ≤ q(α, β)M(α, β, q, γ)‖φ‖Sp
α−1. (3.8)

We show that for all n = 1, 2, 3, φn ∈ AA(Xβ). Since g ∈ ASp(Xα−1), which
implies that for every sequence (s′n)n∈N of real numbers, there exist a subsequence
(sn)n∈N and a function g′ such that∫ t+1

t

‖g(σ + sn)− g′(σ)‖p
α−1dσ → 0. (3.9)

Let us define another sequence of integral operators

φ̂n(t) =
∫ n

n−1

Tα−1(t− σ)Ps,α−1g
′(σ)dσ for n = 1, 2, 3, . . . . (3.10)

Now we show for n = 1, 2, 3, . . . that φn ∈ AA(Xβ). Since g ∈ ASp(Xα−1), for
every sequence (s′n)n∈N of real numbers, there exists a subsequence (sn)n∈N and a
function g′ such that ∫ t+1

t

‖g(σ + sn)− g′(σ)‖p
α−1dσ → 0. (3.11)

Define for all n = 1, 2, 3, . . . another sequence of integral operators

φ̂n(t) =
∫ n

n−1

Tα−1(t− σ)Ps,α−1g
′(σ)dσ, (3.12)

for all t ∈ R. Consider

φn(t + snk
)− φ̂n(t)
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=
∫ n

n−1

Tα−1(t + snk
− σ)Ps,α−1g(σ)dσ −

∫ n

n−1

Tα−1(t− σ)Ps,α−1g
′(σ)dσ,

=
∫ n

n−1

Tα−1(t− σ)Ps,α−1g(σ + snk
)dσ −

∫ n

n−1

Tα−1(t− σ)Ps,α−1g
′(σ)dσ,

=
∫ n

n−1

Tα−1(t− σ)Ps,α−1

[
g(σ + snk

)− g′(σ)
]
dσ.

Using Proposition 2.5, we have

‖φn(t + snk
)− φ̂n(t)‖β

≤
∫ n

n−1

m(α, β)e−γ(t−σ)(t− σ)−(β−α+ε̃+1)‖g(σ + snk
)− g′(σ)‖Sp

α−1
dσ

→ 0, as k →∞, t ∈ R, (since g ∈ ASp(Xα−1)).

This implies that φ̂n(t) = limk→∞ φn(t + snk
), n = 1, 2, 3, . . . and t ∈ R.

In a similar way, one can show that φn(t) = limk→∞ φ̂n(t−snk
), for all t ∈ R and

n = 1, 2, 3, . . . . Therefore for each n = 1, 2, 3, . . . , the sequence φn ∈ AA(Xβ). �

Now we state the main result of this Section.

Theorem 3.4. Let 0 ≤ β < α, ε̃ > 0 such that 0 < α − ε̃ < 1 and 0 < β + ε̃ < α,
moreover assume that the constant

K := k.m(α, β)γβ−α+ε̃Γ(α− β − ε̃) + c(α, β)δ−1 < 1

and equation (3.5) hold. Then under assumptions (A1)–(A3) and for f ∈ ASp(R×
Xβ , Xα−1), equation (3.1) has unique almost automorphic solution u ∈ AA(Xβ),
satisfying the following variation of constants formula.

u(t) =
∫ t

−∞
Tα−1(t− σ)Ps,α−1f(σ, u(σ))dσ −

∫ ∞

t

Tα−1(t− σ)Pu,α−1f(σ, u(σ))dσ,

t ∈ R.

Proof. We first show that H is a contraction. Let v, w ∈ AA(Xβ) and consider the
following

‖H1v(t)−H1w(t)‖β

≤
∫ t

−∞
m(α, β)(t− s)α−β−1−ε̃e−γ(t−s)‖f(s, v(s))− f(s, w(s))‖α−1ds

≤
∫ t

−∞
km(α, β)(t− s)α−β−1−ε̃e−γ(t−s)‖v(s)− w(s)‖βds

≤ k.m(α, β)γβ−α+ε̃Γ(α− β − ε̃)‖v − w‖β ,

where Γ(α) :=
∫∞
0

tα−1e−tdt. Similarly we have

‖H2v(t)−H2w(t)‖β ≤
∫ ∞

t

c(α, β)e−δ(t−s)‖v(s)− w(s)‖βds

≤ c(α, β)δ−1‖v − w‖β .

Consequently,

‖Hv(t)−Hv(t)‖β ≤
(
k.m(α, β)γβ−α+ε̃Γ(α− β − ε̃) + c(α, β)δ−1

)
‖v − w‖β

< ‖v − w‖β .
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Hence by the well-known Banach contraction principle, H has unique fixed point u
in AA(Xβ) satisfying Hu = u (cf. Lemma 3.3 for almost automorphy of solution).

�

4. Semilinear boundary differential equations

Consider the semilinear boundary differential equation

x′(t) = Amx(t) + h(t, x(t)), t ∈ R,

Lx(t) = φ(t, x(t)), t ∈ R,
(4.1)

where (Am, D(Am)) is a densely defined linear operator on a Banach space X and
L : D(Am) → ∂X, the boundary Banach space and the functions h : R×Xm → ∂X
and φ : R×Xm → ∂X are continuous.

Likewise [1, 2] here we assume the assumptions introduced by Greiner [8] which
are given as follows

(H1) There exists a new norm | · | which makes the domain D(Am) complete and
then denoted by Xm. The space Xm is continuously embedded in X and
Am ∈ L(Xm, X).

(H2) The restriction operator A := Am|ker(L) is a sectorial operator such that
σ(A) ∩ iR = φ.

(H3) The operator L : Xm → ∂X is bounded and surjective.
(H4) Xm ↪→ Xα for some 0 < α < 1.
(H5) h : R×Xβ → X and φ : R×Xβ → ∂X are continuous for 0 ≤ β < α.

A function x : R → Xβ is a mild solution of (1.1) if we have the following

(i)
∫ t

s
x(τ)dτ ∈ Xm,

(ii) x(t)− x(s) = Am

∫ t

s
x(τ)dτ +

∫ t

s
h(τ, x(τ))dτ ,

(iii) L
∫ t

s
x(τ)dτ =

∫ t

s
φ(τ, x(τ))dτ ,

for all t ≥ s, t, s ∈ R.
Now we transform (1.1) to the equivalent semilinear evolution equation

x′(t) = Aα−1x(t) + h(t, x(t))−Aα−1L0φ(t, x(t)), t ∈ R, (4.2)

where L0 := (L|Ker(Am))−1.

Theorem 4.1. Assume that functions φ ∈ ASp(R × Xβ , ∂X) and h ∈ ASp(R ×
Xβ , X), are globally Lipschitzian with small lipschitz constants. Then under the
assumptions (H1)-(H5), the semilinear boundary differential equation (1.1) has a
unique mild solution x ∈ AA(Xβ), satisfying the following formula for all t ∈ R.

x(t) =
∫ t

−∞
T (t− s)Psh(s, x(s))ds−

∫ ∞

t

T (t− s)Puh(s, x(s))ds

−A
[ ∫ t

−∞
T (t− s)PsL0φ(s, x(s))ds−

∫ ∞

t

T (t− s)PuL0φ(s, x(s))ds
]
.

(4.3)

Proof. It is clear that Aα−1L0 is a bounded operator from ∂X → Xα−1. Since
φ ∈ ASp(R×Xβ , ∂X) and h ∈ ASp(R×Xβ , X) and from the injection X ↪→ Xα−1,
the function f(t, x) := h(t, x)−Aα−1L0φ(t, x) ∈ ASp(R×Xβ , Xα−1). This function
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is also globally Lipschitzian with a small constant. Hence by Theorem 3.4, there is
a unique mild solution x ∈ AA(Xβ) of (4.2), satisfying

x(t) =
∫ t

−∞
Ps,α−1Tα−1(t− s)f(s, x(s))ds−

∫ ∞

t

Pu,α−1Tα−1(t− s)f(s, x(s))ds,

from which we deduce the variation of constants formula (4.3) and x ∈ AA(Xβ) is
the unique mild solution. �

Example 4.2. Consider the partial differential equation

∂

∂t
u(t, x) = ∆u(t, x) + au(t, x), t ∈ R, x ∈ Ω

∂

∂n
u(t, x) = Γ(t, m(x)u(t, x)), t ∈ R, x ∈ ∂Ω.

(4.4)

Where a ∈ R+ and m is a C1 function and Ω ⊂ Rn is a bounded open subset of
Rn with smooth boundary ∂Ω. Here we use the following notation/conventions:
X = L2(Ω), Xm = H2(Ω) and the boundary space ∂X = H1/2(∂Ω). The operators
Am : Xm → X, given by Amϕ = ∆ϕ + aφ and L : Xm → ∂X, given by Lϕ := ∂ϕ

∂n .
The operator L is bounded and surjective, follows from Sections [15, 4.3.3, 4.6.1].
It is also known that the operator A := Am|ker L generates an analytic semigroup,
moreover we also have Xm ↪→ Xα for α < 3/4 (cf. [15, Sections 4.3.3, 4.6.1]). The
eigenvalues of Neumann Laplacian A is a decreasing sequence (λn) with λ0 = 0,
λ1 < 0, taking a = −λ1/2, we have σ(A) ∩ iR = φ. Hence the analytic semigroup
generated by A is hyperbolic.

φ(t, ϕ)(x) = Γ(t, m(x)ϕ(x)) =
kb(t)

1 + |m(x)ϕ(x)|
, t ∈ R, x ∈ ∂Ω

where b(t) is Sp Stepanov-like almost automorphic function and b(·) has relatively
compact range. It can be easily seen that φ is continuous on R×H2β′(Ω) for some
1
2 < β < β′ < 3

4 , which is embedded in R × Xβ (cf. [15]). Using the definitions
of fractional Sobolev spaces, one can easily show that φ(t, ϕ)(.) ∈ H1/2(∂Ω) for all
ϕ ∈ H2β′ ↪→ H1(Ω). Moreover φ is globally Lipschitzian for each ϕ ∈ Xβ . Now
for a small constant k, all assumptions of Theorem 4.1 are satisfied. Hence (4.4)
admits a unique almost automorphic mild solution u with values in Xβ .

Acknowledgements. Authors are thankful to the anonymous referee for his/her
useful comments/suggestions, which really helped us to improve our old manu-
script. The first author would like to thank UGC-India for providing the financial
support for this work. The second author acknowledges the financial suupport
from the Department of Science and Technology, New Delhi, under project No.
SR/S4/MS:796/12.

References

[1] S. Boulite, L. Maniar, G. M. N’Guerekata; Almost automorphic solutions for semilinear
boundary differential equations, Proc. Amer. Math. Soc. 134 (2006) 3613-3624.

[2] M. Baroun, L. Maniar, G. M. N’Guerekata; Almost periodic and almost automorphic solutions
to semilinear parabolic boundary differential equations, Nonlinear Analysis 69(2008) 2114-
2124.

[3] G. Da Prato, P. Grisvard; On extrapolation spaces, Rend. Acad. Naz. Lincei. 72 (1982) 330-
332.



EJDE-2012/212 ALMOST AUTOMORPHIC MILD SOLUTIONS 11
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