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NONTRIVIAL SOLUTIONS FOR NONLINEAR PROBLEMS
WITH ONE SIDED RESONANCE

GEORGE SMYRLIS

Abstract. We find nontrivial smooth solutions for nonlinear elliptic Dirichlet
problems driven by the p-Laplacian (1 < p < ∞), when one sided resonance
occurs at the principal spectral interval.

1. Introduction

Let Ω ⊆ RN (N ≥ 1) be a bounded domain with a C2-boundary ∂Ω. We consider
the nonlinear Dirichlet problem

−∆pu(z) = f(z, u(z)) a.e. in Ω,

u|∂Ω = 0.
(1.1)

Here ∆p denotes the p-Laplacian differential operator defined by

∆pu(z) = div(‖Du(z)‖p−2Du(z)), where 1 < p <∞.

The aim of this article is to derive nontrivial smooth solutions for (1.1), when one
sided resonance occurs. Namely, asymptotically as |x| → ∞, the quotient f(z,x)

|x|p−2x

lies in the principal spectral interval [λ1, λ2) and possibly interacts λ1. Here λ1, λ2

are the first and the second eigenvalue respectively of the negative p-Laplacian with
Dirichlet boundary conditions, denoted henceforth by −∆D

p .
Starting with the celebrated paper of Landesman-Lazer [11], many authors have

proved existence results for resonant elliptic boundary-value problems (see, e.g.
[3, 5, 12, 19, 20, 21, 22] and the references therein). These works have established
the existence of one solution or one nontrivial solution or multiple solutions of (1.1),
under Landesman-Lazer (LL)-type conditions on the nonlinearity. For the use of
the minimax method or the degree theory, one can refer for example to [3], [12],
[19]. Another method used to deal with the resonance problem is the well-known
Morse theory (see, e.g. [5, 12, 22]). Leray Schauder degree theory and saddle point
theorem are also used to deal with the resonance problem when the nonlinearity is
unbounded (see, e.g. [20, 21]).
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In the present work we do not use LL-type conditions and our hypotheses are
in principle easier to verify. Our approach combines variational methods based on
the critical point theory, together with techniques from Morse theory.

2. Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X,X∗). By “ w→ ” and “ → ” we denote the weak
and strong convergence respectively, on X.

We say that a mapA : X → X∗ is of type (S)+, if for each sequence {xn}n≥1 ⊆ X
such that

xn
w→ x in X and lim sup

n→∞
〈A(xn), xn − x〉 ≤ 0,

one has xn → x in X.
Let Ω ⊆ RN (N ≥ 1) be a bounded domain with a C2-boundary ∂Ω. In the

analysis of problem (1.1), we will use the Sobolev space W 1,p
0 (Ω) (1 < p < ∞)

which is the closure with respect to the Sobolev norm of the linear space

C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

Let A : W 1,p
0 (Ω) → (W 1,p

0 (Ω))∗ be the operator, defined by

〈A(x), y〉 =
∫

Ω

‖Dx(z)‖p−2(Dx(z), Dy(z))RN dz, for all x, y ∈W 1,p
0 (Ω).

Then A is of type (S)+. (Here (·, ·)RN denotes the usual inner product in RN and
Dx is the gradient of x).

Next, let us recall a few basic definitions and facts from critical point theory and
from Morse theory.

Let ϕ ∈ C1(X). We say that ϕ satisfies the Palais-Smale condition, if every
sequence {xn}n≥1 ⊆ X such that

sup
n
|ϕ(xn)| <∞ and ‖ϕ′(xn)‖∗ → 0, as n→∞,

has a strongly convergent subsequence.
A similar compactness condition which is weaker than PS-condition is the Cerami

condition. Namely, we say that ϕ satisfies the Cerami condition, if every sequence
{xn}n≥1 ⊆ X such that

sup
n
|ϕ(xn)| <∞ and (1 + ‖xn‖)‖ϕ′(xn)‖∗ → 0, as n→∞,

admits a strongly convergent subsequence.
For each c ∈ R, we introduce the sets

ϕc = {x ∈ X : ϕ(x) ≤ c} (the sublevel set of ϕ at c)

Kϕ = {x ∈ X : ϕ′(x) = 0} (the critical set of ϕ).

Let (Y1, Y2) be a topological pair with Y1 ⊆ Y2 ⊆ X. For every integer k ≥ 0,
by Hk(Y2, Y1) we denote the kth-relative singular homology group of (Y1, Y2) with
integer coefficients. Special case: Hk(X, ∅) = δk,0Z, k ≥ 0.

If x0 ∈ X is an isolated critical point of ϕ with ϕ(x0) = c, then the critical
groups of ϕ at x0 are defined by

Ck(ϕ, x0) = Hk

(
ϕc ∩ U,ϕc ∩ U \ {x0}

)
for all k ≥ 0,
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where U is a neighborhood of x0 such that Kϕ ∩ ϕc ∩ U = {x0} (see [5, 16]).
The excision property of singular homology implies that the above definition is
independent of the particular neighborhood U we use.

Now, suppose that ϕ ∈ C1(X) satisfies the Palais-Smale or the Cerami-condition
and inf ϕ(Kϕ) > −∞. Let c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are
defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0
(see [4]).

The second deformation theorem (see, e.g. [7]) implies that this definition is
independent of the particular choice of the level c < inf ϕ(Kϕ).

If Ck(ϕ,∞) 6= 0, for some k ≥ 0, then there exists a critical point x ∈ X of ϕ,
such that Ck(ϕ, x) 6= 0.

Finally, let us recall some basic facts about the spectrum of the negative Dirichlet
p-Laplacian with weight m, denoted by (−∆D

p ,m). So, let

L∞(Ω)+ = {m ∈ L∞(Ω) : m(z) ≥ 0 a.e. in Ω},
let m ∈ L∞(Ω)+ \ {0} and consider the weighted nonlinear eigenvalue problem

−∆pu(z) = λ̂m(z)|u(z)|p−2u(z), a.e. in Ω,

u|∂Ω = 0, λ̂ ∈ R.
(2.1)

By an eigenvalue of (−∆D
p ,m) we mean a real number λ̂, such that (2.1) has a

nontrivial solution u. Nonlinear regularity theory (see e.g. [7, pp. 737-738]) implies
that u ∈ C1

0 (Ω). The least λ̂ ∈ R for which (2.1) has a nontrivial solution is the
first eigenvalue of (−∆D

p ,m) and it is denoted by λ̂1(m). We recall some basic
properties of λ̂1(m):

• λ̂1(m) > 0.
• λ̂1(m) is isolated (i.e., there exists ε > 0 such that (λ̂1(m), λ̂1(m) + ε)

contains no eigenvalues).
• λ̂1(m) is simple (i.e., the corresponding eigenspace is one-dimensional).
• λ̂1(m) is characterized by the Rayleigh quotient:

λ̂1(m) = inf
{ ‖Du‖p

p∫
Ω
m|u|p dz

: u ∈W 1,p
0 (Ω), u 6≡ 0

}
.

The above is attained on the one dimensional eigenspace of λ̂1(m). Let û1 be a
normalized eigenfunction of λ̂1(m), i.e.,∫

Ω

m|û1|pdz = 1.

We already know that û1 ∈ C1
0 (Ω) and from the Rayleigh quotient, it is clear that

û1 does not change sign, so we may assume that û1(z) ≥ 0, for all z ∈ Ω. Using
the nonlinear maximum principle of Vázquez [23], we obtain that û1(z) > 0, for all
z ∈ Ω. It turns out that for each λ̂1(m)− eigenfunction u we have that u(z) 6= 0,
for all z ∈ Ω. For more details we refer for example to [1, 7, 14, 15].

Since −∆D
p is (p−1)-homogeneous operator, the Ljusternik-Schnirelmann theory

implies that we have a whole strictly increasing sequence {λ̂k(m)}k≥1 of eigenvalues
such that

λ̂k(m) → +∞, as k → +∞
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(see [6]). These eigenvalues are called the “LS-eigenvalues” of (−∆D
p ,m).

We know that λ̂2(m) is the second eigenvalue of (−∆D
p ,m); i.e., λ̂2(m) > λ̂1(m)

and there are no eigenvalues between λ̂1(m) and λ̂2(m).
Viewed as functions of the weight m ∈ L∞(Ω)+ \ {0}, the eigenvalues λ̂1(m)

and λ̂2(m) are continuous functions and exhibit certain monotonicity properties,
namely:

• If m(z) ≤ m̃(z), a.e. on Ω, with strict inequality on a set of positive
measure, then λ̂1(m̃) < λ̂1(m).

• If m(z) < m̃(z), a.e. on Ω, then λ̂2(m̃) < λ̂2(m) (see [2]).

Special cases: If m ≡ 1, then we write λ̂k(m) = λk, k ≥ 1 and λk is the k-th
eigenvalue of the negative Dirichlet p-Laplacian −∆D

p .
If m ≡ λk for some k ≥ 1, then clearly λ̂k(λk) = 1.

3. Main result

In this section we establish the existence of at least one nontrivial smooth solution
of the problem (1.1), when one-sided resonance occurs at the principal spectral
interval [λ1, λ2) of −∆D

p .
The hypotheses on the reaction f(z, x) are:

(H) f : Ω×R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω,
(i)

|f(z, x)| ≤ α(z) + c1|x|p−1

for a.a. z ∈ Ω, all x ∈ R, with α ∈ L∞(Ω)+, c1 > 0.
(ii)

λ1 ≤ lim inf
|x|→∞

f(z, x)
|x|p−2x

≤ lim sup
|x|→∞

f(z, x)
|x|p−2x

< λ2, uniformly for a.a.z ∈ Ω.

(iii) If F (z, x) =
∫ x

0
f(z, s)ds, then

lim
|x|→∞

[f(z, x)x− pF (z, x)] = +∞, uniformly for a.a.z ∈ Ω.

(iv) There exist τ, σ ∈ (1, p), δ0 > 0, c2 > 0 such that for almost all z ∈ Ω and
for all |x| ≤ δ0, we have

F (z, x) ≥ c2|x|τ , σF (z, x) ≥ f(z, x)x.

Note that Hypothesis H(ii) implies that we have one-sided resonance at the
principal spectral interval [λ1, λ2) of −∆D

p . On the other hand, hypothesis H(iii)
enables us to avoid conditions of Landesman-Lazer type which are usually imposed
on the nonlinearity when one deals with problems at resonance.

Remark 3.1. Each weak solution u ∈ W 1,p
0 (Ω) of problem (1.1) is smooth; i.e.,

u ∈ C1
0 (Ω). This follows from the nonlinear regularity theory (see [10], [13]) and

from the fact that the function α in hypothesis H(i) lies in L∞(Ω)+.

Example 3.2. The following function satisfies H(i)-(iv) (for the sake of simplicity,
we drop the z-dependence):

f(x) =

{
λ1|x|p−2x− |x|τ−2x, if |x| > 1
λ1|x|τ−2x− |x|p−2x, if |x| ≤ 1
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with 1 < τ < p <∞. Indeed, H(i) is easily checked whereas lim|x|→∞
f(x)

|x|p−2x = λ1

and hence H(ii) holds. Moreover, for |x| > 1 and for some c3 > 0 we have

xf(x)− pF (x) = (
p

τ
− 1)|x|τ − c3 → +∞, as |x| → ∞

and thus, H(iii) also holds. Finally, to obtain H(iv) choose

σ ∈ (τ, p), c2 ∈ (0,
λ1

τ
) and δ0 ∈ (0, 1) with δp−τ

0 < p(
λ1

τ
− c2).

Then for |x| ≤ δ0 we have

σF (x)− xf(x) = λ1(
σ

τ
− 1)|x|τ + (1− σ

p
)|x|p ≥ 0,

F (x) =
λ1

τ
|x|τ − |x|p

p
= |x|τ (

λ1

τ
− |x|p−τ

p
) ≥ c2|x|τ .

In [20], f(x) is unbounded for x < 0 and bounded for x ≥ 0. For the function f
defined above we have that f(+∞) = +∞.

Now we set g(x) = f(x)−λ1|x|p−2x, x ∈ R. Under the classic versions of the LL
- conditions, the limits g(±∞) are real numbers (see for example [3], [11]). Unlike
these works, the above defined function g satisfies g(±∞) = ∓∞.

Moreover, generalized LL - conditions are used in [12, 19, 21, 22] in the semilinear
case (p = 2). In all these works, the function g satisfies the following condition:

For each sequence {wn} ⊆W 1,2
0 (Ω) with

‖wn‖ → ∞,
‖P1wn‖
‖wn‖

→ 1,

we have that

lim sup
n

∫
Ω

g(wn(z))
P1wn(z)
‖P1wn‖

dz > 0,

where P1 is the projection operator fromW 1,2
0 (Ω) onto the principal

eigenspace of −∆D.
In our example this condition fails. To see this, let û1 be the normalized positive
smooth principal eigenfunction of −∆D

p and set wn = nû1, n ≥ 1. Clearly, ‖wn‖ →
∞ and ‖P1wn‖/‖wn‖ = 1, for all n ≥ 1 (note that for p 6= 2, the projection P1 is
still well defined). On the other hand, for all n > 1/minΩ û1 we have∫

Ω

g(wn(z))
P1wn(z)
‖P1wn‖

dz = −nτ−1

∫
Ω

û1(z)τdz → −∞, as n→∞.

We introduce the energy functional

ϕ(u) =
1
p
‖Du‖p

p −
∫

Ω

F (z, u(z))dz, u ∈W 1,p
0 (Ω).

Under hypothesis H(i), ϕ ∈ C1(W 1,p
0 (Ω)) and each weak solution of the problem

(1.1) is a critical point of ϕ.
Since f(z, 0) = 0, a.e. in Ω, the origin 0 is trivially a critical point of ϕ. We

search for nontrivial critical points of ϕ. For this purpose, we are going to compute
the critical groups

Ck(ϕ,∞), Ck(ϕ, 0), k ≥ 0.
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First, we compute the critical groups of ϕ at infinity. In this direction, we prove
an auxiliary result which slightly extends [18, Lemma 2.4] (the latter is formulated
in Hilbert spaces).

Proposition 3.3. Let X be a Banach space and (t, u) → ht(u) be a homotopy
which belongs to C1([0, 1]×X) and it is bounded. Suppose that

(i) there exists R > 0 s.t. for all t ∈ [0, 1],

Kht ⊆ BR = {x ∈ X : ‖x‖ ≤ R}
(ii) the maps u→ ∂tht(u) and u→ h′t(u) are both locally Lipschitz
(iii) h0 and h1 both satisfy the C-condition
(iv) there exist β ∈ R and δ > 0 s.t.

ht(u) ≤ β ⇒ (1 + ‖u‖)‖h′t(u)‖∗ ≥ δ for all t ∈ [0, 1].

Then Ck(h0,∞) = Ck(h1,∞), for all k ≥ 0.

Proof. By the hypothesis h ∈ C1([0, 1]×X), we know that it admits a pseudogra-
dient vector field v̂ = (v0, v) : [0, 1] × (X \ BR) → [0, 1] × X. Moreover, taking
into account the construction of the pseudogradient vector field, we know that
v0 = ∂tht. Also, by definition (t, u) → vt(u) is locally Lipschitz and in fact for
every t ∈ [0, 1], vt(·) is a pseudogradient vector field for the functional ht(·). So,
for every (t, u) ∈ [0, 1]× (X \BR) we have

〈h′t(u), vt(u)〉 ≥ ‖h′t(u)‖2∗. (3.1)

The map

X \BR 3 u→ −|∂tht(u)|
‖h′t(u)‖2∗

vt(u) = wt(u) ∈ X

is well defined and locally Lipschitz. Since by hypothesis (t, u) → ht(u) is bounded,
we can find η ≤ β s.t.

η < inf[ht(u) : t ∈ [0, 1], ‖u‖ ≤ R].

We choose η ≤ β s.t. hη
0 6= ∅ or hη

1 6= ∅, (if no such η can be found, then Ck(h0,∞) =
Ck(h1,∞) = Hk(X, ∅) = δk,0Z for all k ≥ 0 and so we are done). To fix things, we
assume that hη

0 6= ∅ and choose y ∈ hη
0 . We consider the following Cauchy problem

dξ

dt
= wt(ξ) t ∈ [0, 1], ξ(0) = y. (3.2)

Since wt is locally Lipschitz, this Cauchy problem admits a unique local flow (see
[7, p. 618]). We have

d

dt
ht(ξ) = 〈h′t(ξ),

dξ

dt
〉+ ∂tht(ξ)

= 〈h′t(ξ), wt(ξ)〉+ ∂tht(ξ) (see (3.2))

≤ −|∂tht(ξ)|+ ∂tht(ξ) ≤ 0

(see (3.1)). This implies that the mapping t 7→ ht(ξ(t, y)) is non-increasing. There-
fore,

ht(ξ(t, y)) ≤ h0(ξ(0, y)) = h0(y) ≤ η ≤ β,

⇒ (1 + ‖ξ(t, y)‖)‖h′t(ξ(t, y))‖∗ ≥ δ

(by hypothesis); therefore, h′t(ξ(t, y)) 6= 0.
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This shows that the flow ξ(·, y) is global on [0, 1]. Then ξ(1, y) is a homeomor-
phism between hη

0 and a subset of hη
1 . Reversing the time (t → 1 − t), we show

that hη
1 is a homeomorphism to a subset of hη

0 . Therefore hη
0 and hη

1 are homotopy
equivalent and so

Hk(X,hη
0) = Hk(X,hη

1) for all k ≥ 0,

⇒ Ck(h0,∞) = Ck(h1,∞) for all k ≥ 0.

�

To proceed, let û1 be a λ1-eigenfunction of −∆D
p with ‖û1‖p = 1. Consider the

set

V = {u ∈W 1,p
0 (Ω) :

∫
Ω

ûp−1
1 udz = 0}.

Then V is a closed linear subspace of W 1,p
0 (Ω) and we have

W 1,p
0 (Ω) = Rû1 ⊕ V.

We introduce the quantity

λV = inf
{‖Du‖p

p

‖u‖p
p

: u ∈ V, u 6= 0
}
.

We know that λ1 < λV ≤ λ2 (see [8, Lemma 3.3]).
Let µ ∈ (λ1, λV ) and consider the C1-functional ψ : W 1,p

0 (Ω) → R defined by

ψ(u) =
1
p
‖Du‖p

p −
µ

p
‖u‖p

p for all u ∈W 1,p
0 (Ω).

Using standard arguments we may show that ψ has the following properties:
• 0 is the unique critical point of ψ.
• ψ satisfies the Palais-Smale condition.
• ψ|Rbu1 is anticoercive, ψ|V is coercive.

The last two properties yield
C1(ψ,∞) 6= 0 (3.3)

(see [4, Proposition 3.8]).
We intend to prove the following statement.

Proposition 3.4. Under hypotheses H(i), (ii), (iii), we have

Ck(ϕ,∞) ' Ck(ψ,∞), k ≥ 0.

For the proof of Proposition 3.4 we shall need the following result.

Proposition 3.5. Assume that hypotheses H(i), (ii), (iii) hold. We consider the
homotopy h : [0, 1]×W 1,p

0 (Ω) → R defined by

h(t, u) = (1− t)ϕ(u) + tψ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Let {un}n≥1 ⊆W 1,p
0 (Ω), {tn}n≥1 ⊆ [0, 1] be sequences such that

tn → t, (1 + ‖un‖)‖h′u(tn, un)‖∗ → 0, ‖un‖ → +∞.

Then by passing to subsequences, we obtain

tn → 0, |un(z)| → +∞, a.e. in Ω, h(tn, un) → +∞.
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Proof. By the convergence

(1 + ‖un‖)‖h′u(tn, un)‖∗ → 0

we have∣∣〈A(un), h〉 − (1− tn)
∫

Ω

f(z, un)hdz − tnµ

∫
Ω

|un|p−2unhdz
∣∣ ≤ εn‖h‖

1 + ‖un‖
(3.4)

for all h ∈W 1,p
0 (Ω), with εn → 0+.

We set yn = un

‖un‖ , n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume
that

yn
w→ y in W 1,p

0 (Ω), yn → y in Lp(Ω), yn(z) → y(z), a.e. in Ω. (3.5)

Dividing both sides of (3.4) by ‖un‖p−1 we have∣∣〈A(yn), h〉 − (1− tn)
∫

Ω

f(z, un)
‖un‖p−1

hdz − tnµ

∫
Ω

|yn|p−2ynhdz
∣∣

≤ εn‖h‖
(1 + ‖un‖)‖un‖p−1

, for all n ≥ 1.
(3.6)

Hypothesis H(i) implies that the sequence{f(·, un(·))
‖un‖p−1

}
n≥1

⊆ Lp′(Ω), 1/p+ 1/p′ = 1,

is bounded. Thus, we may assume that it is weakly convergent in Lp′(Ω). Using
hypothesis H(iii) and reasoning as in [17, Proposition 5], we may find ξ ∈ L∞(Ω)+
such that

f(·, un(·))
‖un‖p−1

w→ ξ|y|p−2y in Lp′(Ω) and λ1 ≤ ξ(z) < λ2 a.e. in Ω. (3.7)

In (3.6) we choose h = yn−y ∈W 1,p
0 (Ω), pass to the limit as n→∞ and use (3.5).

Then
lim

n→∞
〈A(yn), yn − y〉 = 0,

which implies yn → y in W 1,p
0 (Ω) (since A is of type (S)+). Then

‖y‖ = 1. (3.8)

So, if in (3.6) we pass to the limit as n→∞ and use (3.7) and (3.8), then

〈A(y), h〉 = (1− t)
∫

Ω

ξ|y|p−2yhdz + tµ

∫
Ω

|y|p−2yhdz for all h ∈W 1,p
0 (Ω),

which implies
A(y) = ξt|y|p−2y with ξt = (1− t)ξ + tµ;

therefore,

−∆py(z) = ξt(z)|y(z)|p−2y(z) a.e. in Ω, u = 0 on ∂Ω. (3.9)

Note that λ1 ≤ ξt(z) < λ2 a.e. in Ω (recall that t ∈ [0, 1], λ1 < µ < λ2). If
ξt 6≡ λ1, then the monotonicity properties of the weighted eigenvalues (see Section
2) yield

λ̂1(ξt) < λ̂1(λ1) = 1, λ̂2(ξt) > λ̂2(λ2) = 1;

therefore, y ≡ 0 (see (3.9)) which contradicts (3.8).
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Thus, ξt ≡ λ1, so t = 0 and ξ ≡ λ1. It follows from (3.9) that y is a λ1-
eigenfunction and hence, y(z) 6= 0, a.e. in Ω. Consequently,

|un(z)| = ‖un‖|yn(z)| → +∞, a.e. in Ω. (3.10)

It remains to show that
h(tn, un) → +∞.

Indeed, the convergence

(1 + ‖un‖)‖h′u(tn, un)‖∗ → 0

implies that
〈h′u(tn, un), un〉 → 0.

Moreover, (3.10) combined with hypothesis H(iii) and also with Fatou’s lemma
gives ∫

Ω

[un(z)f(z, un(z))− pF (z, un(z))]dz → +∞.

Now the conclusion follows from the formula

ph(tn, un) = 〈h′u(tn, un), un〉+ (1− tn)
∫

Ω

[un(z)f(z, un(z))− pF (z, un(z))]dz,

n ≥ 1. �

Corollary 3.6. Under hypotheses H(i), (ii), (iii), the energy functional ϕ satisfies
the Cerami condition.

Proof. Suppose that {un}n≥1 ⊆W 1,p
0 (Ω) satisfies

sup
n
|ϕ(un)| <∞, (1 + ‖un‖)‖ϕ′(un)‖∗ → 0.

We claim that {un}n≥1 is bounded in W 1,p
0 (Ω). Indeed, if this is not the case, then

by passing to subsequences we may assume that

‖un‖ → +∞.

Now we observe that ϕ(u) = h(0, u), for all u ∈W 1,p
0 (Ω). Applying Proposition 3.5

and by passing to subsequences we deduce that ϕ(un) = h(0, un) → +∞ (false).
This proves our claim, i.e., {un}n≥1 is bounded in W 1,p

0 (Ω).
Therefore, we may assume that

un
w→ u in W 1,p

0 (Ω) and un → u in Lp(Ω). (3.11)

Then (3.11) in conjunction with hypothesis H(i) and also with the convergence
‖ϕ′(un)‖∗ → 0 yields∫

Ω

f(·, u(·))(un − u)dz → 0, 〈ϕ′(un), un − u〉 → 0.

But

〈A(un), un − u〉 −
∫

Ω

f(·, u(·))(un − u)dz = 〈ϕ′(un), un − u〉, n ≥ 1,

so,
lim

n→∞
〈A(un), un − u〉 = 0,⇒ un → u in W 1,p

0 (Ω)

(since A is of type (S)+). �
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Proof of Proposition 3.4. We consider the homotopy h : [0, 1] ×W 1,p
0 (Ω) → R de-

fined by

h(t, u) = (1− t)ϕ(u) + tψ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Clearly, h(0, ·) = ϕ, h(1, ·) = ψ. By Proposition 3.3, it suffices to show that there
exist β ∈ R, δ > 0, such that for all t ∈ [0, 1], u ∈W 1,p

0 (Ω),

h(t, u) ≤ β ⇒ (1 + ‖u‖)‖h′u(t, u)‖∗ > δ.

Suppose that this is not the case. Then we may find

{tn}n≥1 ⊆ [0, 1], {un}n≥1 ⊆W 1,p
0 (Ω),

such that

tn → t ∈ [0, 1], (1 + ‖un‖)‖h′u(tn, un)‖∗ → 0, h(tn, un) → −∞.

Now Proposition 3.5 guarantees that {un}n≥1 is bounded so, we may assume that
(3.11) holds. Applying (3.4) for h = un − u and passing to the limit as n → +∞,
we obtain

lim
n→∞

〈A(un), un − u〉 = 0

which implies un → u in W 1,p
0 (Ω) (since A is of type (S)+). Therefore, h(tn, un) →

h(t, u), which is a contradiction. �

Next, we compute the critical groups of ϕ at zero. Without loss of generality we
may assume that 0 is an isolated critical point of ϕ (otherwise we can produce a
whole sequence of distinct critical points of ϕ, so we are done). We start with two
lemmas.

Lemma 3.7. Let g ∈ C1([0, 1]) such that either g(1) < 0 or g(1) = 0, g′(1) > 0. If
g(t̂) > 0, for some t̂ ∈ (0, 1), then there exists t̂2 ∈ (t̂, 1), such that

g(t̂2) = 0, g′(t̂2) ≤ 0.

Proof. We claim that

g(t̂1) = 0, for some t̂1 ∈ (t̂, 1).

Indeed, this is clear from Bolzano’s theorem, in the case g(1) < 0.
Suppose now that g(1) = 0, g′(1) > 0. By continuity of g′, we may find θ ∈ (0, 1),

such that
0 < t̂ < θ < 1, g′ > 0 on [θ, 1].

Since g(1) = 0, we obtain that g < 0 on [θ, 1) and the claim follows again from
Bolzano’s theorem.

To proceed, we set
t̂2 = min{t ∈ [t̂, 1] : g(t) = 0}.

Then
t̂ < t̂2 ≤ t̂1, g(t̂2) = 0, g(t) 6= 0, for all t ∈ [t̂, t̂2).

But since g(t̂) > 0, the continuity of g gives g(t) > 0 for all t ∈ [t̂, t̂2). Then

g′(t̂2) = lim
t→bt−2

g(t)
t− t̂2

≤ 0,

which completes the proof. �
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Lemma 3.8. Let X be a Banach space and ϕ ∈ C1(X), ρ > 0 such that

〈ϕ′(u), u〉 > 0, for all u ∈ Bρ \ {0} with ϕ(u) = 0.

Then

(i) for each u ∈ ϕ0 ∩Bρ, we have [0, u] ⊆ ϕ0, where

[0, u] = {tu : t ∈ [0, 1]}.

(ii) the set ϕ0 ∩Bρ is contractible.

(Here Bρ is the closed ball centered at the origin with radius ρ and ϕ0 is the sublevel
set of ϕ at 0.)

Proof. (i) Suppose on the contrary that

ϕ(t̂u) > 0, for some u ∈ (ϕ0 ∩Bρ) \ {0}, t̂ ∈ (0, 1).

Define g(t) = ϕ(tu), t ∈ [0, 1]. Then g(t̂) > 0.
If ϕ(u) < 0, then g(1) < 0.
If ϕ(u) = 0, then g(1) = 0 and

g′(1) = 〈ϕ′(u), u〉 > 0.

Hence, g satisfies the hypotheses of Lemma 3.7, so we may find t̂2 ∈ (t̂, 1), such
that

g(t̂2) = 0, g′(t̂2) ≤ 0.

But then

0 < 〈ϕ′(t̂2u, t̂2u〉 = t̂2g
′(t̂2) ≤ 0,

which is a contradiction.
(ii) Define the homotopy h : [0, 1]× (ϕ0 ∩Bρ) → ϕ0 ∩Bρ by

h(t, u) = (1− t)u.

Due to (i), h is well defined whereas it is clearly continuous. Since h(1, u) = 0 for
all u ∈ ϕ0 ∩Bρ, we derive that the set ϕ0 ∩Bρ is contractible in itself. �

Proposition 3.9. Under hypotheses H(i), H(iv), we have

Ck(ϕ, 0) = 0, for all k ≥ 0.

Proof. From hypothesis H(iv), we can find c3, c4 > 0 such that

F (z, x) ≥ c3|x|τ − c4|x|r for all z ∈ Ω, all x ∈ R, (3.12)

with p < r < p∗ ( p∗ denotes the critical Sobolev exponent).
Claim 1: There exists ρ ∈ (0, 1) small such that

〈ϕ′(u), u〉 > 0, for all u ∈ Bρ \ {0} with ϕ(u) = 0.
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To see this, choose u ∈W 1,p
0 (Ω) \ {0} such that ϕ(u) = 0. Then

〈ϕ
′
(u), u〉 = ‖Du‖p

p −
∫

Ω

f(z, u)udz

= (1− σ

p
)‖Du‖p

p +
∫

Ω

(σF (z, u)− f(z, u)u)dz (since ϕ(u) = 0)

= (1− σ

p
)‖Du‖p

p +
∫
{|u|≤δ0}

(σF (z, u)− f(z, u)u)dz

+
∫
{|u|>δ0}

(σF (z, u)− f(z, u)u)dz.

(3.13)
By hypothesis H(iv), we have∫

{|u|≤δ0}
(σF (z, u)− f(z, u)u)dz ≥ 0. (3.14)

Moreover, hypothesis H(i) implies∫
{|u|>δ0}

(σF (z, u)− f(z, u)u)dz ≥ −c5‖u‖r
r (3.15)

for some c5 > 0 and with p < r < p∗.
Returning to (3.13) and use (3.14), (3.15) with the embedding W 1,p

0 (Ω) ⊆ Lr(Ω),
to obtain

〈ϕ
′
(u), u〉 ≥ (1− σ

p
)‖Du‖p

p − c6‖Du‖r
p for some c6 > 0.

Now Claim 1 follows easily from the last inequality, because of the fact that σ <
p < r.

Taking into account Claim 1 in conjunction with Lemma 3.8(ii) we deduce that

ϕ0 ∩Bρ is contractible.

Claim 2: For each u ∈ W 1,p
0 (Ω) \ {0}, there exists t∗ = t∗(u) ∈ (0, 1) small such

that
ϕ(tu) < 0 for all t ∈ (0, t∗).

Indeed, for t > 0 and u ∈W 1,p
0 (Ω), we have

ϕ(tu) =
tp

p
‖Du‖p

p −
∫

Ω

F (z, tu)dz

≤ tp

p
‖Du‖p

p − c3t
τ‖u‖τ

τ + c4t
r‖u‖r

r (see (3.12)).

Then Claim 2 follows from the fact that τ < p < r.
Claim 3: Let ρ > 0 be as postulated in Claim 1. Then for each u ∈ Bρ with
ϕ(u) > 0, there exists a unique t(u) ∈ (0, 1) such that

ϕ(t(u)u) = 0.

To prove this, let u ∈ Bρ be fixed with ϕ(u) > 0. Then Claim 2 combined with
Bolzano’s theorem yield

ϕ(t(u)u) = 0, for some t(u) ∈ (0, 1).
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We need to show that this t(u) ∈ (0, 1) is unique. We argue by contradiction. So,
suppose we can find

0 < t1(u) < t2(u) < 1 such that ϕ(t1(u)u) = ϕ(t2(u)u) = 0.

Then we have ϕ(tt2(u)u) ≤ 0 for all t ∈ [0, 1] (see Claim 1 and Lemma 3.8(i)).
Hence t1(u)

t2(u) ∈ (0, 1) is a maximizer of the function t → ϕ(tt2(u)u), t ∈ [0, 1].
Therefore

d

dt
ϕ(tt1(u)u)|t=1 =

t1(u)
t2(u)

d

dt
ϕ(tt2(u)u)|t= t1(u)

t2(u)
= 0.

But
d

dt
ϕ(tt1(u)u)|t=1 = 〈ϕ′(t1(u)u), t1(u)u〉 > 0,

by Claim 1. Thus, we arrived at a contradiction and the proof of Claim 3 is
complete.

Summarizing the above arguments we obtain the following:
• For each u ∈ Bρ with ϕ(u) ≤ 0, we have that ϕ ≤ 0 on [0, u]. Moreover,

the set ϕ0 ∩Bρ is contractible.
• For each u ∈ Bρ \ {0} with ϕ(u) > 0, there exists a unique t(u) ∈ (0, 1)

such that

ϕ(t(u)u) = 0, ϕ < 0 on (0, t(u)u), ϕ > 0 on (t(u)u, u].

To proceed, let q : Bρ \ {0} → (0, 1] be defined by

q(u) =

{
1 if u ∈ Bρ \ {0}, ϕ(u) ≤ 0
t(u) if u ∈ Bρ \ {0}, ϕ(u) > 0.

According to the previous discussion, q is well-defined and the implicit function
theorem implies that q is continuous.

Let Q : Bρ \ {0} → (ϕ0 ∩Bρ) \ {0} be defined by

Q(u) = q(u)u.

Clearly, Q is continuous and Q|(ϕ0∩Bρ)\{0} = id|(ϕ0∩Bρ)\{0}. It follows that (ϕ0 ∩
Bρ) \ {0} is a retract of Bρ \ {0}. Since W 1,p

0 (Ω) is infinite dimensional, the set
Bρ \ {0} is contractible in itself, hence so is the set (ϕ0 ∩Bρ) \ {0}. Finally, since
both ϕ0 ∩Bρ and (ϕ0 ∩Bρ) \ {0} are contractible, we conclude that

Ck(ϕ, 0) = Hk(ϕ0 ∩Bρ, (ϕ0 ∩Bρ) \ {0}) = 0 for all k ≥ 0

(see Granas -Dugundji [9, p. 389]). �

Now we are ready to state and prove our existence result.

Theorem 3.10. Under hypotheses H(i)-(iv), problem (1.1) has at least one non-
trivial smooth solution.

Proof. By Proposition 3.4 we obtain that

C1(ϕ,∞) ' C1(ψ,∞) 6= 0

(see (3.3)), which implies that

C1(ϕ, u) 6= 0, for some u ∈ Kϕ.

Clearly, u is a smooth weak solution to the problem (see remark 3.1). On the other
hand, Proposition 3.9 says that C1(ϕ, 0) = 0. Hence, u 6≡ 0. �
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Acad. Sci. Paris Sèr. I Math 305 (1987), 725-728.

[2] A. Anane, N. Tsouli: On the second eigenvalue of the p- Laplacian in A. Benikrane, J-
P. Gossez, eds Nonlinear Partial Differential Equations (Fès, 1994), Vol. 343 of Pitman
Research Notes in Math. Series, Longman, Harlow (1996), 1-9.

[3] D. Arcoya, L. Orsina: Landesman-Lazer conditions and quasilinear elliptic equations, Nonlin.
Anal. 28 (1997), 1623-1632.

[4] T. Bartsch - S. Li: Critical point theory for asymptotically quadratic functionals and appli-
cations to problems with resonance, Nonlin. Anal. 28 (1997), 419-441.

[5] K.-C. Chang: Infinite Dimensional Morse Theory and Multiple Solution Problems, Birk-
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