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TRANSPORT EQUATION FOR GROWING BACTERIAL
POPULATIONS (II)

MOHAMED BOULANOUAR

Abstract. This article studies the growing bacterial population. Each bac-

terium is distinguished by its degree of maturity and its maturation velocity.
To complete the study in [3], we describe the bacterial profile of this pop-

ulation by proving that the generated semigroup possesses an asynchronous
exponential growth property.

1. Introduction

This work studies a model for growing bacterial population, partially studied in
[3], in which each bacteria is distinguished by its degree of maturity 0 ≤ µ ≤ 1 and
its maturation velocity v. As each bacteria may not become less mature, then its
maturation velocity must be positive (0 ≤ a < v < ∞). If f = f(t, µ, v) denotes
the bacterial density with respect to the degree of maturity µ and the maturation
velocity v at time t, then

∂f

∂t
= −v ∂f

∂µ
− σf, (1.1)

where σ = σ(µ, v) denotes the rate of bacterial mortality or bacteria loss due to
causes other than division.

At any time t, the density of mothers bacteria f(t, 0, ·) is related to that of daugh-
ters bacteria f(t, 1, ·) by biological laws, such as the transition law mathematically
described by the following boundary condition

vf(t, 0, v) = p

∫ ∞
a

k(v, v′)f(t, 1, v′)v′ dv′, (1.2)

where k = k(v, v′) denotes the correlation kernel between the maturation velocity
of a mother bacteria v′ and that of a daughter bacteria v, and, p ≥ 0 denotes
the average number of daughter bacteria viable per mitotic. However, for more
generality, we are going to be concerned by a general biological law mathematically
described by the following boundary condition

f(t, 0, v) = [Kf(t, 1, ·)](v), (1.3)
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where K denotes a linear operator on suitable spaces (see Section 3).
Recently, we partially studied the model (1.1), (1.3) in the most interesting case

a = 0 (see [3]). We proved that this model is governed by a strongly continuous
semigroup VK = (VK(t))t≥0. The purpose of this work is then to complete [3] by
studying the asynchronous exponential growth of the generated semigroup VK =
(VK(t))t≥0.

According to the case a > 0, we have recently proved in [1] that the strongly
continuous semigroup VK = (VK(t))t≥0 is compact for a large time t > 2

a which
led to an easy computation of the essential type (ωess(VK) = −∞). Biologically
speaking, the case a > 0 means that after a transitory phase, all bacteria will be
divided or dead.

In contrary to a > 0, the case a = 0 means that the maturation velocities can
be arbitrary small and at any time there may be bacteria that are not yet divided.
Consequently, the bacterial population never goes out of the transitory phase, which
explains the non-compactness of the generated semigroup VK = (VK(t))t≥0 and
therefore the computation of its essential type, ωess(VK), presents a lot of difficulties.

In the sequel we organize the work as follows
(3) Generation Theorem
(4) Stability and Domination
(5) Asynchronous Exponential Growth

In third Section, we recall some properties of the generated semigroup VK =
(VK(t))t≥0 governing the model (1.1), (1.3). We also complete some claims al-
ready proved in [3]. In Fourth Section, we study the stability of the generated
semigroup VK = (VK(t))t≥0 with respect to the boundary operator K. Domina-
tion result is also given. In fifth Section, we prove that the generated semigroup
possesses Asynchronous Exponential Growth property as follows

Lemma 1.1 ([4, Theorems 9.10 and 9.11]). Let U = (U(t))t≥0 be a positive and
irreducible strongly continuous semigroup, on the Banach lattice space X, satisfying
the inequality ωess(U) < ω0(U). Then, there exist a rank one projector P into X
and an ε > 0 such that: for any η ∈ (0, ε), there exists M(η) ≥ 1 satisfying

‖e−ω0(U)tU(t)− P‖L(X) ≤M(η)e−ηt t ≥ 0.

Thanks to [4, Thereom 8.7], the rank one projection P can be written as fol-
lows: Pϕ =< ϕ,ϕ∗0 > ϕ∗0, where ϕ∗0 ∈ (X∗)+ is a strictly positive functional. A
strongly continuous semigroup U = (U(t))t≥0 satisfying Lemma 1.1 possesses the
asynchronous exponential growth with intrinsic growth density ϕ∗0.

Lemma 1.1 describes the bacterial profile whose privileged direction is mathe-
matically explained by the vector ϕ∗0. This is what the biologist observes in his
laboratory. Finally, note the novelty of this work. For all used theoretical results,
we refer the reader to [4] or [7].

2. Mathematical preliminaries

This section deals with some useful mathematical tools that we will need in the
sequel. These tools concern strongly continuous semigroups of linear operators in
Banach spaces and Banach lattice spaces.

Let X be a Banach space and let U = (U(t))t≥0 be a strongly continuous semi-
group of linear operators, on X. Following [7, Chapter IV], the type ω0(U) and the
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essential type ωess(U) of the semigroup U = (U(t))t≥0 are given by

ω0(U) = lim
t→∞

ln ‖U(t)‖L(X)

t
(2.1)

ωess(U) = lim
t→∞

ln ‖U(t)‖ess

t
, (2.2)

where ‖ · ‖ess denotes the norm of Calkin algebra L(X)/K(X) with K(X) stands
for the two-sided closed ideal in L(X) of all compact operators. The types ωess(U)
and ωess(U) are always ordered as follows

ωess(U) ≤ ω0(U). (2.3)

Lemma 2.1. Let U = (U(t))t≥0 and V = (V (t))t≥0 be two strongly continuous
semigroups, on X, and let λ ∈ ρ(U(t0)) for some t0 > 0. If[(

V (t0)− U(t0)
)(
λ− U(t0)

)−1]n
is a compact operator for some integer n > 0, then ωess(U) = ωess(V )

Proof. It suffices to apply [8] for the operators V (t0)− U(t0) and U(t0). �

Lemma 2.2 ([6]). Let (Ω,Σ, µ) be a positive measure space and let S and T be
linear and bounded operators on L1(Ω, µ). Then

(1) The set of all weakly compact operators is norm-closed subset.
(2) If T is weakly compact and 0 ≤ S ≤ T then S is weakly compact too.
(3) If S and T are weakly compact, then ST is compact.

3. Generation Theorem

In this section, we recall briefly some properties of the model (1.1), (1.3) and its
associated semigroup VK = (VK(t))t≥0 (see [3]). Also, other needed properties will
be proved. So, let us consider the functional framework L1(Ω) whose norm is

‖ϕ‖1 =
∫

Ω

|ϕ(µ, v)| dµ dv, (3.1)

where Ω = (0, 1)× (0,∞) := I × J . We also consider our regularity space

W1 =
{
ϕ ∈ L1(Ω) v

∂ϕ

∂µ
∈ L1(Ω) and vϕ ∈ L1(Ω)

}
and the trace space Y1 := L1(J, v dv) whose norms are

‖ϕ‖W1 = ‖v ∂ϕ
∂µ
‖1 + ‖vϕ‖1 and ‖ψ‖Y1 =

∫ ∞
0

|ψ(v)|v dv.

In this context, our recent result [2, Theorem 2.2] leads to

Lemma 3.1. The trace mappings γ0ϕ = ϕ(0, ·) and γ1ϕ = ϕ(1, ·) are linear
bounded from W1 into Y1.

Let T0 be the following unbounded operator

T0ϕ = −v ∂ϕ
∂µ

on the domain,

D(T0) = {ϕ ∈W1 γ0ϕ = 0},
(3.2)

corresponding to the model (1.1), (1.3) without bacterial division and without bac-
terial mortality. Some of its properties can be summarized as follows.
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Lemma 3.2. The operator T0 generates, on L1(Ω), a strongly continuous positif
semigroup U0 = (U0(t))t≥0 of contraction given by

U0(t)ϕ(µ, v) := χ(µ, v, t)ϕ(µ− tv, v), (3.3)

where

χ(µ, v, t) =

{
1 if µ ≥ tv;
0 if µ < tv.

(3.4)

Next, let us impose on the bacterial mortality rate σ the hypothesis

σ ∈ (L∞(Ω))+ (3.5)

which obviously leads to the boundedness of the perturbation operator

Sϕ := −σϕ (3.6)

from L1(Ω) into itself. In this context, the model (1.1), (1.3), without bacterial
division, can be modeled by the following unbounded operator L0 := T0 +S on the
domain D(L0) = D(T0), for which we have

Lemma 3.3. Suppose that (3.5) holds. Then, the operator L0 generates, on L1(Ω),
a strongly continuous positif semigroup V0 = (V0(t))t≥0 satisfying

‖V0(t)‖L(L1(Ω)) ≤ e−tσ t ≥ 0, (3.7)

where
σ := ess inf(µ,v)∈Ω σ(µ, v). (3.8)

Furthermore,

V0(t) = U0(t) +
∫ t

0

U0(t− s)SV0(s)ds t ≥ 0. (3.9)

Proof. L0 is clearly a perturbation of the generator T0. �

Let us consider now the model (1.1), (1.3), without cell mortality, corresponding
to the following unbounded operator

TKϕ = −v ∂ϕ
∂µ

on the domain,

D(TK) = {ϕ ∈W1 : γ0ϕ = Kγ1ϕ},
(3.10)

where the boundary operator K can fulfil the following definition.

Definition 3.4. Let K be a linear operator from Y1 into itself. Then, K is said to
be an admissible if one of the following hypotheses holds

(Kb) K is bounded and ‖K‖L(Y1) < 1;
(Kc) K is compact and ‖K‖L(Y1) ≥ 1.

Thanks to Definition above, we can state the following.

Lemma 3.5. Let K be an admissible operator. Then, for all λ ≥ 0, the following
linear operators

Kλψ := K(θλψ) and Kλψ := θλKψ, where θλ(v) = e−λ/v (3.11)

are bounded from Y1 into itself satisfying

‖Kλ‖L(Y1) < 1 and ‖Kλ‖L(Y1) < 1 for all large λ. (3.12)
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Furthermore, if K is positive then the spectral radius of Kλ and Kλ are the same;
i.e.,

r(Kλ) = r(Kλ) for all λ ≥ 0. (3.13)

Proof. All announced properties of the operator Kλ are proved in [3, Lemma 3.3].
So, let us proved those of the operator Kλ. Let λ ≥ 0. Firstly, it is clear that Kλ

is bounded because of
‖Kλψ‖ ≤ ‖K‖‖ψ‖

for all ψ ∈ Y1. Furthermore, if (Kb) holds then we infer that

λ > 0 =⇒ ‖Kλ‖ < 1. (3.14)

Next, if (Kc) holds, then

‖Kλ‖L(Y1) = sup
ψ∈B
‖θλKψ‖Y1

= sup
ϕ∈K(B)

‖θλϕ‖Y1

≤ sup
ϕ∈K(B)

‖θλϕ‖Y1 ,

where B0 be the unit ball into Y1. By virtue of the compactness of K(B), there
exists ϕ0 ∈ K(B) such that

‖Kλ‖L(Y1) ≤ ‖θλϕ0‖Y1 =
∫ ∞

0

e−λ/v|ϕ0(v)|v dv

which leads to

lim
λ→∞

‖Kλ‖L(Y1) ≤ lim
λ→∞

∫ ∞
0

e−λ/v|ϕ0(v)|v dv = 0

and therefore
‖Kλ‖ < 1 for all large λ. (3.15)

Now, by (3.14) and (3.15) we can infer that both hypotheses (Kb) and (Kc) imply
that ‖Kλ‖ < 1 for large λ.

Suppose now that K is positive. So, for all λ ≥ 0 we clearly get that

Kλ ≤ K and Kλ ≤ K (3.16)

On the other hand, due to the obvious relationKλK = KKλ, it follows by induction
that

Kn
λK = KK

n

λ for all integers n ≥ 1 (3.17)

which leads, by (3.16), to

Kn+1
λ ≤ KKn

λ and K
n+1

λ ≤ Kn
λK

for all integers n ≥ 1 and therefore

‖K(n+1)
λ ‖

1
(n+1) ≤ ‖K‖

1
(n+1) (‖Kn

λ‖
1
n )

n
(n+1) ,

‖K(n+1)

λ ‖
1

(n+1) ≤ (‖Kn
λ‖

1
n )

n
(n+1) ‖K‖

1
(n+1) .

This easily leads to (3.13) and completes the proof. �

Some useful properties of the unbounded operator (3.10) are given next.
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Lemma 3.6. Let K be an admissible operator.
(1) The operator TK generates, on L1(Ω), a strongly continuous semigroup UK =

(UK(t))t≥0 satisfying

UK(t)ϕ(µ, v) = U0(t)ϕ(µ, v) + ξ(µ, v, t)K(γ1UK(t− µ
v )ϕ)(v) (3.18)

for almost all (µ, v) ∈ Ω, where

ξ(µ, v, t) =

{
0 if µ ≥ tv;
1 if µ < tv.

(3.19)

(2) For all large λ, we have

(λ− TK)−1ϕ = ελK(I −Kλ)−1γ1(λ− T0)−1ϕ+ (λ− T0)−1ϕ, (3.20)

where ελ(µ, v) = e−λ
µ
v .

(3) If K is positive, then UK = (UK(t))t≥0 is a positive semigroup and

UK(t) ≥ U0(t) t ≥ 0. (3.21)

Proof. All the announced properties, but (3.20) and (3.21), follow from [3, Theo-
rems 3.2 and 4.1 and Proposition 6.1]. So, let us prove (3.20) and (3.21).

Let λ be large and let ϕ ∈ L1(Ω). Thanks to [3, Proposition 3.1] we infer that

(λ− TK)−1 = ελ(I −Kλ)−1Kγ1(λ− T0)−1 + (λ− T0)−1

which leads, by (3.12) and (3.17), to

(λ− TK)−1ϕ− (λ− T0)−1ϕ = ελ

(∑
n≥0

Kn
λ

)
Kγ1(λ− T0)−1ϕ

= ελK
(∑
n≥0

K
n

λ

)
γ1(λ− T0)−1ϕ

= ελK(I −Kλ)−1γ1(λ− T0)−1ϕ

and therefore (3.20) follows.
Next, let ϕ ∈ (L1(Ω))+. As U0 = (U0(t))t≥0 is a positive semigroup (Lemma 3.2),

it follows that (λ− T0)−1ϕ is a positive function and therefore γ1(λ− T0)−1ϕ is a
positive function too. So, the computation above clearly leads to

(λ− TK)−1ϕ ≥ (λ− T0)−1ϕ

because of the positivity of K and therefore[
λ(λ− TK)−1

]n
ϕ ≥

[
λ(λ− T0)−1

]n
ϕ (3.22)

for all integers n ≥ 1. Putting now λ = n
t (t > 0) and passing at the limit n→∞

we infer that

lim
n→∞

[n
t

(
n

t
− TK)−1

]n
ϕ ≥ lim

n→∞

[n
t

(
n

t
− T0)−1

]n
ϕ (3.23)

which leads to (3.21) because of the exponential formula. �

Finally, let us consider the general model (1.1), (1.3) corresponding to the un-
bounded operator LK := TK + S on the domain D(LK) = D(TK) and for which
we have
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Lemma 3.7. Let K be an admissible operator. If the hypothesis (3.5) holds, then
we have

(1) The operator LK generates, on L1(Ω), a strongly continuous semigroup VK =
(VK(t))t≥0. Furthermore

VK(t) = UK(t) +
∫ t

0

UK(t− s)SVK(s)ds t ≥ 0. (3.24)

(2) Suppose that K is positive. Then the semigroup VK = (VK(t))t≥0 is positive
too and

VK(t) ≥ V0(t) t ≥ 0. (3.25)
Moreover, if K is irreducible then VK = (VK(t))t≥0 is also irreducible.

(3) If K is a positive, irreducible and compact operator such that

r(Kσ−σ) > 1

then the type ω0(VK) of the semigroup VK = (VK(t))t≥0 satisfies to

ω0(VK) > −σ, (3.26)

where σ is given by (3.8) and

σ := ess sup(µ,v)∈Ω σ(µ, v). (3.27)

Proof. Almost all the announced properties follow from [3, Theorem 5.1] and [3,
Theorem 6.1]. So, it only remains to prove (3.25) and (3.26).

Let t > 0 and let ϕ ∈ (L1(Ω))+. Then (3.21) clearly leads to[
e−

t
nσUK( tn )

]n
ϕ ≥

[
e−

t
nσU0( tn )

]n
ϕ for all integers n ∈ N.

Passing at the limit n→∞, then (3.25) follows because of Trotter Formula. Finally,
note that (3.26) follows from [3, Th.7.1] together with (3.13). �

We end this section by the following particular case

Corollary 3.8. Let K be a linear bounded operator from Y1 into itself such that
‖K‖ < 1. If the hypothesis (Hσ) holds, then the semigroup VK = (VK(t))t≥0

satisfies
‖VK(t)‖L(L1(Ω)) ≤ e−tσ t ≥ 0. (3.28)

The above corollary forllows from Lemma 3.7 above together with [3, Corol-
lary. 5.1].

4. Stability and domination

In this section we are concerned with stability and domination results of the
unperturbed semigroup UK = (UK(t))t≥0. That is one of the most useful results
which will be used to insure Asynchronous Exponential Growth property for the
semigroup VK = (VK(t))t≥0. Before we start, let us give the following useful result

Lemma 4.1. Let K be an admissible operator and let λ be large. Then, for all
ϕ ∈ L1(Ω), we have∫ ∞

0

∫ ∞
0

e−λt|γ1

(
UK(t)ϕ

)
(v)|v dt dv ≤ 1

1− ‖Kλ‖
‖ϕ‖1, (4.1)

where Kλ is given by (3.11).
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Proof. Let λ be large and let ϕ ∈ W1. Applying the trace mapping γ1 to (3.18),
we infer that

γ1(UK(t)ϕ)(v) = γ1(U0(t)ϕ)(v) + ξ(1, v, t)
[
Kγ1(UK(t− 1

v )ϕ)
]

(v)

for all t ≥ 0 and for almost all v ∈ (0,∞). Integrating it, we obtain that∫ ∞
0

∫ ∞
0

e−λt|γ1

(
UK(t)ϕ

)
(v)|v dt dv

≤
∫ ∞

0

∫ ∞
0

e−λt|γ1

(
U0(t)ϕ

)
(v)|v dt dv

+
∫ ∞

0

∫ ∞
0

e−λtξ(1, v, t)|(Kγ1(UK(t− 1
v )ϕ))(v)|v dt dv

:= I + J.

(4.2)

Thanks to Lemma 3.2, the term I becomes

I =
∫ ∞

0

∫ ∞
0

e−λt|γ1(U0(t)ϕ)(v)|v dvdt

≤
∫ ∞

0

∫ ∞
0

|χ(1, v, t)ϕ(1− tv, v)|vdtdv

=
∫ ∞

0

∫ 1

1−tv
|ϕ(µ, v)|dµdt

and therefore
I ≤ ‖ϕ‖1. (4.3)

For the term J we have

J =
∫ ∞

0

∫ ∞
0

e−λtξ(1, v, t)|(Kγ1(UK(t− 1
v )ϕ))(v)|v dt dv

=
∫ ∞

0

∫ ∞
0

e−λ(x+ 1
v )|(Kγ1(UK(x)ϕ))(v)|v dx dv

=
∫ ∞

0

e−λx
[ ∫ ∞

0

e−λ/v|(Kγ1(UK(x)ϕ))(v)|v dv
]
dx

=
∫ ∞

0

e−λx
[ ∫ ∞

0

|(Kλγ1(UK(x)ϕ))(v)|v dv
]
dx

which leads, by the boundedness of Kλ (Lemma 3.5), to

J ≤ ‖Kλ‖
∫ ∞

0

∫ ∞
0

e−λx|γ1(UK(x)ϕ)(v)|v dx dv (4.4)

Now, (4.2) together with (4.3) and (4.4) clearly imply that

(1− ‖Kλ‖)
∫ ∞

0

∫ ∞
0

e−λt|γ1

(
UK(t)ϕ

)
(v)|v dt dv ≤ ‖ϕ‖1

and therefore (4.1) holds because of (3.12). Finally, the density of W 1 into L1(Ω)
achieves the proof. �

Now, we are ready to give the main result of this section.
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Theorem 4.2. Let K be an admissible operator and let (Kn)n be a sequence of
admissible operators such that

lim
n→∞

‖Kn −K‖L(Y1) = 0. (4.5)

Then, for all t ≥ 0, we have

lim
n→∞

‖UKn(t)− UK(t)‖L(L1(Ω)) = 0. (4.6)

Proof. Let λ be large and let ϕ ∈ L1(Ω). In the sequel, we are going to divide this
proof in two steps.

Step I. If H denotes another admissible operator, then by (3.18) it follows that

UH(t)ϕ− UK(t)ϕ := A(t)ϕ+B(t)ϕ t ≥ 0, (4.7)

where

A(t)ϕ(µ, v) = ξ(µ, v, t)(H −K)γ1(UH(t− µ
v )ϕ)(v) (4.8)

B(t)ϕ(µ, v) = ξ(µ, v, t)Kγ1

(
UH(t− µ

v )ϕ− UK(t− µ
v )ϕ

)
(v) (4.9)

for almost all (µ, v) ∈ Ω. Furthermore, applying γ1 to (4.7) we obtain that

γ1

(
UH(t)ϕ− UK(t)ϕ

)
= γ1

(
A(t)ϕ

)
+ γ1

(
B(t)ϕ

)
, (4.10)

where

γ1

(
A(t)ϕ

)
(v) = ξ(1, v, t)(H −K)γ1(UH(t− 1

v )ϕ)(v) (4.11)

γ1

(
B(t)ϕ

)
(v) = ξ(1, v, t)Kγ1

(
UH(t− 1

v )ϕ− UK(t− 1
v )ϕ

)
(v) (4.12)

for almost all v ∈ (0,∞). So, multiplying (4.10) by e−λt and integrating it over
∈ (0,∞)× (0,∞), we infer that∫ ∞

0

∫ ∞
0

e−λt|γ1

(
UH(t)ϕ− UK(t)ϕ

)
(v)|v dt dv

≤
∫ ∞

0

∫ ∞
0

e−λt|γ1

(
A(t)

)
(v)|v dt dv +

∫ ∞
0

∫ ∞
0

e−λt|γ1

(
B(t)

)
(v)|v dt dv

:= I1 + I2.

(4.13)

Firstly, thanks to (4.11) the term I1 becomes

I1 =
∫ ∞

0

∫ ∞
0

e−λtξ(1, v, t)|(H −K)γ1(UH(t− 1
v )ϕ)(v)|v dt dv

=
∫ ∞

0

∫ ∞
0

e−λ(x+ 1
v )|(H −K)γ1(UH(x)ϕ)(v)|v dx dv

=
∫ ∞

0

e−λx[
∫ ∞

0

|(H −K)γ1(UH(x)ϕ)(v)|v dv]dx

≤ ‖H −K‖
∫ ∞

0

∫ ∞
0

e−λx|γ1(UH(x)ϕ)(v)|v dx dv

which leads, by Lemma 4.1 (with H instead K), to

I1 ≤
‖H −K‖
1− ‖Hλ‖

‖ϕ‖1. (4.14)
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Thanks to (4.12), the term I2 becomes

I2 =
∫ ∞

0

∫ ∞
0

e−λt|γ1

(
B(t)

)
(v)|v dt dv

=
∫ ∞

0

∫ ∞
0

e−λtξ(1, v, t)
∣∣Kγ1

(
UH(t− 1

v )ϕ− UK(t− 1
v )ϕ

)
(v)
∣∣v dt dv

=
∫ ∞

0

∫ ∞
0

e−λ(x+ 1
v )
∣∣Kγ1

(
UH(x)ϕ− UK(x)ϕ

)
(v)
∣∣v dx dv

=
∫ ∞

0

e−λx[
∫ ∞

0

|Kλγ1

(
UH(x)ϕ− UK(x)ϕ

)
(v)|v dv]dx

≤ ‖Kλ‖
∫ ∞

0

∫ ∞
0

e−λx|γ1

(
UH(x)ϕ− UK(x)ϕ

)
(v)|v dx dv

which leads, by the boundedness of Kλ (Lemma 3.5), to

I2 ≤ ‖Kλ‖
∫ ∞

0

∫ ∞
0

e−λx|γ1

(
UH(x)ϕ− UK(x)ϕ

)
(v)|v dx dv. (4.15)

Now, (4.13) together with (4.14) and (4.15) clearly imply that

(1− ‖Kλ‖)
∫ ∞

0

∫ ∞
0

e−λt|γ1

(
UH(t)ϕ− UK(t)ϕ

)
(v)|v dt dv ≤ ‖H −K‖‖ϕ‖1

1− ‖Hλ‖

and therefore, (3.12) leads to∫ ∞
0

∫ ∞
0

e−λt|γ1

(
UH(t)ϕ− UK(t)ϕ

)
(v)|v dt dv ≤ ‖H −K‖‖ϕ‖1

(1− ‖Kλ‖)(1− ‖Hλ‖)
. (4.16)

On the other hand, by (4.7) it follows that

‖UH(t)ϕ− UK(t)ϕ‖1 ≤
∫

Ω

|A(t)ϕ(µ, v)| dµ dv +
∫

Ω

|B(t)ϕ(µ, v)| dµ dv

:= J1 + J2.
(4.17)

for all t ≥ 0. So, using (4.8) the term J1 becomes

J1 =
∫

Ω

ξ(µ, v, t)|(H −K)γ1(UH(t− µ
v )ϕ)(v)| dµ dv

≤
∫ ∞

0

∫ 1

0

eλ
µ
v ξ(µ, v, t)|(H −K)γ1(UH(t− µ

v )ϕ)(v)| dµ dv

≤ eλt
∫ ∞

0

∫ ∞
0

e−λx|(H −K)γ1(UH(x)ϕ)(v)|v dx dv

≤ eλt
∫ ∞

0

[ ∫ ∞
0

e−λx|(H −K)γ1(UH(x)ϕ)(v)|v dv
]
dx

≤ eλt‖H −K‖
∫ ∞

0

∫ ∞
0

e−λx|γ1(UH(x)ϕ)(v)|v dx dv

which leads, by Lemma 4.1 (with H instead K), to

J1 ≤ eλt
‖H −K‖
1− ‖Hλ‖

‖ϕ‖1. (4.18)
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Using (4.9) the term J2 becomes

J2 =
∫

Ω

ξ(µ, v, t)
∣∣∣Kγ1

(
UH(t− µ

v )ϕ− UK(t− µ
v )ϕ

)
(v)
∣∣∣ dµ dv

≤
∫ ∞

0

∫ 1

0

eλ
µ
v ξ(µ, v, t)

∣∣∣Kγ1

(
UH(t− µ

v )ϕ− UK(t− µ
v )ϕ

)
(v)
∣∣∣ dµ dv

≤ eλt
∫ ∞

0

∫ ∞
0

e−λx|Kγ1

(
UH(x)ϕ− UK(x)ϕ

)
(v)|v dx dv

× eλt
∫ ∞

0

e−λx
[ ∫ ∞

0

|Kγ1

(
UH(x)ϕ− UK(x)ϕ

)
(v)|v dv

]
dx

≤ eλt‖K‖
∫ ∞

0

∫ ∞
0

e−λx
∣∣γ1

(
UH(x)ϕ− UK(x)ϕ

)
(v)
∣∣v dx dv

which leads, by (4.16), to

J2 ≤ eλt
‖K‖‖H −K‖

(1− ‖Kλ‖)(1− ‖Hλ‖)
‖ϕ‖1. (4.19)

Now, (4.17) together with (4.18) and (4.19) lead to

‖UH(t)ϕ− UK(t)ϕ‖1 ≤
eλt(‖K‖+ 1)‖H −K‖
(1− ‖Kλ‖)(1− ‖Hλ‖)

‖ϕ‖1

and therefore, for all t ≥ 0, we have

‖UH(t)− UK(t)‖L(L1(Ω)) ≤
eλt(‖K‖+ 1)‖H −K‖
(1− ‖Kλ‖)(1− ‖Hλ‖)

. (4.20)

Step II. Now, let (Kn)n ⊂ L(Y1) be a sequence of admissible operators such that
(4.5) holds. As, we have∣∣‖Knλ‖ − ‖Kλ‖

∣∣ ≤ ‖Knλ −Kλ‖ ≤ ‖Kn −K‖

for all integers n ≥ 1, it follows that

lim
n→∞

‖Knλ‖ = ‖Kλ‖. (4.21)

On the other hand, putting H = Kn into (4.20) we obtain that

‖UKn(t)− UK(t)‖L(L1(Ω)) ≤
eλt(‖K‖+ 1)‖Kn −K‖
(1− ‖Kλ‖)(1− ‖Knλ‖)

(4.22)

for all integers n ≥ 1. Passing now at the limit n→∞ into (4.22) and using (4.5)
and (4.21), we finally infer that (4.6). The proof is now achieved. �

We complete this section by the following domination result.

Theorem 4.3. Let K and H be two admissible operators. If H is a positive operator
and

|Kψ| ≤ H|ψ| (4.23)

for all ψ ∈ Y1, then

|
[
UK(t)− U0(t)

]
ϕ| ≤

[
UH(t)− U0(t)

]
|ϕ| t ≥ 0 (4.24)

for all ϕ ∈ L1(Ω).
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Proof. Let λ be large. Firstly, note that (4.23) obviously implies that |Kλψ| ≤
Hλ|ψ| for all ψ ∈ Y1 and by induction il follows that

|Kn

λψ| ≤ H
n

λ|ψ|. (4.25)

Next, let ϕ ∈ L1(Ω). Due to (3.20) and (4.23) we clearly get that

|(λ− TK)−1ϕ| ≤ |ελK(I −Kλ)−1γ1(λ− T0)−1ϕ|+ |(λ− T0)−1ϕ|
≤ ελH|(I −Kλ)−1γ1(λ− T0)−1ϕ|+ |(λ− T0)−1ϕ|

which leads, by (3.12) and (4.25), to

|(λ− TK)−1ϕ| ≤ ελH
∣∣∣∑
n≥0

K
n

λγ1(λ− T0)−1ϕ
∣∣∣+ |(λ− T0)−1ϕ|

≤ ελH
∑
n≥0

|Kn

λγ1(λ− T0)−1ϕ|+ |(λ− T0)−1ϕ|

≤ ελH
∑
n≥0

H
n

λγ1|(λ− T0)−1ϕ|+ |(λ− T0)−1ϕ|

= ελH(I −Hλ)−1γ1|(λ− T0)−1ϕ|+ |(λ− T0)−1ϕ|.

Thanks to the positivity of the semigroup U0 = (U0(t))t≥0 (Lemma 3.2), we infer
that of the operator (λ− T0)−1 and therefore

|(λ− TK)−1ϕ| ≤ ελH(I −Hλ)−1γ1(λ− T0)−1|ϕ|+ (λ− T0)−1|ϕ|
= (λ− TH)−1|ϕ|.

This leads, by induction, to

|(λ(λ− TK)−1)nϕ| ≤ (λ(λ− TH)−1)n|ϕ|

for all integers n. Putting now λ = n
t (t > 0), we obtain that

|[n
t

(
n

t
− TK)−1]nϕ| ≤ [

n

t
(
n

t
− TH)−1]n|ϕ|

and therefore

|UK(t)ϕ| ≤ UH(t)|ϕ| t ≥ 0 (4.26)

because of Exponential formula. Finally, (3.18) together with (4.23) and (4.26)
imply that

|UK(t)ϕ− U0(t)ϕ|(µ, v) = |ξ(µ, v, t)K(γ1UK(t− µ
v )ϕ)(v)|

≤ ξ(µ, v, t)H|(γ1UK(t− µ
v )ϕ)(v)|

≤ ξ(µ, v, t)Hγ1|(UK(t− µ
v )ϕ)(v)|

≤ ξ(µ, v, t)Hγ1(UH(t− µ
v )|ϕ|)(v)

=
(
UH(t)|ϕ| − U0(t)|ϕ|

)
(µ, v)

for almost all (µ, v) ∈ Ω. The proof is now achieved. �
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5. Asynchronous exponential growth

In this section, we prove that the generated semigroup VK = (VK(t))t≥0 possesses
the asynchronous exponential growth property by applying Lemma 1.1. However,
one of the most difficulties to apply Lemma 1.1 is to compute the essential type
ωess(VK) (given by (2.2)) of the generated semigroup VK = (VK(t))t≥0 whose ex-
plicit form is unfortunately not available.

In the sequel, we are going to circumvent this difficulty by proving some useful
results. Before we start, let us recall that all rank one or finite rank operators are
compact which leads to their admissibility because of Definition 3.4. Therefore, all
the semigroups of this work exist.

Lemma 5.1. Let K be the following rank one operator in Y1; i.e.,

Kψ = h

∫ ∞
0

k(v′)ψ(v′)v′dv′, h ∈ Y1, k ∈ L∞(0,∞).

Then we have

UK(t) = U0(t) +
∞∑
m=1

Um(t) t ≥ 0,

where U0(t) is given by (3.3) and Um(t) is defined by

U1(t)ϕ(µ, v)

= ξ(µ, v, t)h(v)
∫ ∞

0

k(v1)χ
(
1, v1, t− µ

v

)
ϕ
(
1− (t− µ

v )v1, v1

)
v1dv1

and, for m ≥ 2, by

Um(t)ϕ(µ, v)

= ξ(µ, v, t)h(v)
∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
m times

m−1∏
j=1

h(vj)
m∏
j=1

k(vj)

× ξ
(

1, vm−1, t−
µ

v
−

(m−2)∑
i=1

1
vi

)
χ
(

1, vm, t−
µ

v
−

(m−1)∑
i=1

1
vi

)
× ϕ

(
1−

(
t− µ

v
−
m−1∑
i=1

1
vi

)
vm, vm

)
v1v2 · · · vmdv1 · · · dvm.

for all ϕ ∈ L1(Ω). Furthermore, for all t ≥ 0 we have

lim
N→∞

‖UK(t)− U0(t)−
N∑
m=1

Um(t)‖L(L1(Ω)) = 0. (5.1)

Proof. Let ϕ ∈ L1(Ω). By (3.18), it is easy to check, by induction, that for all
integer N ≥ 1 we have

UK(t) = U0(t) +
N∑
m=1

Um(t) +RN (t) (5.2)

where the rest RN+1(t) is given by

RN (t)ϕ(µ, v)
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= ξ(µ, v, t)h(v)
∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
(N + 1) times

×
N∏
j=1

h(vj)
N+1∏
j=1

k(vj)ξ
(

1, vN , t−
µ

v
−

(N−1)∑
i=1

1
vi

)

× γ1

(
UK

(
t− µ

v
−

N∑
i=1

1
vi

)
ϕ
)

(vN+1)v1v2 · · · vN+1dv1 · · · dvN+1.

Now, let us prove (5.1). Let λ be large. Then we have

‖RN (t)ϕ‖1

≤
∫

Ω

|RN+1(t)ϕ(µ, v)|eλ
µ
v dµ dv

=
∫

Ω

∣∣∣ξ(µ, v, t)h(v)
∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
(N + 1) times

eλ
µ
v

N∏
j=1

h(vj)
N+1∏
j=1

k(vj)

× ξ
(

1, vN , t−
µ

v
−

(N−1)∑
i=1

1
vi

)
γ1

(
UK

(
t− µ

v
−

N∑
i=1

1
vi

)
ϕ
)

(vN+1)

× v1v2 · · · vN+1dv1 · · · dvN+1

∣∣∣ dµ dv.
By the change of variables x = t− µ

v −
∑N
i=1

1
vi

and vdx = −dµ, we infer that

‖RN (t)ϕ‖1

≤
∫ ∞

0

∫ t

0

∣∣∣h(v)
∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
(N + 1) times

e
λ(t−x−

PN
i=1

1
vi

)

×
N∏
j=1

h(vj)
N+1∏
j=1

k(vj)γ1 (UK(x)ϕ) (vN+1)v1v2 · · · vN+1dv1 · · · dvN+1

∣∣∣v dx dv
which leads to

‖RN (t)ϕ‖1 ≤ eλt
[( ∫ ∞

0

|h(v)|v dv
)(

ess supv∈(0,∞) |k(v)|
)]

×
[( ∫ ∞

0

e−λ/v|h(v)|v dv
)(

ess supv∈(0,∞) |k(v)|
)]N

×
∫ ∞

0

∫ t

0

e−λx|γ1 (UK(x)ϕ) (vN+1)|vN+1 dx dvN+1.

Hence

‖RN (t)ϕ‖1 ≤ eλt‖K‖‖Kλ‖N
∫ ∞

0

∫ ∞
0

e−λx|γ1(UK(x)ϕ)(v)|v dx dv
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which implies, by (4.1), that

‖RN (t)ϕ‖1 ≤
eλt‖K‖‖Kλ‖N

1− ‖Kλ‖
‖ϕ‖1 (5.3)

and therefore
lim
N→∞

‖RN (t)‖L(L1(Ω)) = 0

because of (3.12). Now the proof is complete. �

The second useful result concerns the linear operator

UK(t, s) :=
[
UK(t)− U0(t)

]
U0(s)

[
UK(t)− U0(t)

]
(5.4)

which is clearly bounded from L1(Ω) into itself for all t ≥ 0 and all s ≥ 0 because
of Lemmas 3.2 and 3.6. One of the most important properties of this operator is
as follows.

Proposition 5.2. Let K be a compact operator from Y1 into itself. Then UK(t, s)
is a weakly compact operator into L1(Ω) for all t > 0 and all s ≥ 0.

Proof. Let ϕ ∈ L1(Ω), t > 0 and s ≥ 0. We divide this proof in several steps.

Step 1. Let us consider the boundary operator

Kψ = h

∫ ∞
0

k(v′)ψ(v′)v′dv′ h ∈ Cc(J) k ∈ L∞(0,∞). (5.5)

By Lemma 5.1, the operator UK(t) is expressed as follows

UK(t) = U0(t) +
∞∑
m=1

Um(t). (5.6)

Let us show that Um(t) is weakly compact into L1(Ω) for all m ≥ 2.
So, as h ∈ Cc(J), there exist a and b (0 < a < b <∞) such that (supp) h ⊂ (a, b).
Let n = [tb]+2, where [tb] denotes the integer part of tb and let m be any integer

such that m ≥ n. So, for all vi ∈ (a, b), i = 1 · · · (m− 1), we have(
t− µ

v
−

(m−2)∑
i=1

1
vi

)
vm−1 ≤

(
t− µ

v
−

(n−2)∑
i=1

1
vi

)
vm−1

≤
(
t− (n− 2)

b

)
vm−1

≤
(
t− (n− 2)

b

)
b < 1

which leads to

ξ
(

1, vm−1, t−
µ

v
−

(m−2)∑
i=1

1
vi

)
= 0,

where the function ξ is defined by (3.19). Therefore, Um(t) = 0 for all integers
m ≥ n = [bt] + 2 and hence (5.6) becomes a finite sum that is

UK(t) = U0(t) +
[bt]+1∑
m=1

Um(t). (5.7)
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Next, for all m such that 2 ≤ m ≤ [bt] + 1, the change of variables

x = 1−
(
t− µ

v
−

(m−1)∑
i=1

1
vi

)
vm

v2
m−1dx = −vmdvm−1

allows us to write

|Um(t)ϕ|(µ, v) ≤ m3

t3
‖h‖∞‖h‖m−2

Y1
‖k‖m∞ξ(µ, v, t)|h(v)|

∫
Ω

|ϕ(x, vm)| dx dvm

:= Cm(t)I⊗ Iϕ(µ, v),
(5.8)

where the operator I⊗ I is defined by

I⊗ Iϕ(µ, v) = ξ(µ, v, t)|h(v)|
∫

Ω

|ϕ(x, vm)| dx dvm (5.9)

and the constant Cm(t) by

Cm(t) =
m3

t3
‖h‖∞‖h‖m−2

Y1
‖k‖m∞.

As we have ∫
Ω

ξ(µ, v, t)|h(v)| dµ dv = t‖h‖Y1 <∞

it follows that I⊗ I is a rank one operator into L1(Ω) and therefore compact. Due
to (5.8), it follows that

0 ≤ Um(t) + Cm(t)I⊗ I ≤ 2Cm(t)I⊗ I

which implies, by the second point of Lemma 2.2, that the operator Um(t)+Cm(t)I⊗
I is a weakly compact into L1(Ω) and therefore

Um(t) =
(
Um(t) + Cm(t)I⊗ I

)
− Cm(t)I⊗ I

is a weakly compact operator into L1(Ω) for all m (2 ≤ m ≤ [bt] + 1).
On the other hand. A simple computation shows that

U1(t)U0(s)U1(t)ϕ(µ, v)

= ξ(µ, v, t)h(v)
∫ ∞

0

∫ ∞
0

h(v′)k(v′)k(v′′)χ(1, v′, t+ s− µ
v )ξ(1− (t+ s− µ

v )v′, v′, t)

× χ(1, v′′, 2t+ s− µ
v −

1
v′ )ϕ

(
1− (2t+ s− µ

v −
1
v′ )
)
v′v′′ dv′ dv′′.

By the change of variables

x = 1−
(
2t+ s− µ

v −
1
v

)
v′′

v′2dx = −v′′dv′

we obtain that

|U1(t)U0(s)U1(t)ϕ|(µ, v) ≤ 1
t3
‖k‖2∞‖h‖∞ξ(µ, v, t)h(v)

∫
Ω

|ϕ(x, v′′)| dx dv′′

= C1(t)I⊗ Iϕ(µ, v)
(5.10)

where the operator I⊗ I is given by (5.9) and the constant C1(t) by

C1(t) =
1
t3
‖k‖2∞‖h‖∞.
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As before, we conclude through (5.10) that U1(t)U0(s)U1(t) is a weakly compact
operator into L1(Ω).

Now, by (5.4) and (5.7) we can write

UK(t, s) =
[
U1(t) +

[bt]+1∑
m=2

Um(t)
]
U0(s)

[
U1(t) +

[bt]+1∑
m=2

Um(t)
]

= U1(t)U0(s)U1(t) + U1(t)U0(s)
[ [bt]+1∑
m=2

Um(t)
]

+
[ [bt]+1∑
m=2

Um(t)
]
U0(s)U1(t) +

[ [bt]+1∑
m=2

Um(t)
]2

which is the sum of weakly compact into L1(Ω). Now we can say that:
for any boundary operatorK of the form (5.5), the operator UK(t, s)
is a weakly compact into L1(Ω) for all t > 0 and all s ≥ 0.

Step 2. Let us consider now the rank one boundary operator

Kψ = h

∫ ∞
0

k(v′)ψ(v′)v′dv′ h ∈ Y1 k ∈ L∞(0,∞). (5.11)

As h ∈ Y1, there exists a sequence (hn)n of Cc(J) converging to h into Y1. So, let
Kn be the following operator

Knψ = hn

∫ ∞
0

k(v′)ψ(v′)v′dv′

obviously of the form (5.5) and for which UKn(t, s) is a weakly compact operator
into L1(Ω) because of the step I. Furthermore, it is easy to check that

lim
n→∞

‖Kn −K‖L(Y1) = 0 (5.12)

which leads, by Theorem 4.2, to

lim
n→∞

‖UKn(t)− UK(t)‖L(L1(Ω)) = 0 (5.13)

and therefore,
(
‖UKn(t)‖

)
n

is a bounded sequence; i.e.,

‖UKn(t)‖ ≤Mt for all integer n. (5.14)

On the other hand, writing

UKn(t, s)− UK(t, s) =
[
UKn(t)− UK(t)

]
U0(s)

[
UKn(t)− U0(t)

]
+
[
UK(t)− U0(t)

]
U0(s)

[
UKn(t)− UK(t)

] (5.15)

it follows that

‖UKn(t, s)− UK(t, s)‖ ≤
[
Mt + ‖U0(t)‖

]
‖U0(s)‖‖UKn(t)− UK(t)‖

+
[
‖UK(t)‖+ ‖U0(s)‖

]
‖U0(s)‖‖UKn(t)− UK(t)‖

(5.16)
which leads, by (5.13), to

lim
n→∞

‖UKn(t, s)− UK(t, s)‖L(L1(Ω)) = 0 (5.17)
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and therefore UK(t, s) is a weakly compact operator because of the first point of
Lemma 2.2. Now, we can say that:

for any rank one operator K, the operator UK(t, s) is weakly com-
pact into L1(Ω) for all t > 0 and all s ≥ 0.

Step 3. Let us consider now the finite rank operator

Kψ =
MK∑
i=1

hi

∫ ∞
0

ki(v′)ψ(v′)v′dv′, hi ∈ Y1, ki ∈ L∞(0,∞), i = 1, . . . ,MK .

So, if we set

h := max
i=1,...,MK

|hi| ∈ Y1 and k :=
MK∑
i=1

|ki| ∈ L∞(0,∞)

it follows that

Hψ = h

∫ ∞
0

k(v′)ψ(v′)v′dv′

is obviously a positive operator of the form (5.11) and therefore UH(t, s) is a weakly
compact operator into L1(Ω) because of the step 2. Furthermore, for all ψ ∈ Y1 we
have

|Kψ| ≤
MK∑
i=1

|hi|
∫ ∞

0

|ki(v′)||ψ(v′)|v′dv′

≤
[

max
i=1,..,MK

|hi|
] ∫ ∞

0

[MK∑
i=1

|ki(v′)|
]
|ψ(v′)|v′dv′

≤ H|ψ|

which leads, by Theorem 4.3 and the positivity of U0(s) (Lemma 3.2), to

|UK(t, s)ϕ| = |
[
UK(t)− U0(t)

]
U0(s)

[
UK(t)− U0(t)

]
ϕ|

≤
[
UH(t)− U0(t)

]
|U0(s)

[
UK(t)− U0(t)

]
ϕ|

≤
[
UH(t)− U0(t)

]
U0(s)|

[
UK(t)− U0(t)

]
ϕ|

≤
[
UH(t)− U0(t)

]
U0(s)

[
UH(t)− U0(t)

]
|ϕ|

and therefore
|UK(t, s)ϕ| ≤ UH(t, s)|ϕ|

for all ϕ ∈ L1(Ω). This implies

0 ≤ UK(t, s) + UH(t, s) ≤ 2UH(t, s)

and therefore UK(t, s) + UH(t, s) is a weakly compact operator into L1(Ω) because
of the second point of Lemma 2.2. Writing now

UK(t, s) =
(
UK(t, s) + UH(t, s)

)
− UH(t, s)

we can say that:
for any finite rank operator K, the operator UK(t, s) is weakly
compact into L1(Ω) for all t > 0 and all s ≥ 0.
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Step 4. Let K be a compact operator into Y1. Thanks to [5, Corollary 5.3, p.276],
there exists a sequence (Kn)n of finite rank operators satisfying

lim
n→∞

‖Kn −K‖L(Y1) = 0

and for which UKn(t, s) is a weakly compact operator into L1(Ω) because of the
step IV. Furthermore, Theorem 4.2 leads to

lim
n→∞

‖UKn(t)− UK(t)‖ = 0.

On the other hand, preceding as before by using (5.14), (5.15) and (5.16), we infer
(5.17) and therefore UK(t, s) is a weakly compact operator into L1(Ω) because of
the first point of Lemma 2.2. The proof is now achieved. �

Now, we are finally able to compute the essential type ωess(VK) of the semigroup
VK = (VK(t))t≥0 as follows.

Theorem 5.3. Let K be a positive compact operator from Y1 into itself. If the
hypothesis (3.5) holds, then we have

ωess(VK) ≤ −σ, (5.18)

where σ is given by (3.8).

Proof. Let t > 0 be fixed. We divide this proof into two steps.

Step 1. Let s ≥ 0 be given. First, due to (3.24) and (3.9) we obtain that

VK(t)− V0(t) = UK(t)− U0(t) +
∫ t

0

UK(t− s)SVK(s)ds

+
∫ t

0

U0(t− s)(−S)V0(s)ds.

As −S, given by (3.6), is clearly a positive operator, then (3.21) together with the
positivity of the semigroup V0 = (V0(t))t≥0 (Lemma 3.2) imply that

VK(t)− V0(t)

≤ UK(t)− U0(t) +
∫ t

0

UK(t− s)SVK(s)ds+
∫ t

0

UK(t− s)(−S)V0(s)ds

≤ UK(t)− U0(t) +
∫ t

0

UK(t− s)S
[
VK(s)− V0(s)

]
ds

which leads, by (3.25), to

0 ≤ VK(t)− V0(t) ≤ UK(t)− U0(t). (5.19)

On the other hand, due to (3.9) together with the non-positivity of the operator S,
we easily infer that 0 ≤ V0(s) ≤ U0(s). So, this together with (5.19) lead to

0 ≤
[
VK(t)− V0(t)

]
V0(s)

[
VK(t)− V0(t)

]
≤ UK(t, s),

where UK(t, s) is given by (5.4). Now, Proposition 5.2 together with the second
point of Lemma 2.2, imply that[

VK(t)− V0(t)(t)
]
V0(s)

[
VK(t)− V0(t)

]
is a weakly compact operator into L1(Ω), for all t > 0 and all s ≥ 0.
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Step 2. Thanks to the step above, we infer that[
VK(t)− V0(t)(t)

]
V0(nt)

[
VK(t)− V0(t)

]
is a weakly compact operator into L1(Ω), for all integers n ≥ 0. Therefore, for all
integers N ≥ 1, the following finite sum

VN (t) :=
1
2

N∑
n=0

1
2n
[
VK(t)− V0(t)

]
V0(nt)

[
VK(t)− V0(t)

]
=

1
2

[
VK(t)− V0(t)

][ N∑
n=0

1
2n
V0(nt)

][
VK(t)− V0(t)

]
is also a weakly compact operator into L1(Ω). Du to (3.7), it follows that 2 ∈
ρ(V0(t)) which implies that

lim
N→∞

∥∥∥VN (t)−
[
VK(t)− V0(t)

]
(2− V0(t))−1

[
VK(t)− V0(t)

]∥∥∥ = 0

and therefore [
VK(t)− V0(t)

]
(2− V0(t))−1

[
VK(t)− V0(t)

]
is a weak compact operator into L1(Ω) because of the first point of Lemma 2.2.
Hence, the following operator([

VK(t)− V0(t)
]
(2− V0(t))−1

)4

is compact into L1(Ω) because of the third point of Lemma 2.2, which leads, by
Lemma 2.1, to

ωess(VK) = ωess(V0). (5.20)
Finally, du to (3.7) together with (2.1) and (2.3) and (5.20), we clearly infer that
ωess(VK) = ωess(V0) ≤ ω(V0) ≤ −σ and therefore (5.18) easily follows. The proof
is now achieved. �

Now, we are able to prove that the semigroup VK = (VK(t))t≥0, governing the
general model (1.1), (1.3), possesses Asynchronous Exponential Growth property.
Before we start, note that in the case ‖K‖ < 1, the model (1.1), (1.3) is biologically
uninteresting because the bacterial density is decreasing. Indeed, for all t and all s
with t > s, (3.28) implies that

‖VK(t)ϕ‖1 = ‖VK(t− s)VK(s)ϕ‖1 ≤ e−(t−s)σ‖VK(s)ϕ‖1 ≤ ‖VK(s)ϕ‖1
for all initial data ϕ ∈ L1(Ω). Therefore, we well understand that ‖K‖ > 1 is closely
related to an increasing number of bacteria during each mitotic. This situation is the
most biologically observed for which Asynchronous Exponential Growth property
is given by

Theorem 5.4. Suppose that (3.5) holds and let K be a positive, irreducible and
compact operator in Y1 such that

r(Kσ−σ) > 1,

where σ and σ are given by (3.8) and (3.27). Then, there exist a rank one projector
P in L1(Ω) and an ε > 0 such that for every η ∈ (0, ε), there exist M(η) ≥ 1
satisfying

‖e−ω0(VK)tVK(t)− P‖L(L1(Ω)) ≤M(η)e−ηt t ≥ 0.



EJDE-2012/222 TRANSPORT EQUATION 21

Proof. Thanks to Lemma 3.7, it follows that VK = (VK(t))t≥0 is a positive and
irreducible semigroup. Furthermore, (5.18) and (3.26) obviously lead to ωess(VK) <
ω(VK). Now, all the conditions of Lemma 1.1 are satisfied. �

When there is no bacterial mortality or bacteria loss due to causes other than
division (i.e., σ = 0), then Asynchronous Exponential Growth property of the
UK = (UK(t))t≥0 can be described as follows.

Corollary 5.5. Let K be a positive, irreducible and compact operator in Y1 with
r(K) > 1. Then, there exist a rank one projector P in L1(Ω) and an ε > 0 such
that for every η ∈ (0, ε), there exist M(η) ≥ 1 satisfying

‖e−ω0(UK)tUK(t)− P‖L(L1(Ω)) ≤M(η)e−ηt t ≥ 0.

The proof follows from Theorem above because σ = σ = 0.

Remark 5.6. According to a lot of modifications, we claim that all the results of
this work still hold into Lp(Ω) (p > 1). However, the norm of such space have no
biological meaning.
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Addendum posted on June 24, 2013.

The author would like to make the following changes:
(1) Definition 3.4: (Kc) must be replaced by: “‖KIω‖ < 1 for some ω > 0 and
‖K‖ ≥ 1. Iω denotes the characteristic operator of the set (ω,∞).”
(2) Lemmas 3.5: “K compact” must be inserted in the preamble. Line 10 of the
proof: “Next, if (Kc) holds” must be replaced by “As K is compact”.
(3) Lemmas 3.5, 3.6, 3.7, 4.1 and Theorems 4.2, 4.3: “compact” must be inserted
in the preamble (for the operators K, H and Kn).
(4) Page 13: “In the sequel...to...exist” (Lines 7 to 10) must be deleted.
(5) Lemma 5.1 to Corollary 5.5: “K admissible” must be inserted in the preamble.
(6) Lemma 3.7(3) and Theorem 5.4: “r(Kσ−σ >” must be replaced by “r(Kσ−σ) >
1.”
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(7) Proof of Proposition 5.2 must start by: “In the sequel, all one or finite rank
operators must be admissible like the operator K in the preamble. As

‖KnIω‖ ≤ ‖KnIω −KIω‖+ ‖KIω‖ ≤ ‖Kn −K‖+ ‖KIω‖,
we infer then that all approximation operators Kn of K are also admissible for large
integer n.”

End of addendum.
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