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DIRECT AND INVERSE PROBLEMS FOR SYSTEMS OF
SINGULAR DIFFERENTIAL BOUNDARY-VALUE PROBLEMS

ANGELO FAVINI, ALFREDO LORENZI, HIROKI TANABE

Abstract. Real interpolation spaces are used for solving some direct and
inverse linear evolution problems in Banach spaces, on the ground of space
regularity assumptions.

1. Introduction

Several articles are devoted to studying identification problems of the type

y′(t) + Ay(t) = f(t)z + h(t), 0 ≤ t ≤ τ,

y(0) = y0,

Φ[y(t)] = g(t), 0 ≤ t ≤ τ,

(1.1)

Here −A is a linear closed operator generating a C0-semigroup in a Banach space
X or C∞-semigroup in X. Moreover, z is a fixed element in X, y0 ∈ X, Φ ∈ X∗,
g ∈ C1([0, τ ]; C), h ∈ C1([0, τ ];X).

Roughly speaking, we look for solutions (y, f) in [C1([0, τ ];X)∩C([0, τ ];D(A)]×
C([0, τ ]; C). More precisely, we recall that in [1, 2, 3, 13, 4, 10, 11, 12, 18], all
concerned with the parabolic case, the scalar function f is sought for in the more
regular space Cθ([0, τ ]; C), for some θ ∈ (0, 1), so that known results of maximal
Hölder regularity in time can be applied. For this purpose, A is assumed (cfr. [16])
to satisfy the estimate

‖(λ + A)−1‖L(X) ≤ c(1 + |λ|)−β (1.2)

for all λ in the sector

Σα := {λ ∈ C : Re λ ≥ −c(1 + | Im λ|)α}, 0 < β ≤ α ≤ 1. (1.3)

Taira [20] deals with the case α = 1 and introduces the power Aγ for γ > 1 − β.
He proves that D(Aγ) ⊇ D(A) if β > 1/2 and 1− β < γ < β.

The results on the Cauchy problem

y′ + Ay = f(t), 0 ≤ t ≤ τ, (1.4)

y(0) = y0, (1.5)
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f ∈ C([0, τ ];X), y0 ∈ D(A), corresponding to the case α = β = 1 are by now
classical after the works by Da Prato, Lunardi, Sinestrari, and their followers,
concerning maximal in time and/or spatial regularity of the strict solutions.

Further, when 0 < β ≤ 1, α = 1, the existence (and also time regularity) of the
solution was considered by Wild in [23].

In the case of a multi-valued operator A, for which (1.4) takes the form of an
inclusion, in [16] the authors introduced the spaces

Xθ,∞
A := {u ∈ X : sup

t>0
tθ‖A◦(t + A)−1u‖X < ∞}, 0 < θ < 1,

where A◦(t + A)−1 is the linear section of A(t + A)−1 defined in Theorem 2.7 of
the quoted monograph. If A is not multivalued and α = β = 1, then Xθ,∞

A =
(X, D(A))θ,∞, the latter being a real interpolation space between X and D(A). In
general, the following inclusions hold true (cfr. [16, p .26])

Xθ,∞
A ⊆ (X, D(A))θ,∞, 0 < θ < 1, (1.6)

(X, D(A))θ,∞ ⊆ Xθ+β−1,∞
A , 1− β < θ < 1. (1.7)

Whence it follows that D(A) ⊆ Xθ,∞
A provided 0 < θ < β. Therefore Xθ,∞

A is not
intermediate between D(A) and X. However D(A2) ⊆ Xθ,∞

A .
Restricting ourselves to the univalent case, if u ∈ D(A2), t ≥ 1,

tθA(A + t)−1u = tθ(A + t)−1A−1A2u = tθ−1(A−1 − (A + t)−1)A2u, 0 < θ < 1.

Consequently, for t ≥ 1, we obtain

tθ‖A(A + t)−1u‖X ≤ tθ−1‖Au‖X + ctθ−1−β‖A2u‖X .

Since A is assumed to be invertible, the inclusion follows.
Let us introduce some spaces X̃θ,∞

A which are intermediate between X and D(A)
(and which reduce to Xθ,∞

A if α = β = 1). Such spaces seem more appropriate to
solve (1.4), (1.5) and to deduce the spatial regularity of the related solution. For the
sake of brevity, we drop out “∞” from Xθ,∞

A and write Xθ
A and X̃θ

A, respectively.
Section 2 is devoted to the intermediate spaces, while in Section 3 the spatial and

temporal regularity of solutions to (1.4), (1.5) is studied. Section 4 deals with the
identification problem (1.2), (1.3), under suitable spatial regularity assumptions.
Section 5 is devoted to the new identification problem

y′(t) + Ay(t) = f1(t)z1 + f2(t)z2 + h(t),

Φj [y(t)] = gj(t), t ∈ [0, τ ], j = 0, 1,

In Section 6 the results of Section 5 will be applied to solve an inverse problem for
systems of evolution differential equations. Section 7 is devoted to general weakly
coupled identification problems. Finally, in Sections 8 and 9 the previous abstract
results will be applied to a few systems of PDE’s, both regular and degenerate.

2. Interpolation spaces

Let A be a closed linear operator acting in the complex space X with

‖(λ + A)−1‖L(X) ≤ C(1 + |λ|)−β , λ ∈ Σα, (2.1)

for some
0 < β ≤ α ≤ 1, α + β > 1. (2.2)
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Denote now (cf. [16, p. 26])

Xθ
A = {u ∈ X : [x]Xθ

A
= sup

t>0
tθ‖A(t + A)−1u‖X < +∞},

‖x‖Xθ
A

= ‖x‖+ [x]θ.
(2.3)

It is known that [16, Theorem 1.12, p. 26],

Xθ
A ⊂ (X,D(A))θ,∞, θ ∈ (0, 1), (2.4)

(X,D(A))θ,∞ ⊂ Xθ+β−1
A , θ ∈ (1− β, 1). (2.5)

According to [16, Proposition 3.4], if 1− β < θ < 1 we obtain

t(2−β−θ)/α‖Ae−tAx‖X ≤ C‖x‖Xθ
A
. (2.6)

Moreover, from [16, Theorem 3.5] with θ ∈ (2− α− β, 1), we obtain

‖(e−tA − I)x‖X ≤ Ct(α+β+θ−2)/α‖x‖Xθ
A
. (2.7)

This implies that, for any x ∈ Xθ
A and θ ∈ (2 − α − β, 1), e−tAx → x in X as

t → 0+. Grounding on (2.2), let us now introduce the intermediate space

X̃θ
A = {u ∈ X : sup

t>0
t(2−β−θ)/α‖Ae−tAu‖X < +∞}, 0 < θ < 1, (2.8)

endowed with the norm

‖u‖ eXθ
A

= ‖u‖X + sup
t>0

t(2−β−θ)/α‖Ae−tAu‖X < +∞. (2.9)

From the known semigroup estimate (cf. [15, Proposition 3.2])

‖Aθe−tAx‖X ≤ Ct(β−θ−1)/α‖x‖X , θ ∈ [0,+∞), (2.10)

in particular we deduce

‖Ae−tAu‖X ≤ Ct(β−2)/α‖u‖X , u ∈ X, (2.11)

‖Ae−tAu‖X = ‖e−tAAu‖X ≤ Ct(β−1)/α‖Au‖X

≤ Ct(β−1)/α‖u‖D(A), u ∈ D(A),
(2.12)

where ‖u‖D(A) = ‖u‖X + ‖Au‖X . By interpolation we obtain

‖Ae−tAu‖X ≤ Ct(1−θ)(β−2)/αtθ(β−1)/α‖u‖(X,D(A))θ,∞

= t(β+θ−2)/α‖u‖(X,D(A))θ,∞ .
(2.13)

This implies

sup
t>0

t(2−β−θ)/α‖Ae−tAu‖X ≤ C‖u‖(X,D(A))θ,∞ , θ ∈ (0, 1). (2.14)

Therefore, we deduce the continuous embeddings

Xθ
A ↪→ (X,D(A))θ,∞ ↪→ X̃θ

A, θ ∈ (0, 1). (2.15)

Lemma 2.1. If u ∈ X̃θ
A and θ ∈ (2− α− β, 1), one has

lim
t→+0

e−tAu = u.
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Proof. If u ∈ X̃θ
A and 0 < s < t, we have

(e−tA − e−sA)u =
∫ t

s

Dr(e−rA)u dr =
∫ t

s

(−A)e−rAu dr

=
∫ t

s

r(2−β−θ)/αr(β+θ−2)/α(−A)e−rAu dr,

(2.16)

so that

‖(e−tA − e−sA)u‖X ≤ C‖u‖ eXθ
A

∫ t

s

r(β+θ−2)/α dr

≤ C‖u‖ eXθ
A
(t− s)[θ−(2−α−β)]/α, θ ∈ (2− α− β, 1).

(2.17)

It follows that there exists limt→0+ e−tAu =: ξ for all u ∈ X̃θ
A. This implies

A−1e−tAu → A−1ξ as t → 0+.
Denote now by Γ the path parameterized by Re z = a−c(1+ | Im z|)α, a > c > 0,

oriented from Im z = −∞ to Im z = +∞. Note then that

A−1e−tAu = (2πi)−1

∫
Γ

etλA−1(λ + A)−1u dλ

= (2πi)−1

∫
Γ

etλλ−1[A−1 − (λ + A)−1]u dλ

= A−1u− (2πi)−1

∫
Γ

etλλ−1(λ + A)−1u dλ.

(2.18)

As t → 0+ the last integral converges to
∫
Γ

λ−1(λ + A)−1u dλ = 0. Therefore,
owing to the uniqueness of the limit, we obtain A−1u = A−1ξ, i.e. ξ = u. �

We have thus proved that, if θ ∈ (2 − α − β, 1), the mapping u → e−tAu,
t ∈ [0,+∞), maps X̃θ

A into C([0,+∞);X).
Let u ∈ D(A) and λ > 0. Then t → e−tλe−tA belongs to L1(R+;X) since

1− β < α. Moreover,∫ +∞

0

λe−tλe−tAu dt =
∫ +∞

0

Dt

(
− e−tλ

)
e−tAu dt

= −[e−tλe−tAu]+∞0 −
∫ +∞

0

e−tλe−tAAu dt

= u−
∫ +∞

0

e−tλe−tAAu dt,

(2.19)

implying ∫ +∞

0

e−tλe−tA(λu + Au) dt = u, ∀u ∈ D(A).

But this implies the equality

(λI + A)−1u =
∫ +∞

0

e−tλe−tAu dt, ∀u ∈ X. (2.20)

Indeed, if u ∈ X, there exists v ∈ D(A) such that u = (λI + A)v. Then

(λI + A)−1u = v =
∫ +∞

0

e−tλe−tA(λI + A)v dt =
∫ +∞

0

e−tλe−tAu dt.
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Consequently, for all u ∈ X̃θ
A and t ∈ R+, for θ > 2− α− β we have

‖A(t + A)−1u‖X =
∥∥∫ +∞

0

e−tλAe−λAu dλ
∥∥

X

≤ C‖u‖ eXθ
A

∫ +∞

0

e−tλλ(θ+β−2)/α dλ

= C‖u‖ eXθ
A
t−(θ+α+β−2)/α

∫ +∞

0

e−ξξ(θ+β−2)/α dξ.

(2.21)

Summing up, we have proved that the continuous embeddings

X̃θ
A ↪→ X

(θ+α+β−2)/α
A ↪→ (X,D(A))(θ+α+β−2)/α,∞, (2.22)

hold for any pair (α, β) ∈ (0, 1] × (0, 1] satisfying 0 < β ≤ α ≤ 1, α + β > 1 and
2− α− β < θ < 1. (Note that (θ + α + β − 2) < α implies θ < 2− β.)

3. Spatial regularity of solutions to Cauchy problems

Consider the problem

y′(t) + Ay(t) = f(t), t ∈ [0, τ ],

y(0) = y0.
(3.1)

We look for a strict solution to the Cauchy problem (1.4), (1.5), i.e. for a function
y ∈ C1([0, τ ];X)∩C([0, τ ];D(A)), related to spatial regular data. For this purpose
we assume

f ∈ C([0, τ ];X) ∩B([0, τ ]; X̃θ
A), y0 ∈ D(A), Ay0 ∈ X̃θ

A, (3.2)

0 < β ≤ α ≤ 1, α + β > 3/2, 2(2− α− β) < θ < 1. (3.3)

We recall that, for any Banach space Y , B([0, τ ];Y ) denotes the Banach space of
all bounded Y -valued functions f , when endowed with the norm ‖f‖B([0,τ ];Y ) =
supt∈[0,τ ] ‖f(t)‖Y .

Necessarily the solution to (1.4), (1.5) (cf. [16]) is given by

y(t) = e−tAy0 +
∫ t

0

e−(t−s)Af(s) ds, t ∈ [0, τ ]. (3.4)

Set now

y1(t) = e−tAy0, y2(t) =
∫ t

0

e−(t−s)Af(s) ds, t ∈ [0, τ ]. (3.5)

It is immediate to check that the properties of the semigroup {e−tA}t>0 established
previously guarantee that y1 is differentiable in (0, τ ]. Moreover, for 0 ≤ s < t ≤ τ ,
we have

‖y′1(t)− y′1(s)‖X = ‖Ay1(t)−Ay1(s)‖X =
∥∥∫ t

s

Ae−rAAy0 dr
∥∥

X

≤ C‖Ay0‖ eXθ
A

∫ t

s

r(θ+β−2)/α dr

≤ C ′‖Ay0‖ eXθ
A
(t− s)[θ−(2−α−β)]/α.

(3.6)
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Therefore, we have proved that y′1, Ay1 ∈ C [θ−(2−α−β)]/α([0, τ ];X). Consider now
the relations

sup
0≤s≤τ

sup
t>0

s(2−β−θ)/α‖Ae−sAAe−tAy0‖X

= sup
0≤s≤τ

sup
t>0

s(2−β−θ)/α‖Ae−(s+t)AAy0‖X

= sup
0≤s≤τ

sup
t>0

( s

s + t

)(2−β−θ)/α

(s + t)(2−β−θ)/α‖Ae−(s+t)AAy0‖X

≤ C‖Ay0‖ eXθ
A
.

(3.7)

Therefore, concerning the regularity of y1, we obtain

y′1, Ay1 ∈ C [θ−(2−α−β)]/α([0, τ ];X) ∩B([0, τ ]; X̃θ
A). (3.8)

Let us now consider y2 and let us notice that, for 0 ≤ s < t ≤ τ , we have

Ay2(t)−Ay2(s)

=
∫ s

0

[
Ae−(t−σ)A −Ae−(s−σ)A

]
f(σ) dσ +

∫ t

s

Ae−(t−σ)Af(σ) dσ

=: F1(s, t) + F2(s, t).

(3.9)

As far as F2 is concerned we obtain

‖Ae−(t−σ)Af(σ)‖X ≤ (t− σ)(θ+β−2)/α‖f(σ)‖ eXθ
≤ (t− σ)(θ+β−2)/α‖f‖B([0,τ ]; eXθ).

Hence

‖F2(s, t)‖X ≤
∫ t

s

(t− σ)(θ+β−2)/α‖f‖B([0,τ ]; eXθ) dσ

=
(t− s)[θ−(2−α−β)]/α

[θ − (2− α− β)]/α
‖f‖B([0,τ ]; eXθ).

(3.10)

Further, since

‖A2e−rAf(σ)‖X = ‖Ae−(r/2)A
[
Ae−(r/2)Af(σ)

]
‖X

≤ Cr(β−2)/αr(β+θ−2)/α‖f(σ)‖ eXθ

≤ Cr−2+[θ−2(2−α−β)]/α‖f‖B([0,τ ]; eXθ
A),

we have

‖F1(s, t)‖X =
∥∥∫ s

0

dσ

∫ t−σ

s−σ

A2e−rAf(σ) dr
∥∥

X

≤ C

∫ s

0

dσ

∫ t−σ

s−σ

r−2+[θ−2(2−α−β)]/α dr‖f‖B([0,τ ]; eXθ
A)

≤ C‖f‖B([0,τ ]; eXθ
A)(t− s)[θ−2(2−α−β)]/α

(3.11)

(recall that α + β > 3/2). In other words, we have proved that

y2 ∈ C [θ−2(2−α−β)]/α([0, τ ];X).

Concerning space regularity, first we consider the identity

Ae−ξAAy2(t) =
∫ t

0

A2e−(t−s+ξ)Af(s) ds. (3.12)
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Recalling that f ∈ B([0, τ ]; X̃θ
A) we have

‖A2e−(t−s+ξ)Af(s)‖X = ‖Ae−[(t−s+ξ)/2]AAe−[(t−s+ξ)/2]Af(s)‖X

≤ C(t− s + ξ)(β−2)/α(t− s + ξ)(β+θ−2)/α‖f(s)‖ eXθ
A

≤ C‖f‖B([0,τ ]; eXθ
A)(t− s + ξ)[θ−2(2−β)]/α.

Hence noting that

[θ − 2(2− β)]/α = (θ + 2β − 4)/α < (2β − 3)/α ≤ −1,

we have

‖Ae−ξAAy2(t)‖X ≤ C‖f‖B([0,τ ]; eXθ
A)

∫ t

−∞
(t− s + ξ)[θ−2(2−β)]/α ds

= C‖f‖B([0,τ ]; eXθ
A)

αξ(α+2β+θ−4)/α

4− α− 2β − θ
.

Therefore,
sup

0≤t≤τ
sup
ξ>0

ξ(4−α−2β−θ)/α‖Ae−ξAAy2(t)‖X < +∞. (3.13)

Since (4− α− 2β − θ)/α = [2− β − (α + β + θ− 2)]/α, (3.9), (3.10), (3.11), (3.13)
imply

Ay2 ∈ C [θ−2(2−α−β)]/α([0, τ ];X) ∩B([0, τ ]; X̃θ−(2−α−β)
A ),

‖Ay2‖B([0,τ ]; eXθ−(2−α−β)
A )

≤ C‖f‖B([0,τ ]; eXθ
A).

It follows from (3.2) and (3) that y′2 = f − Ay2 ∈ C([0, τ ];X). Summing up, we
have proved the following theorem.

Theorem 3.1. Let the pairs (f, y0) and (α, β) satisfy (3.2) and (3.3), respectively.
Then Problem (3.1) admits a unique strict solution y with the following regularity
properties:

y′ ∈ C([0, τ ];X) ∩B([0, τ ]; X̃θ−(2−α−β)
A ), (3.14)

Ay ∈ C [θ−2(2−α−β)]/α([0, τ ];X) ∩B([0, τ ]; X̃θ−(2−α−β)
A ). (3.15)

Taking into account the inclusions proved in Section 2, we can also establish the
following result concerning spaces Xθ

A.

Theorem 3.2. Let 2α+β > 2, 3−2α−β < θ < 1, y0 ∈ D(A), Ay0 ∈ (X, D(A))θ,∞,
f ∈ C([0, τ ];X) ∩ B([0, τ ]; (X, D(A))θ,∞). Then Problem (3.1) admits a unique
strict solution y such that

y′ ∈ C([0, τ ];X) ∩B([0, τ ];X [θ−(3−2α−β)]/α
A ),

Ay ∈ C [θ−(3−2α−β)]/α([0, τ ];X) ∩B([0, τ ];X [θ−(3−2α−β)]/α
A ).

Proof. We use the notation in the proof of Theorem 3.1. One has Ay0 ∈ X̃θ
A by

virtue of our assumption and (2.14). Hence, owing to the proof of Theorem 3.1
y1(t) = e−tAy0 satisfies

y′1, Ay1 ∈ C [θ−(2−α−β)]/α([0, τ ];X) ∩B([0, τ ]; X̃θ
A)

⊂ C [θ−(2−α−β)]/α([0, τ ];X) ∩B([0, τ ];X [θ−(2−α−β)]/α
A ).

(3.16)
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From (2.15) and (3.10) one deduces the estimate

‖F2(s, t)‖X ≤ C‖f‖B([0,τ ];X̃θ
A)(t− s)[θ−(2−α−β)]/α

≤ C‖f‖B([0,τ ];(X,D(A))θ,∞)(t− s)[θ−(2−α−β)]/α.
(3.17)

Likewise, from the inequalities

‖A2e−rAf(σ)‖X ≤ Cr(β−3+θ)/α‖f(σ)‖(X,D(A))θ,∞

≤ Cr(β−3+θ)/α‖f‖B([0,τ ];(X,D(A))θ,∞),
(3.18)

one obtains

‖F1(s, t)‖X =
∥∥∫ s

0

dσ

∫ t−σ

s−σ

A2e−rAf(σ)dr
∥∥

X

≤ C

∫ s

0

dσ

∫ t−σ

s−σ

r(β−3+θ)/α‖f‖B([0,τ ];(X,D(A))θ,∞)dr

≤ C‖f‖B([0,τ ];(X,D(A))θ,∞)(t− s)(2α+β−3+θ)/α.

(3.19)

It follows from (3.17) and (3.19) that

Ay2 ∈ C [θ−(3−2α−β)]/α([0, τ ];X). (3.20)

Using

‖A2e−(t−s+ξ)Af(s)‖X ≤ C(t− s + ξ)(β−3+θ)/α‖f(s)‖(X,D(A))θ,∞

≤ C(t− s + ξ)(β−3+θ)/α‖f‖B([0,τ ];(X,D(A))θ,∞)

one obtains

‖Ae−ξAAy2(t)‖X =
∥∥∫ t

0

A2e−(t−s+ξ)Af(s)ds
∥∥

X

≤ C‖f‖B([0,τ ];(X,D(A))θ,∞)

∫ t

0

(t− s + ξ)(β−3+θ)/α ds

≤ C‖f‖B([0,τ ];(X,D(A))θ,∞)ξ
(α+β−3+θ)/α.

(3.21)

Hence one obtains

Ay2 ∈ B([0, τ ]; X̃α+θ−1
A ) ⊂ B([0, τ ];X [θ−(3−2α−β)]/α

A ). (3.22)

From (3.16), (3.20) and (3.22), it follows that

Ay ∈ C [θ−(3−2α−β)]/α([0, τ ];X) ∩B([0, τ ];X [θ−(3−2α−β)]/α
A ). (3.23)

The hypothesis on f and (3.22) imply

y′2 = f −Ay2 ∈ B([0, τ ];X [θ−(3−2α−β)]/α
A ). (3.24)

By (3.16) and (3.24), one concludes that

y′ ∈ B([0, τ ];X [θ−(3−2α−β)]/α
A ).

�

In view of embedding (1.6), Theorem 3.2 leads to the following corollary, where
Y γ

A stands for anyone of the spaces Xγ
A or (X, D(A))γ,∞.
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Corollary 3.3. Let 2α + β > 2, 3 − 2α − β < θ < 1, y0 ∈ D(A), Ay0 ∈ Y θ
A,

f ∈ C([0, τ ];X)∩B([0, τ ];Y θ
A). Then Problem (3.1) admits a unique strict solution

y such that

y′ ∈ C([0, τ ];X) ∩B([0, τ ];Y [θ−(3−2α−β)]/α
A ),

Ay ∈ C [θ−(3−2α−β)]/α([0, τ ];X) ∩B([0, τ ];Y [θ−(3−2α−β)]/α
A ).

4. A first identification problem

Consider the identification problem (1.1) in Section 1. We want to determine a
pair (y, f) ∈ [C1([0, τ ];X)∩C([0, τ ];D(A))]×C([0, τ ]; C) satisfying (1.1) under the
following assumptions:

y0 ∈ D(A), Ay0, z ∈ X̃θ
A,

g ∈ C1([0, τ ]; C), h ∈ C([0, τ ];X) ∩B([0, τ ]; X̃θ
A);

(4.1)

0 < β ≤ α ≤ 1, α + β > 3/2, 1 > θ > 2(2− α− β); (4.2)

Φ ∈ X∗, Φ[y0] = g(0), Φ[z] 6= 0. (4.3)

If (y, f) is the solution sought for, we immediately deduce that (y, f) solves the
equation

g′(t) + Φ[Ay(t)] = f(t)Φ[z] + Φ[h(t)], t ∈ [0, τ ]. (4.4)
Therefore, taking advantage of Theorem 3.1, we obtain the integral equation for f

f(t) =
g′(t)− Φ[h(t)] + Φ[Ay(t)]

Φ[z]

=
g′(t)− Φ[h(t)] + Φ[Ae−tAy0]

Φ[z]
+

1
Φ[z]

∫ t

0

Φ[Ae−(t−s)Az]f(s) ds

+
1

Φ[z]

∫ t

0

Φ[Ae−(t−s)Ah(s)] ds =: b(t) + Sf(t), t ∈ [0, τ ].

(4.5)

Note that t → Ae−tAy0 is continuous in [0, τ ] by Lemma 2.1. Since z ∈ X̃θ
A, we

obtain
‖Ae−(t−s)Az‖X ≤ C(t− s)−(2−β−θ)/α ≤ C(t− s)−(1−θ0). (4.6)

where θ0 = [θ − (2− α− β)]/α. Whence we deduce the inequality

|Sf(t)| ≤ C

|Φ[z]|
‖Φ‖X∗‖z‖ eXθ

A

∫ t

0

(t− s)−1+θ0 |f(s)| ds, t ∈ (0, τ ].

Repeating the arguments and techniques in [2] we can deduce the following esti-
mates involving the iterates Sn of operator S:

|Snf(t)| ≤
[
C(Φ[z])−1‖Φ‖X∗‖z‖ eXθ

A

]n Γ(θ0)ntnθ0

Γ(nθ0)nθ0
‖f‖C([0,τ ];C), t ∈ (0, τ ]. (4.7)

Since [Γ(nθ0)]1/n → +∞ as n → +∞, we conclude that the operator S has spectral
radius equal to 0. Therefore equation (4.5) admits a unique solution f ∈ C([0, τ ]; C).

In view of Theorem 3.1 we conclude that the solution y corresponding to such
an f has the regularity

y ∈ C1([0, τ ];X) ∩ C([0, τ ];D(A)),

y′ ∈ C([0, τ ];X) ∩B([0, τ ]; X̃θ−(2−α−β)
A ),

(4.8)
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Ay ∈ C [θ−2(2−α−β)]/α([0, τ ];X) ∩B([0, τ ]; X̃θ−(2−α−β)
A ). (4.9)

Summing up, we have proved the following theorem.

Theorem 4.1. Under assumptions (4.1) and (4.2), the identification problem (1.1)
in Section 1 admits a unique strict solution (y, f) satisfying (4.8), (4.9).

We change now a bit our assumptions on the data: (4.1) is replaced with the
following, where we change the condition on the pair (y0, z):

y0 ∈ D(A), Ay0, z ∈ Xθ
A, g ∈ C1([0, τ ]; C),

h ∈ C([0, τ ];X) ∩B([0, τ ];Xθ
A),

(4.10)

If (y, f) is the solution sought for, we deduce, as above, that f solves the integral
equation (4.5). Reasoning as above and taking advantage of Corollary 3.3, we
obtain the following result.

Theorem 4.2. Let Y γ
A be anyone of the spaces (X, D(A))γ,∞ or Xγ

A. Let 2α+β >
2, θ > 3− 2α− β and let

y0 ∈ D(A), Ay0, z ∈ Y θ,∞
A , g ∈ C1([0, τ ]; C),

h ∈ C([0, τ ];Y θ,∞
A ), Φ[z] 6= 0.

(4.11)

Then the identification problem

y′(t) + Ay(t) = f(t)z + h(t), t ∈ [0, τ ],

y(0) = y0,

Φ[y(t)] = g(t), t ∈ [0, τ ].
(4.12)

admits a unique strict solution (y, f) ∈ [C1([0, τ ];X)∩C([0, τ ];D(A))]×C([0, τ ]; C)
such that

y′ ∈ C([0, τ ];X) ∩B([0, τ ];Y (2α+β−3+θ)/α,∞
A ),

Ay ∈ C(2α+β−3+θ)/α([0, τ ];X) ∩B([0, τ ];Y (2α+β−3+θ)/α,∞
A ).

Proof. When Y γ
A = (X, D(A))γ,∞, it suffices to observe that from (2.14) we deduce

estimate (4.6) and that the same argument in the proof of Theorem 4.1 runs well,
since 3− 2α− β = (2−α− β) + 1−α ≥ 2−α− β. When Y γ

A = Xγ
A, the assertion

follows from [16, Corollary 3.3 and Proposition 3.4]. �

5. A latter identification problem

In this section we consider the problem consisting in recovering two unknown
scalar functions f1, f2 ∈ C([0, τ ]; C) and a vector function y ∈ C1([0, τ ];X) ∩
C([0, τ ];D(A)) such that

y′(t) + Ay(t) = f1(t)z1 + f2(t)z2 + h(t), t ∈ [0, τ ],

y(0) = y0,

Φj [y(t)] = gj(t), t ∈ [0, τ ], j = 1, 2,

(5.1)

where Φj ∈ X∗, gj ∈ C1([0, τ ]; C), zj ∈ X, j = 1, 2, h ∈ C([0, τ ];X)∩B([0, τ ];Xθ
A),

and y0 ∈ D(A) are given. Let

A =
[
Φ1[z1] Φ1[z2]
Φ2[z1] Φ2[z2]

]
, detA 6= 0.
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Then we obtain the following fixed-point integral system for (f1, f2),[
f1(t)
f2(t)

]
= A−1

[
g′1(t)
g′2(t)

]
+A−1

[
Φ1[e−tAAy0]
Φ2[e−tAAy0]

]
−A−1

[
Φ1[h(t)]
Φ2[h(t)]

]
+A−1

∫ t

0

[
Φ1[Ae−(t−s)Ah(s)]
Φ2[Ae−(t−s)Ah(s)]

]
ds

+A−1

∫ t

0

[
Φ1[Ae−(t−s)Az1] Φ1[Ae−(t−s)Az2]
Φ2[Ae−(t−s)Az1] Φ2[Ae−(t−s)Az2]

] [
f1(s)
f2(s)

]
ds

=:
[
b1(t)
b2(t)

]
+ S

[
f1

f2

]
(t), t ∈ [0, τ ].

(5.2)

We introduce in C([0, τ ]; C2) the sup-norm

‖(f1, f2)‖C([0,τ ];C2) = max
t∈[0,τ ]

|f1(t)|+ max
t∈[0,τ ]

|f2(t)|.

For any pair (z1, z2) ∈ (X̃θ
A)2 and (f1, f2) ∈ C([0, τ ]; C2) we obtain the bounds∥∥S

[
f1

f2

]
(t)

∥∥ ≤ ‖A−1‖L(C2)

∫ t

0

2∑
j,k=1

|Φj [Ae−(t−s)Azk]||fk(s)| ds

≤ ‖A−1‖L(C2)

2∑
j=1

‖Φj‖X∗

∫ t

0

2∑
k=1

‖Ae−(t−s)Azk‖X |fk(s)| ds

≤ C‖A−1‖L(C2)

2∑
j=1

‖Φj‖X∗

∫ t

0

2∑
k=1

‖zk‖ eXθ
A
(t− s)(β+θ−2)/α|fk(s)| ds

≤ C‖A−1‖L(C2)

2∑
j=1

‖Φj‖X∗ max
1≤k≤2

‖zk‖ eXθ
A

∫ t

0

(t− s)(β+θ−2)/α
2∑

k=1

|fk(s)| ds.

Proceeding by induction, we can prove the bounds for the iterates Sn of operator
S (cf. Section 4):

‖Sn

[
f1

f2

]
(t)‖2 ≤ Cn

1

Γ(θ0)ntnθ0

Γ(nθ0)nθ0
‖

[
f1

f2

]
‖C([0,τ ];C2),

where we have set

C1 = C‖A−1‖L(C2)

2∑
j=1

‖Φj‖X∗ max
1≤k≤2

‖zk‖ eXθ
A
.

Since [Γ(nθ0)]1/n → +∞ as n → +∞, we can conclude that operator S has spec-
tral radius equal to 0, so that problem (5.1) admits a unique solution (f1, f2) ∈
C([0, τ ]; C2). Using Theorem 3.1 we easily deduce the following result.

Theorem 5.1. Let α+β > 3/2 and θ ∈ (2(2−α−β), 1). Let y0 ∈ D(A), Ay0 ∈ X̃θ
A,

zj ∈ X̃θ
A, Φj ∈ X∗, gj ∈ C1([0, τ ]; C), j = 1, 2 and h ∈ C([0, τ ];X) ∩ B([0, τ ]; X̃θ

A)
such that

Φ1[z1]Φ2[z2]− Φ2[z1]Φ1[z2] 6= 0, Φj [y0] = gj(0), j = 1, 2. (5.3)

Then problem (5.1) admits a unique strict solution (y, f1, f2) ∈ [C1([0, τ ];X) ∩
C([0, τ ];D(A))]× C([0, τ ]; C)× C([0, τ ]; C) such that

y′ ∈ B([0, τ ]; X̃θ−(2−α−β)
A ), Ay ∈ C [θ−2(2−α−β)]/α([0, τ ];X)∩B([0, τ ]; X̃θ−(2−α−β)

A ).
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We conclude this section by two easy extensions of Problem (5.1) to the case of
n unknown functions f .

Corollary 5.2. Let α + β > 3/2 and θ ∈ (2(2 − α − β), 1). Let y0 ∈ D(A),
Ay0 ∈ X̃θ

A, zj ∈ X̃θ
A, gj ∈ C1([0, τ ]; R), h ∈ C([0, τ ];X) ∩ B([0, τ ]; X̃θ

A), Φj ∈ X∗,
Φj [y0] = gj(0), j = 1, . . . , n be such that

det

Φ1[z1] . . . Φ1[zn]
. . . . . . . . .

Φn[z1] . . . Φn[zn]

 6= 0.

Then the identification problem

y′(t) + Ay(t) =
n∑

j=1

fj(t)zj + h(t), t ∈ [0, τ ],

y(0) = y0,

Φj [y(t)] = gj(t), t ∈ [0, τ ], j = 1, . . . , n,

(5.4)

admits a unique strict solution (y, f1, . . . , fn) ∈ [C1([0, τ ];X) ∩ C([0, τ ];D(A))] ×
C([0, τ ]; R)n such that

y′ ∈ B([0, τ ]; X̃θ−(2−α−β)
A ),

Ay ∈ C [θ−2(2−α−β)]/α([0, τ ];X) ∩B([0, τ ]; X̃θ−(2−α−β)
A ).

Corollary 5.3. Let Y γ
A be anyone of the spaces (X, D(A))γ,∞ or Xγ

A. Let 2α+β >

2 and θ ∈ (3−2α−β, 1). Let y0 ∈ D(A), Ay0 ∈ Y θ,∞
A , zj ∈ Y θ,∞

A , gj ∈ C1([0, τ ]; R),
h ∈ C([0, τ ];X) ∩ B([0, τ ];Y θ,∞

A ), Φj ∈ X∗, Φj [y0] = gj(0), j = 1, . . . , n be such
that

det

Φ1[z1] . . . Φ1[zn]
. . . . . . . . .

Φn[z1] . . . Φn[zn]

 6= 0.

Then the identification problem (5.4) admits a unique strict solution (y, f1, . . . , fn)
in [C1([0, τ ];X) ∩ C([0, τ ];D(A))]× C([0, τ ]; R)n such that

y′ ∈ B([0, τ ];Y [θ−(3−2α−β)]/α,∞
A ),

Ay ∈ C [θ−(3−2α−β)]/α([0, τ ];X) ∩B([0, τ ];Y [θ−(3−2α−β)]/α,∞
A ).

6. Inverse problems for systems of differential boundary value
problems

Let A, B, C, D be linear closed operators acting in the Banach space X satisfying
the following relations:

D(A) ⊂ D(C), D(D) ⊂ D(B), (6.1)

‖(λ + A)−1‖L(X) ≤ c|λ|−β1 , ‖(λ + D)−1‖L(X) ≤ c|λ|−β2 , λ ∈ Σα, (6.2)

‖C(λ + A)−1‖L(X) ≤ c|λ|−γ1 , ‖B(λ + D)−1‖L(X) ≤ c|λ|−γ2 , λ ∈ Σα, (6.3)

with
γ1 + γ2 ∈ R+. (6.4)
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In the Banach space X × X we consider the problem consisting in determining a
quadruplet (y1, y2, f1, f2), with

(y1, y2) ∈ [C1([0, τ ];X) ∩ C([0, τ ];D(A))]× [C1([0, τ ];X) ∩ C([0, τ ];D(D))], (6.5)

(f1, f2) ∈ C([0, τ ]; C)× C([0, τ ]; C), (6.6)

solving the identification problem

d

dt

[
y1(t)
y2(t)

]
+

[
A B
C D

] [
y1(t)
y2(t)

]
= f1(t)

[
z1,1

z2,1

]
+ f2(t)

[
z1,2

z2,2

]
+

[
h1(t)
h2(t)

]
, t ∈ [0, τ ],

(6.7)

yj(0) = y0,j , j = 1, 2, (6.8)

Ψj [yj(t)] = gj(t), t ∈ [0, τ ], j = 1, 2, (6.9)

with
Ψj ∈ X∗, Ψj [y0,j ] = gj(0), j = 1, 2. (6.10)

Let us now introduce the linear operator A defined by

D(A) = D(A)×D(D), A
[
y1

y2

]
=

[
Ay1 + By2

Cy1 + Dy2

]
.

It is shown in [14] that, for large positive R,

‖(λ +A)−1‖L(X) ≤ c|λ|−β , λ ∈ Σα ∩B(0, R)c, (6.11)

where
β = min{β1, β2, β1 + γ2, β2 + γ1}. (6.12)

Using the change of variables (y1(t), y2(t)) 7→ (e−kty1(t), e−kty2(t)) with a suffi-
ciently large positive constant k, we can assume that bound (6.11) holds for all
λ ∈ Σα.

Set now

E = X ×X, ξ =
[
y1

y2

]
, z1 =

[
z1,1

z2,1

]
, z2 =

[
z1,2

z2,2

]
.

Then the direct problem (6.7), (6.8) takes the simpler form

ξ′(t) +Aξ(t) = f1(t)z1 + f2(t)z2, t ∈ [0, τ ], (6.13)

ξ(0) =
[
y0,1

y0,2

]
=: ξ0. (6.14)

Define the norm in X ×X by ‖(y1, y2)‖X×X = (‖y1‖2X + ‖y2‖2X)1/2 and introduce
the functionals Φ1,Φ2 ∈ E∗ ∼ X∗ ×X∗ (cf. [17, p. 164]) defined by

Φj [ξ] = Φj

[
y1

y2

]
= Ψj [yj ], j = 1, 2.

Applying Φj , j = 1, 2, to both sides in (6.7), we easily obtain the following system,
for all t ∈ [0, τ ],

g′1(t) + Ψ1[Ay1(t) + By2(t)] = f1(t)Ψ1[z1,1] + f2(t)Ψ1[z1,2] + Ψ1[h(t)],

g′2(t) + Ψ2[Cy1(t) + Dy2(t)] = f1(t)Ψ2[z2,1] + f2(t)Ψ2[z2,2] + Ψ2[h(t)],

Now assume that

Φ1[z1]Φ2[z2]− Φ1[z2]Φ2[z1] = Ψ1[z1,1]Ψ2[z2,2]−Ψ1[z1,2]Ψ2[z2,1] 6= 0. (6.15)
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Then it is easy to realize that Theorem 5.1 and Corollary 5.2 yield the following
results.

Theorem 6.1. Let operators A, B, C, D satisfy conditions (6.1)–(6.4) and let β be
defined by (6.12). Let α+β > 3/2, θ ∈ (2(2−α−β), 1), g1, g2 ∈ C1([0, τ ]; C) and h ∈
C([0, τ ];X2) ∩B([0, τ ]; X̃θ

A). Moreover, let [y0,1, y0,2] ∈ D(A), A[y0,1, y0,2]T ∈ X̃θ
A,

[z1,1, z2,1]T , [z1,2, z2,2]T ∈ X̃θ
A and let (6.10) and (6.15) be satisfied. Then problem

(6.7)-(6.9) admits a unique strict solution (y1, y2, f1, f2) in the space defined by
(6.5), (6.6) such that

[y′1, y
′
2]

T ∈ B([0, τ ]; X̃θ−(2−α−β)
A ),

[Ay1 + By2, Cy1 + Dy2]T

∈ C [θ−2(2−α−β)]/α([0, τ ];X ×X) ∩B([0, τ ]; X̃θ−(2−α−β)
A ).

We can conclude this section by stating the following corollaries that take into
account Corollary 5.3.

Corollary 6.2. Let operators A, B, C, D satisfy conditions (6.1)–(6.4) and let β be
defined by (6.12). Let 2α+β > 2, θ ∈ (3−2α−β, 1), g1, g2 ∈ C1([0, τ ]; R) and h ∈
C([0, τ ];X2) ∩B([0, τ ];Xθ

A). Moreover, let [y0,1, y0,2] ∈ D(A), A[y0,1, y0,2]T ∈ Xθ
A,

[z1,1, z2,1]T , [z1,2, z2,2]T ∈ Xθ
A, and let (6.10) and (6.15) be satisfied. Then problem

(6.7)–(6.9) admits a unique strict solution (y1, y2, f1, f2) in the space defined by
(6.5), (6.6) such that

[y′1, y
′
2]

T ∈ B([0, τ ];X [θ−(3−2α−β)]/α
A ),

[Ay1 + By2, Cy1 + Dy2]T

∈ C [θ−(3−2α−β)]/α([0, τ ];X ×X) ∩B([0, τ ];X [θ−(3−2α−β)]/α
A ).

Corollary 6.3. Let operators A, B, C, D satisfy conditions (6.1)–(6.4) and let β
be defined by (6.12). Let 2α + β > 2, θ ∈ (3− 2α− β, 1) and g1, g2 ∈ C1([0, τ ]; R).
Moreover, let [y0,1, y0,2] ∈ D(A), A[y0,1, y0,2]T ∈ (X × X,D(A))θ,∞, [z1,1, z2,1]T ,
[z1,2, z2,2]T ∈ (X × X,D(A))θ,∞, and let (6.10) and (6.15) be satisfied. Then
problem (6.7)-(6.9) admits a unique strict solution (y1, y2, f1, f2) in the space defined
by (6.5), (6.6) such that

[y′1, y
′
2]

T ∈ B([0, τ ]; (X ×X,D(A))[θ−(3−2α−β)]/α,∞),

[Ay1 + By2, Cy1 + Dy2]T

∈ C [θ−(3−2α−β)]/α([0, τ ];X ×X) ∩B([0, τ ]; (X ×X,D(A))[θ−(3−2α−β)]/α,∞).

Remark 6.4. The conclusions of Theorem 6.1 and Corollaries 6.2 and 6.3 may be
true even in cases when the domain of the operator matrix A is not D(A)×D(D)
(cf. Problem 8.1 in Section 8).

Remark 6.5. In the optimal situation, when α = β = 1 and, e.g., the operators A
and D generate two analytic semigroups on X and B and C are bounded operators,
the previous conditions reduce to the following for some θ ∈ (0, 1):

(Ay0,1 + By0,2, Cy0,1 + Dy0,2) ∈ (X,D(A))θ,∞)× (X,D(D))θ,∞)

z1,1, z1,2 ∈ (X,D(A))θ,∞), z2,1, z2,2 ∈ (X,D(D)θ,∞),
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Then (y1, y2, f1, f2) also satisfies

y′1, Ay1 + By2 ∈ B([0, τ ]; (X,D(A))θ,∞),

y′2, Cy1 + Dy2 ∈ B([0, τ ]; (X,D(A))θ,∞),

Ay1 + By2 ∈ Cθ([0, τ ];X), Cy1 + Dy2 ∈ Cθ([0, τ ];X).

7. Weakly coupled identification problems

In this section we deal with the following weakly coupled identification problem

d

dt

y1(t)
. . .

yn(t)

 +


A1,1 + B1,1 B1,2 . . . B1,n

B2,1 A2,2 + B2,2 . . . B2,n

. . . . . . . . . . . .
Bn,1 Bn,2 . . . An,n + Bn,n


y1(t)

. . .
yn(t)



=

h1(t)
. . .

hn(t)

 +
n∑

j=1

fj(t)

z1,j

. . .
zn,j

 , t ∈ [0, τ ],

(7.1)

yj(0) = y0,j , j = 1, . . . , n, (7.2)

Ψj [yj(t)] = gj(t), t ∈ [0, τ ], j = 1, . . . , n, (7.3)

with
Ψj ∈ X∗, Ψj [y0,j ] = gj(0), j = 1, . . . , n, (7.4)

where Ai,i, Bi,j are closed linear operators acting in the Banach space X. Now we
introduce the operator matrices A and B defined by

A =


A1,1 O . . . O
O A2,2 . . . O
. . . . . . . . . . . .
O O . . . An,n

 , B =


B1,1 B1,2 . . . B1,n

B2,1 B2,2 . . . B2,n

. . . . . . . . . . . .
Bn,1 Bn,2 . . . Bn,n


Assume now that ρ(Aj,j) ⊃ Σα, j = 1, . . . , n, and

‖(λI + Aj,j)−1‖L(X) ≤ C(1 + |λ|)−β , λ ∈ Σα, (7.5)

Then λI −A is invertible for all λ ∈ Σα and

(λI + A)−1 =


(λI + A1,1)−1 O . . . O

O (λI + A2,2)−1 . . . O
. . . . . . . . . . . .
O O . . . (λI + An,n)−1

 .

Further, let the linear closed operators Bi,j : D(Bi,j) ⊂ X → X, D(Bi,j) ⊃ D(Aj,j),
i, j = 1, . . . , n, satisfy, for some σ > 0, the estimates

‖Bi,j(λI + Aj,j)−1‖L(X) ≤ C(1 + |λ|)−σ, λ ∈ Σα. (7.6)

Observe now that

D(A + B) = D(A) =
n∏

j=1

D(Aj,j), λI + A + B =
[
I + B(λI + A)−1](λI + A).

Since B1,1 . . . B1,n

. . . . . . . . .
Bn,1 . . . Bn,n

(λI + A1,1)−1 . . . O
. . . . . . . . .
O . . . (λI + An,n)−1
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=

B1,1(λI + A1,1)−1 . . . B1,n(λI + An,n)−1

. . . . . . . . .
Bn,1(λI + A1,1)−1 . . . Bn,n(λI + An,n)−1

 ,

assumption (7.6)) implies that I + B(λI + A)−1 has a bounded inverse for each
λ ∈ Σα, with a large enough modulus, satisfying

‖
[
I + B(λI + A)−1

]−1‖L(Xn) ≤ 2, λ ∈ Σα ∩B(0, C)c,

where Xn is the product space X × · · · ×X (n times).
On the other hand, the change of the vector unknown defined by y(t) = ektw(t),

where y(t) = [y1(t), . . . , yn(t)]T and w(t) = [w1(t), . . . , wn(t)]T , transforms our
equation into

w′(t) = −(kI + A + B)w(t) + e−kt
n∑

j=1

fj(t)zj + e−kth(t), t ∈ [0, τ ],

where h(t) = [h1(t), . . . , hn(t)]T . Observe now that

(λI+kI+A+B)−1 = ((λ+k)I+A+B)−1 = ((λ+k)I+A)−1
[
I+B((λ+k)I+A)−1].

Therefore, we conclude that λI + kI + A + B is invertible for large enough k and
(λI + kI + A + B)−1 ∈ L(Xn) for λ ∈ Σα. Then set

A = A + B, D(A) =
n∏

j=1

D(Aj,j), y = (y1, . . . , yn)T ,

zj = (z1,j , . . . , zn,j)T , Φj ∈ (Xn)∗ = (X∗)n, Φj [y] = Ψj [yj ], j = 1, . . . , n.

Consider the equalityΦ1[z1] . . . Φ1[zn]
. . . . . . . . .

Φn[z1] . . . Φn[zn]

 =

Ψ1[z1,1] . . . Ψ1[z1,n]
. . . . . . . . .

Ψn[zn,1] . . . Ψn[zn,n]

 .

Thus we need to assume that

det

Ψ1[z1,1] . . . Ψ1[z1,n]
. . . . . . . . .

Ψn[zn,1] . . . Ψn[zn,n

 6= 0. (7.7)

Then we characterize the space Xθ
A in the following Lemma.

Lemma 7.1. The following relations hold for all θ ∈ (0, β):

Xθ+1−β
A ↪→ Xθ

A, Xθ+1−β
A ↪→ Xθ

A, Xθ
A =

n∏
j=1

Xθ
Aj,j

. (7.8)

We postpone the proof of this lemma to the end of this section and state our
conclusive theorem.

Theorem 7.2. Let α, β ∈ (0, 1], α + 2β + αβ > 3 and 3 − α − β − αβ < θ < β.
Let zj = [z1,j , . . . , zn,j ] ∈ Xθ+1−β

A (⊂ Xθ
A), j = 1, . . . , n, y0 = (y0,1, . . . , y0,n) ∈

D(A), (A+B)y0 ∈ Xθ+1−β
A , h ∈ C([0, τ ];Xn)∩B([0, τ ];Xθ+1−β

A ) satisfy condition
(7.7). Then the identification problem (9.40)-(9.42) admits a unique strict solution
(y, f1, . . . , fn) ∈ C([0, τ ];X) ∩ C([0, τ ]; C)n such that

y′ ∈ B([0, τ ];X [θ−(3−2α−β)−α(1−β)]/α
A ),
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(A + B)y ∈ C [θ−(3−2α−β)]/α([0, τ ];Xn) ∩B([0, τ ];X [θ−(3−2α−β)−α(1−β)]/α
A ).

The proof of the above theorem follows easily from our assumptions and Corol-
lary 5.3. We conclude this section with the proof of Lemma 7.1.

Proof of Lemma 7.1. To show the first embedding in (7.8) we recall that τ +A+B
admits a continuous inverse for τ ≥ t0, t0 being positive and large enough. Then
we make use of the following identity, with t > 0:

(t0 + A + B)(t + t0 + A + B)−1 − (t0 + A + B)(t + A)−1

= −(t0 + A + B)(t + t0 + A + B)−1(t0 + B)(t + A)−1
(7.9)

Whence we deduce

sup
t>0

(1 + t)θ‖(t0 + A + B)(t + t0 + A + B)−1u‖

≤ ‖(t0 + A + B)A−1‖L(X) sup
t>0

(1 + t)θ‖A(t + A)−1u‖

+ sup
t>0

C(1 + t)1−β‖(t0 + B)A−1‖L(X)(1 + t)θ‖A(t + A)−1u‖

≤ C ′ sup
t>0

(1 + t)θ+1−β‖A(t + A)−1u‖.

These inequalities imply the embedding

Xθ+1−β
A ↪→ Xθ

t0+A+B .

Interchanging the roles of t0 + A + B and A, we obtain the embedding

Xθ+1−β
t0+A+B ↪→ Xθ

A, if θ ∈ (0, β).

We have thus shown the first two relations in (7.7).
Now we show that Xθ

A = Xθ
t0+A for all θ ∈ (0, 1) and t0 ∈ R+. For this purpose

first we consider the following identities:

(t0 + A)(t + t0 + A)−1 −A(t + A)−1

=
[
(t0 + A)(t + t0 + A)−1(t + A)A−1 − I

]
A(t + A)−1

=
[
(t0 + A)(t + t0 + A)−1(t + t0 + A− t0)A−1 − I

]
A(t + A)−1

=
[
t0A

−1 + I − I − t0(t0A−1 + I)(t + t0 + A)−1
][

A(t + A)−1
]

Observe that

‖(t + t0 + A)−1‖L(X) ≤
M

(1 + t + t0)β
≤ M, t ∈ [0,+∞).

Therefore we easily get the estimate

sup
t>0

(1 + t)θ‖(t0 + A)(t + t0 + A)−1u‖ ≤ C(t0, A) sup
t>0

(1 + t)θ‖A(t + A)−1u‖,

where
C(t0, A) ≤ 1 + t0‖A−1‖L(X) + t0M

[
t0‖A−1‖L(X) + 1

]
.

This inequality implies, for all t0 > 0, the embedding

Xθ
A ↪→ Xθ

t0+A.

Interchanging the roles of A and t0 + A, we obtain the identities

A(t + A)−1 − (t0 + A)(t + t0 + A)−1

=
[
A(t + A)−1(t + A + t0)(t0 + A)−1 − I

]
(t0 + A)(t + t0 + A)−1
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=
[
A(t0 + A)−1 + t0A(t0 + A)−1(t + A)−1 − I

]
(t0 + A)(t + t0 + A)−1

Recalling that

‖(t + A)−1‖L(X) ≤ c(1 + t)−β ≤ c,

‖A(t0 + A)−1‖L(X) ≤ ‖I − t0(t0 + A)−1‖L(X) ≤ 1 + ct1−β
0 ,

we deduce the estimate

‖A(t + A)−1u‖ ≤
[
(1 + ct1−β

0 )(1 + ct0) + 1
]
‖(t0 + A)

(
t + t0 + A

)−1
u‖

Whence we deduce the following inequality holding for all θ ∈ (0, 1):

sup
t>0

(1 + t)θ‖A(t + A)−1u‖

≤
[
(1 + ct1−β

0 )(1 + ct0) + 1
]
sup
t>0

(1 + t)θ‖(t0 + A)(t + t0 + A)−1u‖.

Whence we deduce the following inequality holding for all θ ∈ (0, 1):

sup
t>0

(1 + t)θ‖A(t + A)−1u‖ ≤ C ′ sup
t>0

(1 + t)θ‖(t0 + A)(t + t0 + A)−1u‖.

We have thus proved the reverse embedding, holding for all t0 > 0 and all θ ∈ (0, 1):

Xθ
t0+A ↪→ Xθ

A.

Finally, we have shown the first two relations in (7.8).
The third equality follows from the fact that A is a diagonal operator-matrix

operator, so that, for all t > 0, we have

(tI + A)−1 =


(tI + A1)−1 O . . . O

O (tI + A2)−1 . . . O
. . . . . . . . . . . .
O O . . . (tI + An)−1

 .

If we define the norm in Xn by

‖(x1, . . . , xn)‖Xn =
n∑

j=1

‖xj‖X ,

then

sup
t>0

(1 + t)θ‖A(t + A)−1x‖Xn = sup
t>0

(1 + t)θ
n∑

j=1

‖Aj(t + Aj)−1xj‖X ≤
n∑

j=1

‖xj‖Xθ
Aj

.

Therefore,
n∏

j=1

Xθ
Aj

↪→ (Xn)θ
A.

Conversely, if supt>0(1 + t)θ‖A(t + A)−1x‖Xn < +∞, then

sup
t>0

(1 + t)θ
n∑

j=1

‖Aj(t + Aj)−1xj‖X ≤ sup
t>0

(1 + t)θ‖A(t + A)−1x‖Xn < +∞,

for all j = 1, . . . , n, so that the embedding

(Xn)θ
A ↪→

n∏
j=1

Xθ
Aj

.

follows immediately.
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Now we show that Xθ
A = Xθ

t0+A. For this purpose first we consider the following
identity obtained from (7.9) setting B = O:

(t0 + A)(t + t0 + A)−1 − (t0 + A)(t + A)−1 = −t0(t0 + A)(t + t0 + A)−1(t + A)−1.

Whence we deduce

sup
t>0

(1 + t)θ‖(t0 + A)(t + t0 + A)−1u‖

≤ ‖(t0 + A)A−1‖L(X) sup
t>0

(1 + t)θ‖A(t + A)−1u‖

+ sup
t>0

M(1 + t)θ(1 + t + t0)−βt0‖(t0 + A)A−1‖L(X)‖A(t + A)−1u‖

≤ C sup
t>0

(1 + t)θ‖A(t + A)−1u‖.

So, we have proved the embedding Xθ
A ↪→ Xθ

t0+A. Interchanging the roles of t0 +A

and A, we obtain the set equality Xθ
A = Xθ

t0+A with equivalence of the correspond-
ing norms.

Finally, the third embedding in (7.8) is obvious. �

Remark 7.3. Corollary 5.3 applies if the regularity assumptions on the data con-
cern the spaces (X,D(A))θ,∞ = (X,D(λ0 + A + B))θ,∞. Notice that, if operator
B, with D(A) ⊂ D(B) satisfies the following estimate, similar to the ones satisfied
by A (cf.(1.2), (1.3)):

‖(λ + λ0 + A + B)−1‖L(X) ≤ c′(1 + |λ|)−β (7.10)

for all λ in the sector

Σα := {λ ∈ C : Re λ ≥ −c′(1 + | Im λ|)α}, 0 < β ≤ α ≤ 1, (7.11)

then (X,D(A))θ,∞ = (X,D(λ0 + A + B))θ,∞ with the equivalence of their norms.

8. Identification problems for singular non-classical first-order in
time systems of PDE’s corresponding to β = 1

In this section some applications related to the regular and singular parabolic
equations will be given.

Problem 8.1. We will consider a problem related to a reaction diffusion model
describing a man-environment epidemic system investigated in [6]. Such a model
consists in a parabolic equation coupled with an ordinary differential equation via
a boundary feedback operator (cf. also [9]). To obtain stability results in [6] the
authors linearize the model and arrive at the following evolution system, where
u(t, x) and v(t, x) stand, respectively, for the concentration of the infection agent
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and the density of the infective population at time t and point x:

Dtu(t, x) = ∆u(t, x)− a(x)u(t, x) + f1(t)z1,1(x) + f2(t)z1,2(x),

(t, x) ∈ (0, τ)× Ω,

Dtv(t, x) = c(x)u(t, x)− d(x)v(t, x) + f1(t)z2,1(x) + f2(t)z2,2(x),

(t, x) ∈ (0, τ)× Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

Dνu(t, x) + β(x)u(t, x) =
∫

Ω

k(x, y)v(t, y) dy, (t, x) ∈ (0, τ)× ∂Ω,∫
Ω

u(t, x) dµ1(x) = g1(t), t ∈ [0, τ ],∫
Ω

v(t, x) dµ2(x) = g2(t), t ∈ [0, τ ],

(8.1)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, ∆ is the Laplacian,
a, c, d ∈ C(Ω), β ∈ C(∂Ω), k ∈ W 1,∞(∂Ω; L∞(Ω)) are non-negative functions and
Dν denotes the outward normal derivative on ∂Ω. Finally, µ1 and µ2 are two
positive Borel measure on Ω.

We define E = C(Ω), X = E ×E and denote by Mh the multiplication operator
induced by the function h. Moreover, we introduce the operator-matrix

A =
[
∆−Ma O

Mc −Md

]
, (8.2)

D(A) =
{

(u, v) ∈ X : u ∈ H2(Ω), ∆u ∈ E,

Dνu(·) + β(·)u(·) =
∫

Ω

k(·, y)v(y) dy on ∂Ω
}

.
(8.3)

It can be proved (cf. [9, p. 26]) that A generates an analytic semigroup on X with
α = β = 1 and θ ∈ (0, 1). Therefore we can apply Theorem 6.1 and its Corollaries
6.2, 6.3.

Let us assume that (u0, v0) ∈ D(A), ((∆ − a(·))u0, c(·)u0 − d(·)v0) ∈ (C(Ω) ×
C(Ω), D(A))θ,∞,∫

Ω

u0(x)µ1(dx) = g1(0),
∫

Ω

v0(x) dµ2(x) = g2(0),

g1, g2 ∈ C1([0, τ ]; C), zik ∈ C(Ω), i, k = 1, 2, (z11, z21), (z12, z22) ∈ (C(Ω) ×
C(Ω),D(A))θ,∞,∫

Ω

z1,1 dµ1(x)
∫

Ω

z2,2 dµ2(x)−
∫

Ω

z1,2 dµ1(x)
∫

Ω

z2,1 dµ2(x) 6= 0.

Then the identification problem (8.1), admits a unique global strict solution

((u, v), f1, f2) ∈ C([0, τ ];D(A))× C([0, τ ]; C)× C([0, τ ]; C)

such that

(Dtu, Dtv), A(u, v)T ∈ B([0, τ ]; (C(Ω)× C(Ω),D(A))θ,∞).

We can characterize the interpolation space (C(Ω) × C(Ω), D(A))θ,∞ taking ad-
vantage of (cf. [21, Theorem 1.14.3, p. 93]) and the representation of A− λI as a
product of suitable operator matrices (cf. [9], p. 126).
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Problem 8.2. Let us consider the weakly coupled identification vector problem
occurring in the theory of semiconductors. Here we will deal with the problem
consisting of recovering the three scalar functions fj : [0, τ ] → R, 1 ≤ j ≤ 3, in the
singular problem

Dtul = a∆u1 − d∆u3 + f1(t)ζ1, in (0, τ)× Ω,

Dtu2 = b∆u2 + e∆u3 + f2(t)ζ2, in (0, τ)× Ω,

0 = u1 − u2 − c∆u3 + f3(t)ζ3, in (0, τ)× Ω,

u1(0, ·) = u0,1, u2(0, ·) = u0,2, in Ω,

u1 = u2 = u3 = 0, in (0, τ)× ∂Ω,

(8.4)

under the following three additional conditions

〈ui(t, ·), ϕi〉 :=
∫

Ω

ui(t, x)ϕi(x) dx = gi(t), t ∈ (0, τ), i = 1, 2, 3, (8.5)

where ζi ∈ Lp(Ω), i = 1, 2, 3, p ∈ (1,+∞], a, b ∈ R+, c, e ∈ R\{0}, d ∈ R and
ϕi ∈ Lp′(Ω), 1/p + 1/p′ = 1, i = 1, 2, 3.

We notice that Theorem 7.2 cannot be directly applied to this identification
problem, since such a problem is singular due to the lack of the term Dtu3. However,
since ∆ : W 1,p

0 (Ω) ∩ W 2,p(Ω) → Lp(Ω) is a linear isomorphism, we can solve the
elliptic equation for u3:

u3 = c−1∆−1[u1 − u2 + f3(t)ζ3], in (0, τ)× Ω. (8.6)

Assume now
χ−1

3 := (∆−1ζ3, ϕ3)L2(Ω) 6= 0. (8.7)
Consequently, from (8.6) and the additional equation (u3(t, ·), ϕ3)L2(Ω) = g3(t) we
deduce the following formula for f3:

f3(t) = cχ3g3(t)− χ3〈∆−1(u1 − u2)(t, ·), ϕ3〉. (8.8)

Therefore, our inverse problem is equivalent to the following problem:

Dtu1 = a∆u1 +
[
− dc−1u1 + dc−1χ3〈∆−1u1, ϕ3〉ζ3 + dc−1u2

− dc−1χ3〈∆−1u2, ϕ3〉ζ3

]
− dχ3g3(t)ζ3 + f1(t)ζ1, in (0, τ)× Ω,

Dtu2 = b∆u2 +
[
ec−1u1 − ec−1χ3〈∆−1u1, ϕ3〉ζ3 − ec−1u2

+ ec−1χ3〈∆−1u2, ϕ3〉ζ3

]
+ eχ3g3(t)ζ3 + f2(t)ζ2, in (0, τ)× Ω,

u1(0, ·) = u0,1, u2(0, ·) = u0,2, in Ω,

u1 = u2 = 0, in (0, τ)× ∂Ω,

〈ui(t, ·), ϕi〉 = gi(t), t ∈ (0, τ), i = 1, 2.

(8.9)

Define {et∆}t>0 as the analytic semigroup generated by ∆ with the domain
∆ : W 1,p

0 (Ω) ∩W 2,p(Ω) → Lp(Ω) and observe that the semigroups {T1(t)}t>0 and
{T2(t)}t>0 generated by a∆ and b∆ are defined, respectively, by

T1(t) = eat∆, T2(t) = ebt∆. (8.10)

In this case we have

Xθ
A = (Lp(Ω);W 2,p(Ω) ∩W 1,p

0 (Ω))θ,∞ × (Lp(Ω);W 2,p(Ω) ∩W 1,p
0 (Ω))θ,∞.
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Such spaces were characterized by Grisvard (a proof can be found, for the reader’s
convenience, in [21, p. 321]). Then we define

B1,1u1 = −dc−1u1 + dc−1χ3〈∆−1u1, ϕ3〉ζ3, (8.11)

B1,2u2 = dc−1u2 − dc−1χ3〈∆−1u2, ϕ2〉ζ3, (8.12)

B2,1u1 = ec−1u1 − ec−1χ3〈∆−1u1, ϕ3〉ζ3, (8.13)

B2,2u2 = −ec−1u2 + ec−1χ3〈∆−1u2, ϕ3〉ζ3, (8.14)

h1(t) = −dχ3g3(t)ζ3, h2(t) = eχ3g3(t)ζ3, (8.15)

z1,1 = ζ1, z2,2 = ζ2, z1,2 = z2,1 = 0. (8.16)

Assume further that[
a∆u0,1 − dc−1u0,1 + dc−1χ3〈∆−1u0,1, ϕ〉ζ3 + dc−1u0,2 − dc−1χ3〈∆−1u0,2, ϕ3〉ζ3

]
∈ (Lp(Ω);W 2,p(Ω) ∩W 1,p

0 (Ω))θ,∞,

(8.17)[
ec−1u0,1 − ec−1χ3〈∆−1u0,1, ϕ3〉ζ3 + b∆u0,2 − ec−1u0,2 + ec−1χ3〈∆−1u0,2, ϕ3〉ζ3

]
∈ (Lp(Ω);W 2,p(Ω) ∩W 1,p

0 (Ω))θ,∞,

(8.18)

u0,1, u0,2 ∈ W 2,p(Ω) ∩W 1,p
0 (Ω), ζ3 ∈ (Lp(Ω);W 2,p(Ω) ∩W 1,p

0 (Ω))θ,∞, (8.19)

〈ζ1, ϕ1〉〈ζ2, ϕ2〉〈∆−1ζ3, ϕ3〉 6= 0. (8.20)

Then we can apply Theorem 7.2 with (α, β) = (1, 1), to problem (8.9) to en-
sure that there exists a quadruplet (u1, u2, f1, f2) ∈ X =

{
C1([0, τ ];Lp(Ω)2) ∩

C([0, τ ];
[
W 2,p(Ω) ∩W 1,p

0 (Ω)
]2)} × C([0, τ ]; C2) solving (8.9). Finally, we observe

that the pair (u3, f3) is defined by formulae (8.6) and (8.7). Therefore it belongs
to C([0, τ ];W 2,p(Ω) ∩W 1,p

0 (Ω))× C([0, τ ]; C).
The same technique applies when our additional information is

(ui(t, ·), ϕi)L2(Ω) = gi(t), i = 1, 2, (u1(t, ·), ϕ3)L2(Ω) = g3(t), t ∈ (0, τ).

In this case the solvability condition changes to∫
Ω

ϕ2(x)ζ2(x) dx

[∫
Ω

ϕ1(x)ζ1(x) dx
∫
Ω

ϕ1(x)ζ3(x) dx∫
Ω

ϕ3(x)ζ1(x) dx
∫
Ω

ϕ3(x)ζ3(x) dx

]
6= 0. (8.21)

In fact, from (8.6), we easily derive the new identification problem

Dtu1 =
(
a∆− dc−1

)
u1 + bc−1u2 + f1(t)ζ1 − dc−1f3(t)ζ3, in (0, τ)× Ω,

Dtu2 = ec−1u1 +
(
b∆− ec−1

)
u2 + f2(t)ζ2 + ec−1f3(t)ζ3, in (0, τ)× Ω,

u1(0, ·) = u0,1, u2(0, ·) = u0,2, in Ω,

u1 = u2, in (0, τ)× ∂Ω,

(ui(t, ·), ϕi)L2(Ω) = gi(t), t ∈ (0, τ), i = 1, 2,

(u1(t, ·), ϕ3)L2(Ω) = g3(t), t ∈ (0, τ).

(8.22)

Now Corollary 5.3 applies if the following solvability condition is satisfied∣∣∣∣∣∣
∫
Ω

ϕ1(x)ζ1(x) dx 0 −dc−1
∫
Ω

ϕ1(x)ζ3(x) dx
0

∫
Ω

ϕ2(x)ζ2(x) dx ec−1
∫
Ω

ϕ2(x)ζ3(x) dx∫
Ω

ϕ3(x)ζ1(x) dx 0 −dc−1
∫
Ω

ϕ3(x)ζ3(x) dx

∣∣∣∣∣∣ 6= 0.
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But this condition is nothing but (8.21). However, notice that the consistency
conditions

(u0,i(t, ·), ϕi)L2(Ω) = gi(0), i = 1, 2, (u0,1(t, ·), ϕ3)L2(Ω) = g3(0),

must hold.
Assume now that the boundary condition involving u3 is changed to the Neu-

mann one, i.e. Dνu3 = 0 on (0, τ) × ∂Ω, where ν and Dν denote, respectively,
the outward unit vector normal to ∂Ω and the normal derivative on ∂Ω. Then the
elliptic problem

0 = u1 − u2 − c∆u3 + f3(t)ζ3, in (0, τ)× Ω,

Dνu3 = 0, in (0, τ)× ∂Ω,
(8.23)

admits a unique solution in W 2,p(Ω), if and only if the following condition is satisfied

f3(t)〈ζ3, 1〉 = −〈(u1 − u2)(t, ·), 1〉, t ∈ [0, τ ],

where 〈h, 1〉 =
∫
Ω

h(x) dx, h ∈ L1(Ω). Assuming that

χ−1
3 := 〈ζ3, 1〉 6= 0,

we obtain
f3(t) = −χ3〈(u1 − u2)(t, ·), 1〉, t ∈ [0, τ ]. (8.24)

Note that in this case we can get rid off of the third additional condition in (8.5).
Consequently, an equivalent problem for (u1, u2, f1, f2) turns out to be the following:

Dtu1 = a∆u1 − dc−1
[
u1 − u2 − χ3ζ3〈(u1 − u2), 1〉

]
+ f1(t)ζ1, in (0, τ)× Ω,

Dtu2 = b∆u2 + ec−1
[
u1 − u2 − χ3ζ3〈(u1 − u2), 1〉

]
+ f2(t)ζ2, in (0, τ)× Ω,

u1(0, ·) = u0,1, u2(0, ·) = u0,2, in Ω,

u1 = u2 = 0, in (0, τ)× ∂Ω,

〈ui(t, ·), ϕi〉 = gi(t), t ∈ (0, τ), i = 1, 2.

(8.25)
Then we define

B1(u1, u2) = −dc−1
[
u1 − u2 − χ3ζ3〈(u1 − u2), 1〉

]
,

B2(u1, u2) = ec−1
[
u1 − u2 − χ3ζ3〈(u1 − u2), 1〉

]
,

h1(t) = h2(t) = 0,

z1,1 = ζ1, z2,2 = ζ2, z1,2 = z2,1 = 0.

Assume further

a∆u0,1 − dc−1
[
u0,1 − u0,2 − χ3ζ3〈(u0,1 − u0,2), 1〉

]
∈ (Lp(Ω);W 2,p(Ω) ∩W 1,p

0 (Ω))θ,∞,

b∆u0,2 − dc−1
[
u0,1 − u0,2 − χ3ζ3〈(u0,1 − u0,2), 1〉

]
∈ (Lp(Ω);W 2,p(Ω) ∩W 1,p

0 (Ω))θ,∞,

u0,1, u0,2 ∈ W 2,p(Ω) ∩W 1,p
0 (Ω), ζ3 ∈ (Lp(Ω);W 2,p(Ω) ∩W 1,p

0 (Ω))θ,∞,

〈ζ1, ϕ1〉〈ζ2, ϕ2〉〈ζ3, 1〉 6= 0.

(8.26)
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Then we can apply Theorem 7.2 with (α, β) = (1, 1), to problem (8.25) to ensure
that there exists a quadruplet

(u1, u2, f1, f2) ∈ X

=
{
C1([0, τ ];Lp(Ω)2) ∩ C1([0, τ ];

[
W 2,p(Ω) ∩W 1,p

0 (Ω)
]2)}× C([0, τ ]; C2)

solving (8.9). Finally, we observe that the pair (u3, f3) is defined by formulae (8.6)
and (8.24). Therefore it belongs to C([0, τ ];W 2,p(Ω))× C([0, τ ]; R).

Now we change the boundary conditions in the previous direct problem to the
following ones of mixed Dirichlet-Neumann type

u1 = u2 = u3 = 0, in (0, τ)× ΓD, (8.27)

Dνu1 = Dνu2 = Dνu3 = 0, in (0, τ)× ΓN . (8.28)

Here ΓD is an non-empty open subset and ΓN = ∂Ω\ΓD. Moreover, Ω must satisfy
the exterior sphere condition

mn(B(x0, R) ∩ Ωc) ≥ cRn, ∀x0 ∈ ∂Ω, (8.29)

mn denoting the n-dimensional Lebesgue measure. In particular the latter property
holds if ∂Ω is Lipschitz (cf. [5, 24]). Explicitly, we consider the identification
problem (8.11) consisting in recovering the three scalar functions fi ∈ C([0, τ ]; C)
such that

Dtul = a∆u1 − d∆u3 + f1(t)ζ1, in (0, τ)× Ω,

Dtu2 = b∆u2 + e∆u3 + f2(t)ζ2, in (0, τ)× Ω,

0 = u1 − u2 − c∆u3 + f3(t)ζ3, in (0, τ)× Ω,

u1(0, ·) = u0,1, u2(0, ·) = u0,2, in Ω,

u1 = u2 = u3 = 0, in (0, τ)× ΓD,

Dνu1 = Dνu2 = Dνu3 = 0, in (0, τ)× ΓN ,

H1
D(Ω)〈ui(t, ·), ϕi〉H1

D(Ω)∗ = gi(t), t ∈ (0, τ), i = 1, 2, 3,

(8.30)

for given ϕi ∈ H1
D(Ω) and gi ∈ C1([0, τ ]; C), i = 1, 2, 3.

Identifying L2(Ω) with its antidual space, we introduce the Hilbert space

H1
D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD} (8.31)

and we denote its antidual space by HD(Ω)∗. Then we define the linear operator
Λ ∈ L(H1

D(Ω);H1
D(Ω)∗) by the bilinear form

(Λu, v)L2(Ω) =
∫

Ω

∇u · ∇v dx, u ∈ H1
D(Ω), v ∈ H1

D(Ω)∗. (8.32)

We note that Λ is the realization of −∆ in H1
D(Ω)∗ under the homogeneous Dirichlet

condition on ΓD and the homogeneous Neumann condition on ΓN and that −Λ
generates an analytic semigroup on H1

D(Ω)∗ (cf. [5], [15, p.114] and [24]). Moreover,
−Λ is an isomorphism from H1

D(Ω) to H1
D(Ω)∗.

Let us observe that, for any θ ∈ [1/2, 1], we have

D(Λθ) = [L2(Ω),H1
D(Ω)]2θ−1 =

[
[H1

D(Ω)∗,H1
D(Ω)]1/2,H

1
D(Ω)

]
2θ−1

= [H1
D(Ω)∗,H1

D(Ω)]1/2−(2θ−1)/2

= [H1
D(Ω)∗,H1

D(Ω)]θ ↪→ (H1
D(Ω)∗,H1

D(Ω))θ,∞.
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Notice that Λu ∈ L2(Ω) needs not to imply u ∈ H2(Ω) due to the boundary
conditions of mixed type, while D(Λ1/2) = L2(Ω). Choose now X = H1

D(Ω)∗.
Then from the equation

cΛu3 = −u1 + u2 − f3(t)ζ3

we have
u3 = −c−1Λ−1u1 + c−1Λ−1u2 − c−1Λ−1f3(t)ζ3

and

g3(t) =H1
D(Ω) 〈u3(t, ·), ϕ3〉H1

D(Ω)∗

= −c−1
H1

D(Ω)
〈Λ−1u1(t, ·), ϕ3〉H1

D(Ω)∗ + c−1
H1

D(Ω)
〈Λ−1u2(t, ·), ϕ3〉H1

D(Ω)∗

− c−1f3(t)H1
D(Ω)〈Λ−1ζ3, ϕ3〉H1

D(Ω)∗ .

If
η−1 =:H1

D(Ω) 〈Λ−1ζ3, ϕ3〉H1
D(Ω)∗ 6= 0,

the latter equation uniquely determines f3 as

f3(t) = −cηg3(t)− ηH1
D(Ω)〈Λ−1u1(t, ·), ϕ3〉H1

D(Ω)∗ + ηH1
D(Ω)〈Λ−1u2(t, ·), ϕ3〉H1

D(Ω)∗ .

Whence we easily deduce the formula

Λu3 = −c−1u1 + c−1u2 + c−1ηH1
D(Ω)〈Λ−1u1(t, ·), ϕ3〉H1

D(Ω)∗ζ3

− c−1ηH1
D(Ω)〈Λ−1u2(t, ·), ϕ3〉H1

D(Ω)∗ζ3 + ηg3(t)ζ3.

So, problem (8.30) reduces to the following

Dtul = −aΛu1 − c−1du1 + c−1du2 + c−1dηH1
D(Ω)〈Λ−1u1(t, ·), ϕ3〉H1

D(Ω)∗ζ3

− c−1dηH1
D(Ω)〈Λ−1u2(t, ·), ϕ3〉H1

D(Ω)∗ζ3 + dηg3(t)ζ3 + f1(t)ζ1,

in (0, τ)× Ω,

Dtu2 = −bΛu2 + c−1eu1 − c−1eu2 − c−1eηH1
D(Ω)〈Λ−1u1(t, ·), ϕ3〉H1

D(Ω)∗ζ3

+ c−1eηH1
D(Ω)〈Λ−1u2(t, ·), ϕ3〉H1

D(Ω)∗ζ3 − eηg3(t)ζ3 + f2(t)ζ2,

in (0, τ)× Ω,

u1(0, ·) = u0,1, u2(0, ·) = u0,2, in Ω,

H1
D(Ω)〈ui(t, ·), ϕi〉H1

D(Ω)∗ = gi(t), t ∈ (0, τ), i = 1, 2.

(8.33)

Now assume that the data (ϕ1, ϕ2, ϕ3, ζ1, ζ2, ζ3, u0,1, u0,2, g1, g2, g3) satisfy the fol-
lowing properties:

ϕi ∈ H1
D(Ω), ζi ∈ (H1

D(Ω)∗,H1
D(Ω))θ,∞, i = 1, 2, 3;

u0,1, u0,2 ∈ H1
D(Ω), ∆u0,1,∆u0,2 ∈ (H1

D(Ω)∗,H1
D(Ω))θ,∞,

g1, g2, g3 ∈ C([0, τ ]; R),

H1
D(Ω)〈ui,0, ϕi〉H1

D(Ω)∗ = gi(0), i = 1, 2, 3,

H1
D(Ω)〈Λ−1ζ3, ϕ3〉H1

D(Ω)∗ H1
D(Ω)〈ζ1, ϕ1〉H1

D(Ω)∗ H1
D(Ω)〈ζ2, ϕ2〉H1

D(Ω)∗ 6= 0.

Then, according to Theorem 7.2, with α = β = 1, we can conclude that the
identification problem (8.30) admits a unique solution

(u1, u2, u3, f1, f2, f3) ∈ C([0, τ ]; [H1
D(Ω)∗]3)× C([0, τ ]; C),

Dtu1, Dtu2 ∈ B([0, τ ]; (H1
D(Ω)∗,H1

D(Ω))θ,∞),
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Remark 8.1. Note that sufficient conditions could be deduced simply by re-
placing the interpolation space (H1

D(Ω)∗,H1
D(Ω))θ,∞ with D(Λθ), since D(Λθ) for

θ ∈ [1/2, 1] coincides with the complex interpolation space [H1
D(Ω)∗,H1

D(Ω)]θ,
which is included in (H1

D(Ω)∗,H1
D(Ω))θ,∞, as we have already pointed out.

Problem 8.3. Let us consider the identification problem consisting of recovering
the m scalar functions fj : [0, τ ] → R in the singular problem

Dtu = a1,1∆u + a1,2∆v + b1,1(x)u + b1,2(x)v + h1(t, x) +
m∑

j=1

fj(t)z1,j ,

in (0, τ)× Ω,

Dtv = a2,1∆u + a2,2∆v + b2,1(x)u + b2,2(x)v + h2(t, x) +
m∑

j=1

fj(t)z2,j ,

in (0, τ)× Ω,

u(0, ·) = u0,1, v(0, ·) = u0,2, in Ω,

u = v = 0, in (0, τ)× ∂Ω,

(8.34)

under the following m additional conditions

Ψj [u(t, ·)] = gj(t), t ∈ (0, τ), j = 1, . . . , r, (8.35)

Ψj [v(t, ·)] = gj(t), t ∈ (0, τ), j = r + 1, . . . ,m, (8.36)

where Ω is a (possibly unbounded) domain in Rn with a smooth boundary, ai,j ∈ R,
bi,j ∈ C(Ω; R), i, j = 1, 2. Therefore, choosing X0 = Lp(Ω), p ∈ (1,+∞), and
D(∆) = W 2,p(Ω) ∩ W 1,p

0 (Ω), the well known resolvent estimates for our operator
∆ hold in Lp(Ω), so that ∆ generates an analytic semigroup of linear bounded
operators.

To develop our strategy, we generalize to the case p ∈ (1,+∞) the results proved
for p = 2 in [8]. For this purpose we introduce in the space X = Lp(Ω)×Lp(Ω) the
linear unbounded operator A defined by

A =
[
a1,1∆ a1,2∆
a2,1∆ a2,2∆

]
, D(A) = D(∆)×D(∆). (8.37)

Some simple algebraic computations yield the following formula for the resolvent

(A− λI)−1

=
[
a2,2∆− λI −a1,2∆
−a2,1∆ a1,1∆− λI

] [
(a1,1∆− λI)(a2,2∆− λI)− a1,2a2,1∆2

]−1
.

(8.38)

Observe that the determinant operator D = (a1,1∆−λI)(a2,2∆−λI)− a1,2a2,1∆2

coincides with

D = λ2I − λ(a1,1 + a2,2)∆ + (a1,1a2,2 − a1,2a2,1)∆2. (8.39)

Suppose now that

a1,1 ≥ 0, a2,2 ≥ 0, a1,1 + a2,2 > 0, a1,1a2,2 − a1,2a2,1 > 0, (8.40)

(a1,1 − a2,2)2 + 4a1,2a2,1 ≥ 0. (8.41)

We note that the last inequality in (8.40) can be weakened to ≥ if Ω is bounded,
while condition (8.41), not required in [8, Lemma 1, p.185], is necessary to ensure
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that the equation λ2 − λ(a1,1 + a2,2) + (a1,1a2,2 − a1,2a2,1) = 0 admits two real
solutions 0 < λ1 ≤ λ2, since (cf. (8.41))

(a1,1 + a2,2)2 − 4(a1,1a2,2 − a1,2a2,1) = (a1,1 − a2,2)2 + 4a1,2a2,1 ≥ 0. (8.42)

Now, in contrast with [8] we use the factorization D = (λ− λ1∆)(λ− λ2∆). From
the identity

D = λ1λ2(λ−1
1 λ−∆)(λ−1

2 λ−∆) (8.43)
we deduce the resolvent estimate

‖(A− λI)−1‖L(X) ≤ C(1 + |λ|)−1, Re λ ≥ 0. (8.44)

Therefore, A generates an analytic semigroup on X. On the other hand the matrix
operator

B =
[
b1,1I b1,2I
b2,1I b2,2I

]
(8.45)

belongs to L(X), so that A + B, with D(A + B) = D(A), generates an analytic
semigroup on X, too. Now we make the following assumptions:

det


Ψ1[z1,1] . . . Ψ1[z1,m]

. . . . . . . . .
Ψr[z1,1] . . . Ψr[z1,m]

Ψr+1[z2,1] . . . Ψr+1[z2,m]
. . . . . . . . .

Ψm[z2,1] . . . Ψ1[z2,m]

 6= 0,

u0, v0 ∈ D(∆), (A+ B)(u0, v0)T ∈ (X,D(∆))θ,∞ × (X,D(∆))θ,∞ := Zθ × Zθ,

(z1,j , z2,j)T ∈ Zθ, gj ∈ C1([0, τ ]; R), ϕj ∈ Lq(Ω), j = 1, . . . ,m, 1/p + 1/q = 1,

(h1, h2)t ∈ C([0, τ ];Zθ × Zθ).

The characterization of the space Zθ can be found in [21, Theorem 4.4.1, p.321].
Now we define the linear bounded functionals Ψj , j = 1, . . . ,m, by

Ψj [u] =
∫

Ω

ϕj(x)u(x) dx. (8.46)

Then, by Corollary 5.2 we conclude that the identification problem (8.34)–(8.36)
admits a strict solution (u, v, f1, . . . , fm) with the following additional regularity:

Dtu, Dtv ∈ B([0, τ ];Zθ),

a1,1∆u + a1,2∆v + b1,1(·)u + b1,2(·)v ∈ C([0, τ ];Lp(Ω)) ∩B([0, τ ];Zθ),

a2,1∆u + a2,2∆v + b2,1(·)u + b2,2(·)v ∈ C([0, τ ];Lp(Ω)) ∩B([0, τ ];Zθ).

Observe that this strategy works also if Lp(Ω) is replaced with C(Ω) and related
functionals Ψi ∈ C(Ω)∗.

9. Identification problems for PDE’s corresponding to β ∈ (0, 1)

Problem 9.1. Let Ω be a bounded domain in Rn with a C∞-boundary ∂Ω. We
want to recover the scalar functions fj : [0, τ ] → C, j = 1, . . . ,m, in the initial
boundary value problem

∂u

∂t
(t, x) + A(x,Dx)u(t, x) =

m∑
j=1

fj(t)zj(x), (t, x) ∈ (0, τ)× Ω, (9.1)
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u(0, x) = u0(x), x ∈ Ω, (9.2)

a(x)Dνu(t, x) + α(x) · ∇u(t, x) + b(t, x)u(t, x) = 0, (t, x) ∈ (0, τ)× ∂Ω, (9.3)

under the m additional pieces of information∫
Ω

ηi(x)u(t, x)dx = gi(t), 0 ≤ t ≤ τ, i = 1, . . . ,m, (9.4)

along with the consistency conditions∫
Ω

ηi(x)u0(x)dx = gi(0), i = 1, . . . ,m. (9.5)

Here

−A(x,Dx) =
n∑

i,j=1

ai,j(x)Dxi
Dxj

+
n∑

i=1

ai(x)Dxi
+ a0(x) (9.6)

is a second-order elliptic differential operator with real-valued C∞-coefficients on
Ω such that

aj,i(x) = ai,j(x),
n∑

i,j=1

ai,j(x)ξiξj ≥ c0|ξ|2, (x, ξ) ∈ Ω× Rn, (9.7)

c0 being a positive constant. Concerning the linear boundary differential operator
defined, for all (t, x) ∈ (0, τ)× ∂Ω, by

Â(x,Dx)u(t, x) = a(x)Dνu(t, x) + α(x) · ∇u(t, x) + b(x)u(t, x), (9.8)

we assume that a, b and α are real-valued C∞-functions and a vector field on ∂Ω,
respectively, such that Tu = α · ∇u is a real C∞-tangential operator on ∂Ω, Dν

standing for the conormal derivative associated with the matrix
(
ai,j(x)

)
; i.e.,

Dν =
( n∑

i,j=1

ai,j(x)ni(x)nj(x)
)−1 n∑

i,j=1

ai,j(x)Dxi
, (9.9)

n(x) =
(
n1(x), . . . , nn(x)

)
denoting the outward unit normal vector to ∂Ω at x.

Assume further (cf. [20, p. 515] that the vector field α does not vanish on
Γ0 = {x ∈ ∂Ω : a(x) = 0} and the function t → a(x(t, x0)) has zeros of even
order not exceeding some value 2k1 along the integral curve x′(t, x0) = α(x(t, x0))
satisfying the initial condition x(0, x0) = x0, with x0 ∈ Γ0. In other words, the
so-called (H)δ-condition holds with δ = δ1 = (1 + 2k1)−1. It is shown on p. 516 in
[20] that the operator L defined by

D(L) =
{
u ∈ L2(Ω) : A(·, Dx)u ∈ L2(Ω), Â(·, Dx)u = 0 on ∂Ω

}
, (9.10)

Lu = A(·, Dx)u, u ∈ D(L). (9.11)

satisfies in L2(Ω) the resolvent estimate

‖(λ + L)−1‖L(L2(Ω)) ≤ C(1 + |λ|)−(1+δ)/2 (9.12)

for all λ with a large enough modulus belonging to the sector

Σϕ := {λ ∈ C \ {0} : | arg λ| ≤ ϕ}, ϕ ∈ (π/2, π). (9.13)

If we consider the subelliptic case k = (1 + δ)/2 > 1/2, we can immediately apply
Corollary 5.3.
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Problem 9.2. Here we deal with a problem - similar to Problem 9.1 - in the
reference space of Hölder-continuous functions X =

(
Cα(Ω), ‖·‖α

)
, when α ∈ (0, 1)

and the boundary ∂Ω of Ω is of class C4m for some positive integer m. In this case
the linear differential operator A is defined by

D(A) =
{
u ∈ C2m+α(Ω) : Dγu = 0 on ∂Ω, |γ| ≤ m− 1

}
, (9.14)

Au(x) =
∑

|γ|≤2m

aγ(x)Dγu(x), x ∈ Ω, u ∈ D(A), (9.15)

where β is a usual multi-index with |β| =
∑n

j=1 βj and Dβ =
∏n

j=1(−iDxj )
βj .

Assume that the coefficients aγ : Ω → C of A satisfy the following conditions

(i) aγ ∈ Cα(Ω; C) for all |γ| ≤ 2m;
(ii) aγ(x) ∈ R for all x ∈ Ω and |γ| = 2m;
(iii) there exists a positive constant M ≥ 1 such that

M−1|ξ|2m ≤
∑

|γ|=2m

aγ(x)ξγ ≤ M |ξ|2m, (x, ξ) ∈ Ω× Rn. (9.16)

Then there exist λ, ε ∈ R+ such that the spectrum of the operator A + λ satisfies

σ(A + λ) ⊂ S(π/2)−ε =
{
z ∈ C \ {0} : | arg z| ≤ π

2
− ε

}
∪ {0}. (9.17)

Moreover, for any µ ∈ (π/2, π) there exists a positive constant C(µ) such that

‖(λ−A)−1‖L(Cα(Ω)) ≤ C(µ)|λ|(α/2m)−1, λ ∈ Sµ. (9.18)

For details cf. Satz 1 and Satz 2 in [22], where we choose l = α, β = 1− (α/2m).
As an example, we can consider the problem consisting in recovering the vector-

function (u, f1, . . . , fp), where fj : [0, τ ] → C, j = 1, . . . , p, satisfying

∂u

∂t
(t, x) + (A + λ)u(t, x) =

p∑
j=1

fj(t)zj(x) + h(t, x), (t, x) ∈ [0, τ ]× Ω, (9.19)

u(0, x) = u0(x), x ∈ Ω, (9.20)

Dγu(t, x) = 0, (t, x) ∈ [0, τ ]× ∂Ω, |γ| ≤ m− 1, (9.21)

under the p additional conditions

u(t, xj) = gj(t), t ∈ [0, τ ], j = 1, . . . , p, (9.22)

where xj , j = 1, . . . , p, are p fixed points in Ω.
We remark that A is not sectorial and D(A) ⊂

{
u ∈ Cα(Ω) : u = 0 on ∂Ω}. In

view of Corollary 5.3 we can establish our identification result.

Theorem 9.1. Let θ ∈ (α/(2m), 1) and β = 1− α/(2m) > 0. Let Y γ,∞
A be either

of the spaces (X,D(A))γ,∞ or Xγ
A. Let u0 ∈ D(A), Au0 ∈ Y γ,∞

A , gj ∈ C1([0, τ ]; C),
j = 1, . . . , p, h ∈ C([0, τ ];X) ∩B([0, τ ];Y γ,∞

A ), u0(xj) = gj(0), j = 1, . . . , p, with

det

z1(x1) . . . zp(x1)
. . . . . . . . .

z1(xp) . . . zp(xp)

 6= 0.

Then problem (9.19)-(9.22) admits a unique strict solution

(u, f1, . . . , fp) ∈
[
C1([0, τ ];Cα(Ω) ∩ C([0, τ ];D(A))

]
× C([0, τ ]; C)p
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such that u(t, ·) ∈ C2m+α(Ω) for all t ∈ [0, τ ], Dtu ∈ B([0, τ ];Y θ−(α/2m),∞
A ), Au ∈[

Cθ−(α/2m)([0, τ ];Cα(Ω)) ∩B([0, τ ];Y θ−(α/2m),∞
A )

]
.

Problem 9.3. Under the same assumptions on m and Ω as in Problem 9.2 we
introduce the linear operators A and D by the formulae.

D(A) =
{
u ∈ C2m+α(Ω) : Dβu = 0 on ∂Ω, |β| ≤ m− 1

}
, (9.23)

Au(x) =
∑

|β|≤2m

aβ(x)Dβu(x), x ∈ Ω, u ∈ D(A), (9.24)

D(D) =
{
v ∈ C2p+α(Ω) : Dγv = 0 on ∂Ω, |γ| ≤ p− 1

}
, (9.25)

Dv(x) =
∑
|γ|≤2p

dγ(x)Dγv(x), x ∈ Ω, v ∈ D(D), (9.26)

where aβ , dγ ∈ Cα(Ω) and Dβ , Dγ are defined as in Problem 9.2.
Let us introduce the operators B and C defined by

Bv(x) =
∑

|γ|≤2p−1

bγ(x)Dγv(x), x ∈ Ω, v ∈ C2p−1+α(Ω), (9.27)

Cu(x) =
∑

|β|≤2m−1

cβ(x)Dβu(x), x ∈ Ω, u ∈ C2m−1+α(Ω). (9.28)

In view of [22, Satz 1] the following estimate holds in the set | arg λ| ≤ (π/2) + ε,
Re λ ≥ λ0:

|λ|‖u‖C(Ω) + |λ|(2m−α)/(2m)‖u‖Cα(Ω) + |λ|(1−α)/(2m)‖u‖C2m−1+α(Ω) + ‖u‖C2m+α(Ω)

≤ C1‖(A + λ)u‖Cα(Ω).

(9.29)
Whence we deduce the estimates

‖C(A + λ)−1f‖Cα(Ω) ≤ C2|λ|(−1+α)/(2m)‖f‖Cα(Ω), (9.30)

‖B(D + λ)−1f‖Cα(Ω) ≤ C3|λ|(−1+α)/(2p)‖f‖Cα(Ω). (9.31)

Consequently, conditions (6.1)-(6.3) hold with

β1 = 1− α

2m
, β2 = 1− α

2p
, γ1 =

1− α

2m
, γ2 =

1− α

2m
. (9.32)

Therefore, we are allowed to apply Theorem 6.1 and Corollaries 6.2, 6.3 to the
problem consisting in finding a quadruplet (u, v, f1, f2) solving

∂u

∂t
(t, x) + A(x,Dx)u(t, x) + B(x,Dx)v(t, x)

= f1(t)z1,1(x) + f2(t)z1,2(x) + h1(t, x), (t, x) ∈ (0, τ)× Ω,
(9.33)

∂v

∂t
(t, x) + C(x,Dx)u(t, x) + D(x,Dx)v(t, x)

= f1(t)z2,1(x) + f2(t)z2,2(x) + h2(t, x), (t, x) ∈ (0, τ)× Ω,
(9.34)

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω, (9.35)

u(t, x) = g1(t), v(t, x̃) = g2(t), t ∈ [0, τ ], (9.36)

where
x, x̃ ∈ Ω, u(0, x) = g1(0), v(0, x̃) = g2(0). (9.37)



EJDE-2012/225 DIRECT AND INVERSE PROBLEMS 31

Indeed, operator A defined in X ×X = Cα(Ω)× Cα(Ω) by

D(A) = D(A)×D(D), A
[
u
v

]
=

[
Au + Bv
Cu + Dv

]
satisfies, for all λ with large modulus belonging to the sector | arg λ| ≤ (π/2) + ε,
the resolvent estimate

‖(λ +A)−1‖L(Cα(Ω)×Cα(Ω)) ≤ c|λ|−β , (9.38)

where
β = min

{
1− α

2m
, 1− α

2p

}
. (9.39)

We confine ourselves to translating Corollary 6.3 to this new situation.

Theorem 9.2. Let β be defined by (9.39) and θ ∈ (1− β, 1), g1, g2 ∈ C1([0, τ ]; C),
u0 ∈ D(A), v0 ∈ D(D), Au0 + Bv0 ∈ (Cα(Ω);D(A))θ,∞,

Cu0 + Dv0 ∈ (Cα(Ω);D(D))θ,∞,

z1,1, z1,2 ∈ (Cα(Ω);D(A))θ,∞, z2,1, z2,2 ∈ (Cα(Ω);D(D))θ,∞,

h1 ∈ C([0, τ ];Cα(Ω)) ∩B([0, τ ]; (Cα(Ω);D(A))θ,∞),

h2 ∈ C([0, τ ];Cα(Ω)) ∩B([0, τ ]; (Cα(Ω);D(D))θ,∞),

satisfying the consistency conditions (9.37) as well the solvability condition

z1,1(x)z2,2(x̃)− z1,2(x)z2,1(x̃) 6= 0.

Then problem (9.33)-(9.36) admits a unique strict solution (u, v, f1, f2) in the space[
C1([0, τ ];Cα(Ω) ∩ C([0, τ ];D(A))

]
×

[
C1([0, τ ];Cα(Ω)) ∩ C([0, τ ];D(D))

]
×C([0, τ ]; C)× C([0, τ ]; C) such that

Dtu ∈ B([0, τ ]; (Cα(Ω;D(A))θ+β−1,∞), Dtv ∈ B([0, τ ]; (Cα(Ω;D(D))θ+β−1,∞),

Au + Bv ∈ Cθ+β−1([0, τ ];Cα(Ω)), Cu + Dv ∈ Cθ+β−1([0, τ ];Cα(Ω)).

We could also handle the system

∂

∂t

y1(t, x)
. . .

yn(t.x)

 +


A1 + B1,1 B1,2 . . . B1,n

B2,1 A2 + B2,2 . . . B2,n

. . . . . . . . . . . .
Bn,1 Bn,2 . . . An + Bn,n


y1(t.x)

. . .
yn(t.x)



=

h1(t.x)
. . .

hn(t.x)

 +
n∑

j=1

fj(t.x)

z1,j

. . .
zn,j

 , t ∈ [0, τ ],

(9.40)

yj(0) = y0,j , j = 1, . . . , n, (9.41)

Ψj [yj(t)] = gj(t), t ∈ [0, τ ], j = 1, . . . , n, (9.42)

in the space
[
Cα(Ω)

]n. Here the Aj ’s and the Bi,j ’s are linear differential operators
like in Problem 9.2 and Problem 9.1, respectively such that ordBi,j < ordAj , for
all i, j = 1, . . . , p.

Since a bound of type (7.5) follows from [22, Satz 1] the previous argument
applies immediately, e.g., when functionals Ψj are defined by Ψj [yj(·)] = yj(x(j)),
j = 1, . . . , p, x(1), . . . x(p) being p fixed points in Ω. The details are left to the
reader.
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Problem 9.4. Let us consider the degenerate parabolic system

∂u

∂t
(t, x) = ∆(a(x)u(t, x)) + b(x)v(t, x) + f1(t)z1,1(x) + f2(t)z1,2(x), (9.43)

∂v

∂t
(t, x) = c(x)u(t, x) + ∆(d(x)v(t, x)) + f1(t)z2,1(x) + f2(t)z2,2(x), (9.44)

(t, x) ∈ (0, τ)× Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω, (9.45)

a(x)u(t, x) = 0 = d(x)v(t, x), (t, x) ∈ (0, τ)× ∂Ω, (9.46)∫
Ω

η1(x)u(t, x)dx = g1(t),
∫

Ω

η2(x)v(t, x)dx = g2(t), 0 ≤ t ≤ τ, (9.47)

along with the consistency conditions∫
Ω

η1(x)u0(x)dx = g1(0),
∫

Ω

η2(x)v0(x)dx = g2(0), (9.48)

where Ω is a bounded domain in Rn, n ≥ 1, with a C2-boundary ∂Ω, while a, b, c,
d are functions in C(Ω; R) such that a(x) > 0 and d(x) > 0 a.e. in Ω. Moreover,
zi,j ∈ L2(Ω), i, j = 1, 2, u0, v0 ∈ H1

0 (Ω) ∩H2(Ω), gi ∈ C1([0, τ ]; C), i = 1, 2. Our
task consists in recovering (u, v, f1, f2).

We recall [16, p. 83] that, if

a−1 ∈ Lr(Ω) with


r ≥ 2 when n = 1,

r > 2, when n = 2,

r ≥ n, when n ≥ 3,

then, for any function e enjoying the same properties as a, operator K(e) defined
by

D(K(e)) := {u ∈ L2(Ω) : eu ∈ H1
0 (Ω) ∩H2(Ω)}, K(e)u := −∆(eu), u ∈ D(K)

satisfies the estimate

‖(λI + K(e))−1f‖L2(Ω) ≤ c|λ|−(2r−n)/2r‖f‖L2(Ω),

for all λ in a sector containing the half-plane Re z ≥ 0. Therefore, α = 1, β =
(2r − n)/2r.

Let us assume 1/a ∈ Lr1(Ω), 1/d ∈ Lr2(Ω). Consequently, estimates (6.2)) hold
with α = 1, β1 = (2r1 − n)/2r1, β2 = (2r2 − n)/2r2 for operators K(a) and K(d).
Since the multiplication operators generated by b and c are bounded in L2(Ω), β
in (6.12) is given by

β = min{β1, β2} = min
{

1− n

2r1
, 1− n

2r2

}
≥ 1

2
,

since rj ≥ n, j = 1, 2. Let us assume∫
Ω

η1(x)z1,1(x)dx

∫
Ω

η2(x)z2,2(x)dx−
∫

Ω

η1(x)z1,2(x)dx

∫
Ω

η2(x)z2,1(x)dx 6= 0,

g1, g2 ∈ C1([0, τ ]; C), 1− β < θ < 1.

Let

A =
[
K(a) −Mb

−Mc K(d)

]
, (9.49)
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As (L2(Ω)× L2(Ω),D(A))θ,∞ = (L2(Ω),D(K(a)))θ,∞ × (L2(Ω),D(K(d)))θ,∞ if

(∆(a(·)u0) + b(·)v0, c(·)u0 + ∆(d(·)v0))

∈ (L2(Ω),D(K(a)))θ,∞ × (L2(Ω),D(K(d)))θ,∞,

z11, z12 ∈ (L2(Ω), D(K(a)))θ,∞, z21, z22 ∈ (L2(Ω),D(K(d)))θ,∞, from Corollary 6.3
we can conclude that problem (9.43)–(9.47), endowed with the consistency condition
(9.48) admits a unique global strict solution ((u, v), f1, f2) ∈ C([0, τ ];D(K(a)) ×
D(K(d))) × C([0, τ ]; C) × C([0, τ ]; C) such that (Dtu, Dtv)T ∈ B([0, τ ]; (L2(Ω) ×
L2(Ω),D(K(a))×D(K(d)))θ−(1−β),∞), A(u, v)T ∈ Cθ−(1−β)([0, τ ];L2(Ω)×L2(Ω))∩
B([0, τ ]; (L2(Ω)× L2(Ω),D(K(a))×D(K(d)))θ−(1−β),∞).

More generally, we could deal with an analogous doubly degenerate problem
related to the system

∂

∂t
(m(x)u(t, x)) = ∆(a(x)u(t, x)) + b(x)v(t, x) + f1(t)z1,1(x) + f2(t)z1,2(x),

∂

∂t
(n(x)v(t, x)) = c(x)u(t, x) + ∆(d(x)v(t, x)) + f1(t)z2,1(x) + f2(t)z2,2(x),

(t, x) ∈ (0, τ)× Ω

m and n being positive and continuous functions on Ω, using the change of un-
knowns defined by m(x)u = u1, n(x)v = v1. Notice that then we must make
continuity assumptions on the behaviour on the boundary of functions b/n, c/m,
a/m, d/n.
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