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MULTIPLICITY OF POSITIVE SOLUTIONS FOR A GRADIENT
SYSTEM WITH AN EXPONENTIAL NONLINEARITY

NASREDDINE MEGREZ, K. SREENADH, BRAHIM KHALDI

Abstract. In this article, we consider the problem

−∆u = λuq + f1(u, v) in Ω

−∆v = λvq + f2(u, v) in Ω

u, v > 0 in Ω

u = v = 0 on ∂Ω,

where Ω is a bounded domain in R2, 0 < q < 1, and λ > 0. We show that
there exists a real number Λ such that the above problem admits at least two
solutions for λ ∈ (0, Λ), and no solution for λ > Λ.

1. Introduction

In this article, we study the existence of multiple solutions of the system of
partial differential equations

−∆u = λuq + f1(u, v) in Ω

−∆v = λvq + f2(u, v) in Ω
u, v > 0 in Ω

u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in R2, 0 < q < 1, λ > 0, and fi, i = 1, 2 satisfy the
following conditions:

(H1) fi ∈ C1(R2), fi(t, s) > 0 for t > 0 and s > 0; fi(t, s) = 0 if t ≤ 0 or s ≤ 0.
(H2) The maps t 7→ fi(t, .) and s 7→ fi(., s) are nondecreasing for all t > 0, s > 0.
(H3) For all ε > 0,

lim
t2+s2→∞

fi(t, s)e−(1−ε)(t2+s2) = ∞, lim
t2+s2→∞

fi(t, s)e−(1+ε)(t2+s2) = 0.

(H4) There exists λ such that

λtq + f1(t, s) > λ1t and λsq + f2(t, s) > λ1s

for all λ > λ and s, t > 0, where λ1 is the first eigenvalue of −∆ on H1
0 (Ω).
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(H5) Let F (t, s) be a C2 function such that

∂F

∂t
= f1(t, s),

∂F

∂s
= f2(t, s),

lim
(t,s)→(0,0)

F (t, s)
tk + sk

= 0 for some k > 1,

lim
t2+s2→∞

F (t, s)
e(1+ε)(t2+s2)

= 0, ∀ε > 0.

(H6) There exists a constant κ ≥ 0 such that

lim
|t|,|s|→+∞

F (t, s)
f1(t, s) + f2(t, s)

= κ

(H7) For every ε > 0,

lim
t2+s2→∞

∂fi(t, s)
∂t

e−(1−ε)(t2+s2) = ∞, lim
t2+s2→∞

∂fi(t, s)
∂s

e−(1+ε)(t2+s2) = 0.

As examples of a function satisfying the above assumptions, we have

F (t, s) =

{
(t2 + s2)et

2+s2 if t > 0, s > 0
0 otherwise.

So

f1(t, s) =

{
2t(t2 + s2 + 1)et

2+s2 if t > 0, s > 0
0 otherwise,

f2(t, s) =

{
2s(t2 + s2 + 1)et

2+s2 if t > 0, s > 0
0 otherwise.

Starting from the work of Adimurthi [1], there are many results in the scalar case
for problems involving exponential growth, for example [8], [12]. Systems involving
exponential nonlinearities in two dimension have also been studied in [9]. Recently,
lot of interest has been shown for studying the multiplicity of positive solutions with
nonlinearities of sublinear growth at origin. In this direction we mention the works
of Ambrosetti-Brezis-Cerami [3] for higher dimensions, and Prashanth-Sreenadh
[21] in the case of R2.

Our aim in this article is to generalize the result in [21] to the case of systems.
One of the motivations of this work is that parameter dependent systems with ex-
ponential nonlinearities have been recently shown to be very involved in relativistic
Abelian Chern-Simons model with two Higgs particles and two gauge fields, see
[7, 16, 17, 18]. Chern-Simons theories are applied in condensed matter physics,
anyon physics, superconductivity, quantum mechanics, and electro magnetic spin
density, to mention a few. This system may also be applied to heat transfer mod-
eling in a nuclear fuel rod where the nonlinearities f1 and f2 represent the energy
production.

We shall find the weak solutions of the system (Pλ) in the space

H := H1
0 (Ω)×H1

0 (Ω)

endowed with the norm

‖(u, v)‖H :=
[ ∫

Ω

(
|∇u|2 + |∇v|2

)
dx

]1/2

.
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Throughout this paper, we denote by ‖ · ‖1,2 the norm of Sobolev space H1
0 (Ω).

To handle exponential nonlinearity for dimension N = 2, the Moser-Trudinger
inequality [19, 22] plays the same role as the Sobolev imbedding Theorem for the
case of polynomial nonlinearity in dimension N ≥ 3. In this paper, we will use the
following adapted version of Moser-Trudinger inequality for the pair (u, v) [15]:

Lemma 1.1. Let (u, v) ∈ H, then
∫
Ω
eγ(u

2+v2)dx < +∞ for any γ > 0. Moreover,
there exists a constant C = C(Ω) such that

sup
‖(u,v)‖H=1

∫
Ω

eγ(u
2+v2)dx ≤ C, provided γ ≤ 4π. (1.2)

Proof. Let r1 = ‖u‖21,2 and r2 = ‖v‖21,2, be such that r1 + r2 = 1. Then, we have∫
Ω

eγ
u2
r1 dx < C,

∫
Ω

eγ
v2
r2 dx < C, for all γ ≤ 4π.

Hence, using Hölder inequality, (1.2) can be obtained as follows∫
Ω

eγ(u
2+v2) dx ≤ (

∫
Ω

eγ
u2
r1 dx)r1(

∫
Ω

eγ
v2
r2 dx)r2 ≤ Cr1+r2 = C.

�

It follows from the above inequality that the imbedding

(u, v) ∈ H 7→ e(|u|
α+|v|α) ∈ L1(Ω)

is compact for α < 2. Also, it can be shown using a class of functions called the
Moser functions, that the above imbedding is not compact for α = 2.

Weak solutions of (1.1) are the functions u, v ∈ H1
0 (Ω) such that∫

Ω

∇u.∇φdx = λ

∫
Ω

uqφdx+
∫

Ω

f1(u, v)φdx,∫
Ω

∇v.∇ψ dx = λ

∫
Ω

vqψ dx+
∫

Ω

f2(u, v)ψ dx,

for all φ, ψ ∈ H1
0 (Ω).

The main results of this article are given in the following theorem.

Theorem 1.2. There exists Λ > 0 such that (1.1) admits at least two solutions for
all λ ∈ (0,Λ), and no solution for λ > Λ.

Let us write H(u, v) as

H(u, v) =
λ

q + 1

(
|u|q+1 + |v|q+1

)
+ F (u, v),

and let

h1(u, v) =
∂H

∂u
= λuq + f1(u, v), h2(u, v) =

∂H

∂v
= λvq + f2(u, v).

Using (H6), for R sufficiently large

H(u, v) ≤ C(h1(u, v) + h2(u, v)), for |u| > R, and |v| > R. (1.3)

The functional associated with (1.1) is given by

E(u, v) =
1
2

∫
Ω

(
|∇u|2 + |∇v|2

)
dx−

∫
Ω

H(u, v) dx.
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It is well defined on H and C1(H,R). Also, for all (φ, ψ) ∈ H, we have

E′(u, v)(φ, ψ) =
∫

Ω

∇u.∇φdx+
∫

Ω

∇v.∇ψ dx−
∫

Ω

h1(u, v)φdx−
∫

Ω

h2(u, v)ψ dx,

Our approach is to construct anH1 local minimum (uλ, vλ) for E for λ in the largest
interval of existence (0,Λ), and then use the generalized mountain-pass Theorem
of Ghoussoub-Priess [10] about (uλ, vλ) to obtain a second solution.

2. Existence of a minimal solution and a local minimum for E

In this section, we prove the existence of a minimal solution (uλ, vλ) of (1.1),
and then we show that this minimal solution is a local minimum for E. A solution
(uλ, vλ) is said to be minimal if any other solution (u, v) of (1.1) satisfies u ≥ uλ
and v ≥ vλ in Ω.

Lemma 2.1. There exists λ0 > 0 such that (1.1) admits a solution for all λ ∈
(0, λ0).

Proof. From assumption (H5), for any ε > 0, we obtain C > 0, such that

|F (u, v)| ≤ C
(
|u|k+1 + |v|k+1

)
e(1+ε)(u

2+v2)

For ‖(u, v)‖H = ρ such that ρ2 ≤ 2π
1+ε , and by Hölder’s inequality and the Moser-

Trudinger inequality (1.2), we obtain∣∣ ∫
Ω

F (u, v)dx|

≤ C
( ∫

Ω

(
|u|(k+1) + |v|(k+1)

)
e(1+ε)(u

2+v2)dx
)

≤ C

( ∫
Ω

(
|u|(k+1) + |v|(k+1)

)
× exp

(
(1 + ε)(

u2

‖u‖21,2 + ‖v‖21,2
+

v2

‖u‖21,2 + ‖v‖21,2
)(‖u‖21,2 + ‖v‖21,2)

)
dx

)
≤ C

(( ∫
Ω

|u|2(k+1)dx
)1/2

+
( ∫

Ω

|v|2(k+1)dx
)1/2)

≤ C
(
‖u‖k+1

1,2 + ‖v‖k+1
1,2

)
,

where C is a generic constant. Therefore, for ‖(u, v)‖H = ρ, we have

E(u, v) ≥ 1
2
‖(u, v)‖2H − C

(
‖u‖k+1

1,2 + ‖v‖k+1
1,2

)
− λ

q + 1

(
‖u‖q+1

Lq+1 + ‖v‖q+1
Lq+1

)
≥ 1

2
‖(u, v)‖2H − C

(
‖u‖k+1

1,2 + ‖v‖k+1
1,2

)
− λ

q + 1

(
C1‖u‖q+1

1,2 + C2‖v‖q+1
1,2

)
≥ 1

2
‖(u, v)‖2H − C

(
‖(u, v)‖k+1

H + ‖(u, v)‖k+1
H

)
− λ

q + 1

(
C1‖(u, v)‖q+1

H + C2‖(u, v)‖q+1
H

)
≥ 1

2
ρ2 − 2Cρk+1 − C̃λρq+1.

Now, we may fix ρ, λ0 > 0 small enough such that E(u, v) > 0 for all λ ∈ (0, λ0).
We note that E(tu, tv) < 0 for t > 0 small enough. So, inf‖(u,v)‖H≤ρE(u, v) < 0
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and if this infimum is achieved at some (uλ, vλ), then (uλ, vλ) becomes a solution
of (1.1). Let {(un, vn)} ⊂ {‖(un, vn)‖H ≤ ρ} be a minimizing sequence and let
(un, vn) ⇀ (uλ, vλ) in H. Clearly,

‖(uλ, vλ)‖H ≤ lim inf
n→∞

‖(un, vn)‖H.

Now, we can choose ρ < π so that {F (un, vn)} is bounded in Lr(Ω) for some r > 1.
Using this fact and Holders inequality, it is not difficult to show that {F (un, vn)}
is equi-integrable family in L1(Ω) and lim|A|→0

∫
A
|F (un, vn)|dx = 0. Therefore, by

Vitali’s convergence Theorem, we obtain∫
Ω

F (un, vn)dx→
∫

Ω

F (uλ, vλ)dx.

Hence, (uλ, vλ) is a minimizer of E(u, v). By the maximum principle, we obtain
uλ, vλ > 0 in Ω. �

Lemma 2.2. Let Λ := sup{λ : (1.1) admits a solution}. Then 0 < Λ <∞.

Proof. By Lemma 2.1, it is clear that Λ > 0. Suppose Λ = ∞. Then there exists a
sequence λn →∞ such that (1.1) with λ = λn has a solution (uλn , vλn). Hence

λ1

∫
Ω

uλn
φ1 dx =

∫
Ω

∇uλn∇φ1 dx =
∫

Ω

(
λnu

q
λn

+ f1(uλn , vλn)
)
φ1 dx. (2.1)

where φ1 is the eigenfunction associated with the first eigenvalue λ1 of −∆ on
H1

0 (Ω).
Now, we choose λn > λ. By (H4) we have

λnt
q + f1(t, s) > λ1t, λns

q + f2(t, s) > λ1s. (2.2)

From (2.1) and (2.2), we obtain

λ1

∫
Ω

uλn
φ1dx > λ1

∫
Ω

uλn
φ1dx (2.3)

which is absurd. Hence, Λ is finite. �

Lemma 2.3. For all λ ∈ (0,Λ), (1.1) admits a solution.

Proof. Suppose λ′ < λ < λ′′ < Λ and (1.1) with λ = λ′, and with λ = λ′′ admit
solutions (uλ′ , vλ′), (uλ′′ , vλ′′) respectively. Then (uλ′ , vλ′) is a subsolution of (1.1),
and (uλ′′ , vλ′′) is a supersolution of (1.1), and hence, by the monotone iterative
procedure, there exists a solution of (1.1). �

We recall the following well known comparison Theorem, whose proof can be
found in [20].

Lemma 2.4. Let f : [0,∞) → [0,∞) be such that f(t)/t is non-increasing for
t > 0. Let v, w ∈W 1,2

0 (Ω) be weak sub and super solutions (respectively) of

−∆u = f(u), u > 0 in Ω
u = 0 on ∂Ω.

Then w ≥ v a.e. in Ω.

Lemma 2.5. For all λ ∈ (0,Λ), (1.1) admits a minimal solution (uλ, vλ).
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Proof. Let v0 be the unique solution of the problem

−∆u = λuq, u > 0 in Ω
u = 0 on ∂Ω

(2.4)

Then, (v0, v0) is a subsolution of (1.1). Now, let (u, v) be a solution of (1.1). Then,
u and v are supersolutions of (2.4), and by the above weak comparison Theorem,
u ≥ v0, and v ≥ v0. By the monotone iteration procedure with U = (v0, v0), and
U = (u, v) as sub and super-solutions of (1.1), we obtain a solution (uλ, vλ). It is
easy to see that (uλ, vλ) is the minimal solution. �

Lemma 2.6. (uλ, vλ) is a local minimum of E in H.

Proof. We use Perron’s method as in [11] and [13]. Arguing by contradiction, let us
suppose that there exists λ ∈ (0,Λ) and a sequence (un, vn) such that (un, vn) →
(uλ, vλ) strongly in H and E(un, vn) < E(uλ, vλ).

Let λ < λ0 < Λ and let (uλ0 , vλ0) be the minimal solution of (1.1) with λ = λ0.
Let U = (u, v) = (uλ0 , vλ0), and let U = (u, v) = (v0, v0), where v0 is the unique
solution of (2.4). Consider the following cut-off functions:

y1,n(x) =


u(x) if un(x) ≤ u(x)
un(x) if u(x) ≤ un(x) ≤ u(x)
u(x) if un(x) ≥ u(x)

y2,n(x) =


v(x) if vn(x) ≤ v(x)
vn(x) if v(x) ≤ vn(x) ≤ v(x)
v(x) if vn(x) ≥ v(x).

Also define

Wn = (w1,n, w2,n) := ((un − u)+, (vn − v)+),

Zn = (z1,n, z2,n) := ((un − u)−, (vn − v)−).

We also define the following subsets:

S1,n = {x ∈ Ω : un(x) < u(x) and vn(x) < v(x)},
S2,n = {x ∈ Ω : un(x) < u(x) and v(x) ≤ vn(x) ≤ v(x)},

S3,n = {x ∈ Ω : un(x) < u(x) and vn(x) > v(x)},
S4,n = {x ∈ Ω : u(x) ≤ un(x) ≤ u(x) and vn(x) < v(x)},
S5,n = {x ∈ Ω : u(x) ≤ un(x) ≤ u(x) and vn(x) > v(x)},

S6,n = {x ∈ Ω : un(x) > u(x) and vn(x) < v(x)},
S7,n = {x ∈ Ω : un(x) > u(x) and v(x) ≤ vn(x) ≤ v(x)},

S8,n = {x ∈ Ω : un(x) > u(x) and vn(x) > v(x)}.

Then,
(un, vn) = (y1,n, y2,n)− (z1,n, z2,n) + (w1,n, w2,n),

(y1,n, y2,n) ∈M :=
{
(u, v) ∈ H : u ≤ u ≤ u and v ≤ v ≤ v

}
,

E(un, vn) = E(y1,n, y2,n) +
8∑
i=1

Ai,n,

(2.5)
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where

A1,n =
1
2

∫
S1,n

(
|∇un|2 − |∇u|2

)
dx+

1
2

∫
S1,n

(
|∇vn|2 − |∇v|2

)
dx

−
∫
S1,n

(
H(un, vn)−H(u, v)

)
dx,

A2,n =
1
2

∫
S2,n

(
|∇un|2 − |∇u|2

)
dx−

∫
S2,n

(
H(un, vn)−H(u, vn)

)
dx,

A3,n =
1
2

∫
S3,n

(
|∇un|2 − |∇u|2

)
dx+

1
2

∫
S3,n

(
|∇vn|2 − |∇v|2

)
dx

−
∫
S3,n

(
H(un, vn)−H(u, v)

)
dx,

A4,n =
1
2

∫
S4,n

(
|∇vn|2 − |∇v|2

)
dx−

∫
S4,n

(
H(un, vn)−H(un, v)

)
dx,

A5,n =
1
2

∫
S5,n

(
|∇vn|2 − |∇v|2

)
dx−

∫
S5,n

(
H(un, vn)−H(un, v)

)
dx,

A6,n =
1
2

∫
S6,n

(
|∇un|2 − |∇u|2

)
dx+

1
2

∫
S6,n

(
|∇vn|2 − |∇v|2

)
dx

−
∫
S6,n

(
H(un, vn)−H(u, v)

)
dx,

A7,n =
1
2

∫
S7,n

(
|∇un|2 − |∇u|2

)
dx−

∫
S7,n

(
H(un, vn)−H(u, vn)

)
dx,

A8,n =
1
2

∫
S8,n

(
|∇un|2 − |∇u|2

)
dx+

1
2

∫
S8,n

(
|∇vn|2 − |∇v|2

)
dx

−
∫
S8,n

(
H(un, vn)−H(u, v)

)
dx.

Following Perron’s method as in the proof of [2, Proposition 2.2], one can states
that E(uλ, vλ) = inf

M
E(u, v), and then concludes that

E(un, vn) ≥ E(uλ, vλ) +
8∑
i=1

Ai,n.

Now, since (un, vn) → (uλ, vλ) strongly in H, u < uλ < u and v < vλ < v in Ω, we
have meas(Si,n)i=1−8 → 0 as n→∞. Therefore,

‖Wn‖H, ‖Zn‖H → 0 as n→∞.

Using (2.5), mean value Theorem, and (H2), we obtain for some 0 < θ < 1:
8∑
i=1

Ai,n ≥
1
2

(
‖Wn‖2H + ‖Zn‖2H

)
−

∫
Ω

∇u∇z1,ndx

+
∫
S1,n∪S2,n∪S3,n

h1(u− θz1,n, v − θz2,n)z1,ndx−
∫

Ω

∇v∇z2,ndx

+
∫
S1,n∪S4,n∪S6,n

h2(u− θz1,n, v − θz2,n)z2,ndx+
∫

Ω

∇u∇w1,ndx
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−
∫
S6,n∪S7,n∪S8,n

h1(u+ θw1,n, v + θw2,n)w1,ndx+
∫

Ω

∇v∇w2,ndx

−
∫
S3,n∪S5,n∪S8,n

h2(u+ θw1,n, v + θw2,n)w2,ndx.

Since (u, v)(resp. (u, v)) is a supersolution (resp. subsolution ) of (1.1),
8∑
i=1

Ai,n ≥
1
2

(
‖Wn‖2H + ‖Zn‖2H

)
+

∫
S1,n∪S2,n∪S3,n

(
h1(u− θz1,n, v − θz2,n)− h1(u, v)

)
z1,ndx

+
∫
S1,n∪S4,n∪S6,n

(
h2(u− θz1,n, v − θz2,n)− h2(u, v)

)
z2,ndx

−
∫
S6,n∪S7,n∪S8,n

(
h1(u+ θw1,n, v + θw2,n)− h1(u, v)

)
w1,ndx

−
∫
S3,n∪S5,n∪S8,n

(
h2(u+ θw1,n, v + θw2,n)− h2(u, v)

)
w2,ndx

≥ 1
2

(
‖Wn‖2H + ‖Zn‖2H

)
−

∫
S1,n∪S2,n∪S3,n

(∂h1

∂t
(u− θ′z1,n, v − θ′z2,n)

+
∂h1

∂s
(u− θ′z1,n, v − θ′z2,n)

)
z2
1,ndx

−
∫
S1,n∪S4,n∪S6,n

(∂h2

∂t
(u− θ′z1,n, v − θ′z2,n)

− ∂h2

∂s
(u− θ′z1,n, v − θ′z2,n)

)
z2
2,ndx

−
∫
S6,n∪S7,n∪S8,n

(∂h1

∂t
(u+ θ′w1,n, v + θ′w2,n)

+
∂h1

∂t
(u+ θ′w1,n, v + θ′w2,n)

)
w2

1,ndx

−
∫
S3,n∪S5,n∪S8,n

(∂h2

∂t
(u+ θ′w1,n, v + θ′w2,n)

+
∂h2

∂s
(u+ θ′w1,n, v + θ′w2,n)

)
w2

2,ndx.

It follows from (H7), (1.2), Hölder’s and Sobolev’s inequalities that for n sufficiently
large,

8∑
i=1

Ai,n ≥
1
2

(
‖Wn‖2H + ‖Zn‖2H

)
− C1

∫
S1,n∪S2,n∪S3,n

e(1+ε)(u
2+v2)z2

1,ndx

− C2

∫
S1,n∪S4,n∪S6,n

e(1+ε)(u
2+v2)z2

2,ndx

− C3

∫
S6,n∪S7,n∪S8,n

e(1+ε)((u+w1,n)2+(v+w2,n)2)w2
1,ndx
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− C4

∫
S3,n∪S5,n∪S8,n

e(1+ε)((u+w1,n)2+(v+w2,n)2)w2
2,ndx

≥ 1
2

(
‖Wn‖2H + ‖Zn‖2H

)
− o(1)

(
‖Wn‖2H + ‖Zn‖2H

)
.

Hence E(un, vn) ≥ E(uλ, vλ) which is a contradiction. �

3. Existence of a second solution

Throughout this section, we fix λ ∈ (0,Λ) and we denote by (uλ, vλ) the local
minimum of E obtained in the previous section as the minimal solution of (1.1).
Using min-max methods and Mountain pass lemma around a closed set, we prove
the existence of a second solution (uλ, vλ) of (1.1) such that uλ ≥ uλ and vλ ≥ vλ
in Ω. Let T = {(u, v) : u ≥ uλ, v ≥ vλ a.e. in Ω}.

We note that limt→+∞E(uλ+tu, vλ+tv) = −∞ for any (u, v) ∈ H\{0}. Hence,
we may fix (ũ, ṽ) ∈ H\{0} such that E(uλ+ ũ, vλ+ ṽ) < 0. We define the mountain
pass level

ρ0 = inf
γ∈Γ

sup
t∈[0,1]

E(γ(t)), (3.1)

where Γ = {γ : [0, 1] → H : γ ∈ C, γ(0) = (uλ, vλ), and γ(1) = (uλ + ũ, vλ + ṽ)}.
It follows that ρ0 ≥ E(uλ, vλ). If ρ0 = E(uλ, vλ), we obtain that inf{E(u, v) :
‖(u, v)− (uλ, vλ)‖H = R} = E(uλ, vλ) for all R ∈ (0, R0) for some R0 small.

We now let F = T if ρ0 > E(uλ, vλ), and F = T ∩ {‖(u− uλ, v − vλ)‖H = R0
2 }

if ρ0 = E(uλ, vλ). We have the following upper bound on ρ0.

Lemma 3.1. With ρ0 defined as in (3.1), we have ρ0 < E(uλ, vλ) + 2π.

Proof. Without loss of generality, we assume that 0 ∈ Ω. Define the sequence

ψ̃n(x) =


1

2
√
π
(log n)1/2 if 0 ≤ |x| ≤ 1

n
1

2
√
π

log(1/|x|)
(logn)1/2 if 1

n ≤ |x| ≤ 1

0 if|x| ≥ 1

Now, consider (ψ̃n, ψ̃n) ∈ H. Then ‖(ψ̃n, ψ̃n)‖H = 1. We now choose δ > 0 such
that Bδ(0) ⊂ Ω and let ψn(x) = ψ̃n(xδ ). Then, ψn has support in Bδ(0) and
(ψn, ψn) is such that ‖(ψn, ψn)‖H = 1 for all n. Now, suppose ρ0 ≥ E(uλ, vλ) + 2π
and we derive a contradiction. This means that for some tn, sn > 0:

E(uλ + tnψn, vλ + snψn) = sup
t,s>0

E(uλ+tψn, vλ+sψn) ≥ E(uλ, vλ) + 2π, ∀n.

Since E(uλ + tu, vλ + sv) → −∞ as t, s→ +∞, we obtain that (tn, sn) is bounded
in R2. Then, using ‖(ψn, ψn)‖H = 1, we obtain

t2n + s2n
4

+
∫

Ω

(
tn∇uλ∇ψn + sn∇vλ∇ψn

)
dx

≥
∫

Ω

(
H(uλ + tnψn, vλ + snψn)−H(uλ, vλ)

)
dx+ 2π

Now, using the fact that (uλ, vλ) is a solution, we obtain

t2n + s2n
4

≥
∫

Ω

[
H(uλ + tnψn, vλ + snψn)

−H(uλ, vλ)− ψn

(
tnh1(uλ, vλ) + snh2(uλ, vλ)

)]
dx+ 2π.

(3.2)



10 N. MEGREZ, K. SREENADH, B. KHALDI EJDE-2012/236

Using (H2) we have that h1, h2 are non-decreasing, then there exist θn ∈ (0, 1)
such that∫

Ω

[
H(uλ + tnψn, vλ + snψn)−H(uλ, vλ)− ψn

(
tnh1(uλ, vλ) + snh2(uλ, vλ)

)]
dx

=
∫

Ω

ψ2
n

[
t2n
∂h1

∂u
(uλ + θntnψn, vλ + θnsnψn) + s2n

∂h2

∂v
(uλ + θntnψn, vλ + θnsnψn)

+ tnsn
∂h1

∂v
(uλ + θntnψn, vλ + θnsnψn) + tnsn

∂h2

∂u
(uλ + θntnψn, vλ + θnsnψn)

]
dx

≥ 0 .

Now, by (3.2), we see that

t2n + s2n ≥ 8π, for all n (3.3)

Since (tn, sn) is a critical point of E(uλ + tψ, vλ + sψ), we obtain

E′(uλ + tψn, vλ + sψn)|(t,s)=(tn,sn)
= 0.

Then

t2n + s2n =
∫

Ω

[(
h1(uλ + tnψn, vλ + snψn)− h1(uλ, vλ)

)
tn

+
(
h2(uλ + tnψn, vλ + snψn)− h2(uλ, vλ)

)
sn

]
ψndx.

Since tnψn →∞, snψn →∞ on {|x| ≤ δ/n}, we obtain

t2n + s2n ≥
∫

Ω∩{|x|≤δ/n}
e(t

2
n+s2n)ψ2

n(tn + sn)ψndx

=
√
πδ2

2n2
e(t

2
n+s2n) log n

4π (tn + sn)(log n)1/2

=
√
πδ2

2
e(

t2n+s2n
4π −2) logn(tn + sn)(log n)1/2

(3.4)

This and (3.3) imply that
t2n + s2n → 8π, (3.5)

and by (3.4) we obtain

t2n + s2n ≥ (tn + sn)(log n)1/2.

This in turn implies that t2n + s2n →∞ as n→∞, which contradicts (3.5). �

Definition 3.2. Let F ⊂ H be a closed set. We say that a sequence (un, vn) ⊂ H
is a Palais-Smale sequence for E at level ρ around F , and we denote (PS)F,ρ, if

lim
n→+∞

dist
(
(un, vn),F

)
= 0, lim

n→+∞
E(un, vn) = ρ,

lim
n→+∞

‖E′(un, vn)‖H−1 = 0.

Lemma 3.3. Let F ⊂ H be a closed set and ρ ∈ R. Let {(un, vn)} ⊂ H be
a (PS)F,ρ sequence. Then there exists (u0, v0) such that, up to a subsequence,
un ⇀ u0 and vn ⇀ v0 in H1

0 (Ω), and

lim
n→∞

∫
Ω

h1(un, vn)dx =
∫

Ω

h1(u0, v0)dx,

lim
n→∞

∫
Ω

h2(un, vn)dx =
∫

Ω

h2(u0, v0)dx
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Proof. We have the following relations as n→ +∞
1
2

∫
Ω

|∇un|2dx+
1
2

∫
Ω

|∇vn|2dx−
∫

Ω

H(un, vn)dx = ρ+ on(1) (3.6)∣∣ ∫
Ω

∇un.∇ϕdx−
∫

Ω

h1(un, vn)ϕdx
∣∣ ≤ on(1)‖ϕ‖, ∀ϕ ∈ H1

0 (Ω) (3.7)∣∣ ∫
Ω

∇vn.∇ϕdx−
∫

Ω

h2(un, vn)ϕdx
∣∣ ≤ on(1)‖ϕ‖, ∀ϕ ∈ H1

0 (Ω) (3.8)

Step 1: We claim that

sup
n

(
‖un‖H1

0 (Ω) + ‖vn‖H1
0 (Ω)

)
< +∞,

sup
n

∫
Ω

h1(un, vn)undx < +∞,

sup
n

∫
Ω

h2(un, vn)vndx < +∞.

We note that for all ε > 0, there exists sε such that

h(t, s) ≤ ε
(
h1(t, s)t+ h2(t, s)s

)
, for |s|, |t| ≥ sε.

From (3.6), we obtain
1
2

∫
Ω

(
|∇un|2 + |∇vn|2

)
dx ≤ Cε + ε

∫
Ω

(
h1(un, vn)un + h2(un, vn)vn

)
dx (3.9)

From (3.7) with ϕ = un, and (3.8) with ϕ = vn, we obtain∫
Ω

h1(un, vn)undx ≤
∫

Ω

|∇un|2dx+ o(1)‖un‖H1
0 (Ω),∫

Ω

h2(un, vn)vndx ≤
∫

Ω

|∇vn|2dx+ o(1)‖vn‖H1
0 (Ω).

From (3.9) we obtain∫
Ω

(
h1(un, vn)un + h2(un, vn)vn

)
dx

≤ 2Cε + 2ε
∫

Ω

(
h1(un, vn)un + h2(un, vn)vn

)
dx+ o(1)

≤ 2Cε
1− 2ε

+ o(1)
(
‖un‖+ ‖vn‖

)
.

Substituting this in (3.9), we obtain

sup
n

(
‖un‖H1

0 (Ω) + ‖vn‖H1
0 (Ω)

)
< +∞,

which implies

sup
n

∫
Ω

h1(un, vn)undx <∞, sup
n

∫
Ω

h2(un, vn)vndx <∞.

Step 2: We claim that

lim
n→+∞

∫
Ω

h1(un, vn)dx =
∫

Ω

h1(u0, v0)dx, (3.10)

lim
n→+∞

∫
Ω

h2(un, vn)dx =
∫

Ω

h2(u0, v0)dx, (3.11)
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lim
n→+∞

∫
Ω

H(un, vn)dx =
∫

Ω

H(u0, v0)dx (3.12)

Let |A| denote the Lebesgue measure of A ⊂ R2. We show that {h1(un, vn)} and
{h2(un, vn)} are equi-integrable in L1, and then, (3.10) and (3.11) follow from Vi-
tali’s convergence Theorem. (3.12) follows from (1.3) and the Lebesgue dominated
convergence Theorem. We claim that for all ε > 0, there exists δ > 0 such that for
any A ⊂ Ω with |A| < δ, we have

sup
n

∫
A

|h2(un, vn)|dx ≤ ε.

Let C1 = supn
∫
A
|h2(un, vn)vn|dx. By step 1, C1 < +∞. Since {un} and {vn} are

bounded in H1
0 , by (3.7) and (3.8) we have∫

Ω

|h2(un, vn)un|dx <∞,

∫
Ω

|h1(un, vn)vn|dx <∞.

Let C2 = supn
∫
A
|h2(un, vn)un|dx, and let C = max

{
C1, C2

}
. Define

µε = max
|t|≤ 3C

ε , |s|≤ 3C
ε

{
|h2(t, s)|

}
.

Then, for any A ⊂ Ω with |A| ≤ ε
3µε

, we obtain∫
A

|h2(un, vn)| dx

≤
∫
A∩{|un|, |vn|≤ 3C

ε }
|h2(un, vn)| dx+

∫
A∩{|vn|≥ 3C

ε }

|h2(un, vn)vn|
vn

dx

+
∫
A∩{|un|≥ 3C

ε }

|h2(un, vn)un|
un

dx

≤ |A|µε +
ε

3
+
ε

3
≤ ε.

which shows the equi-integrability of {h2(un, vn)}. In a similar way, we can show
the equi-integrability of {h1(un, vn)}. This completes step 2 and the proof of
Lemma 3.3. �

We will also use the following version of Lion’s Lemma [14].

Lemma 3.4. Let {(un, vn)} be a sequence in H such that ‖(un, vn)‖H = 1, for
all n and un ⇀ u, vn ⇀ v in H1

0 for some (u, v) 6= (0, 0). Then, for 4π < p <
4π(1− ‖u‖21,2 − ‖v‖21,2)−1,

sup
n≥1

∫
Ω

ep(u
2
n+v2n)dx <∞

Proof. It is easy to see that

lim
n→∞

‖(un − u, vn − v)‖2H = lim
n→∞

‖un − u‖21,2 + ‖vn − v‖21,2 = 1− ‖u‖21,2 − ‖v‖21,2,

u2
n ≤ (un − u)2 + 2εu2

n + Cεu
2 for ε small.

Then ∫
Ω

ep(u
2
n+v2n)dx ≤

∫
Ω

ep((un−u)2+(vn−v)2)epε(u
2
n+v2n)e(u

2+v2)Cεdx.
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Now, using Hölder’s inequality with r1, r2, r3 such that 1
r1

+ 1
r2

+ 1
r3

= 1, we obtain∫
Ω

ep(u
2
n+v2n)dx ≤

( ∫
Ω

epr1((un−u)2+(vn−v)2)dx
)1/r1( ∫

eεpr2(u
2
n+v2n)dx

)1/r2

×
( ∫

epr3(u
2+v2)Cεdx

)1/r3
.

The second and third integrals are finite for ε small and using inequality (1.2). For
the first integral we have∫

Ω

epr1((un−u)2+(vn−v)2)dx

=
∫

Ω

e
pr1(

un−u
‖(un−u,vn−v)‖H

)2+( vn−v
‖(un−u,vn−v)‖H

)2‖(un−u,vn−v)‖2Hdx.

We can choose r1 > 1 and close to 1 such that pr1(1 − ‖u‖21,2 − ‖v‖21,2) < 4π by
the hypothesis and the first equation of this proof. Hence, this is bounded again
thanks to inequality (1.2). �

Now, we prove our main result.

Theorem 3.5. For λ ∈ (0,Λ), problem (1.1) has a second nontrivial solution
(uλ, vλ) such that uλ ≥ uλ > 0 and vλ ≥ vλ > 0 in Ω.

Proof. Let {(un, vn)} be a Palais-Smale sequence for E at the level ρ0 around F .
Existence of a such sequence can be obtained using Ekeland Variational principle
on F ([2, 10]). Then, by Lemma 3.3, there exist (uλ, vλ) and a subsequence denoted
again by (un, vn), such that un ⇀ uλ and vn ⇀ vλ in H1

0 (Ω). It is easy to verify
that (uλ, vλ) is a solution of (1.1).

It remains to show that (uλ, vλ) 6≡ (uλ, vλ). We suppose that uλ ≡ uλ and
vλ ≡ vλ and we derive a contradiction:
Case 1: ρ0 = E(uλ, vλ). In this case, we recall that

F = {(u, v) ∈ T : ‖(u− uλ, v − vλ)‖H =
R0

2
},

E(uλ, vλ) + o(1) = E(un, vn) =
1
2

∫
Ω

|∇un|2dx+
1
2

∫
Ω

|∇vn|2dx−
∫

Ω

H(un, vn)dx.

From Lemma 3.3, (equation (3.8)) we have
∫
Ω
H(un, vn)dx→

∫
Ω
H(uλ, vλ). Thus,

‖(un − uλ, vn − vλ)‖H = o(1), which contradicts the fact that (un, vn) ∈ F .
Case 2: ρ0 6= E(uλ, vλ). In this case ρ0 −E(uλ, vλ) ∈ (0, 2π) and E(un, vn) → ρ0.
Let β0 =

∫
Ω
H(uλ, vλ)dx. Then from Lemma 3.3,

1
2

∫
Ω

|∇un|2dx+
1
2

∫
Ω

|∇vn|2dx→ (ρ0 + β0) as n→∞ (3.13)

Also, by Fatou’s lemma we have that E(uλ, vλ) ≤ lim infn→+∞E(un, vn). If
{(un, vn)} does not converge strongly in H, then E(uλ, vλ) < ρ0. By Lemma
3.1, for ε small, we have

(1 + ε)(ρ0 − E(uλ, vλ)) < 2π.

Hence, from (3.13) we have

(1 + ε)‖(un, vn)‖2H < 4π
ρ0 + β0

ρ0 − E(uλ, vλ)



14 N. MEGREZ, K. SREENADH, B. KHALDI EJDE-2012/236

< 4π
ρ0 + β0

ρ0 + β0 − 1
2‖(uλ, vλ)‖

2
H

< 4π
(
1− 1

2
(
‖(uλ, vλ)‖2H
ρ0 + β0

)
)−1

< 4π
(
1− ‖ uλ√

2(ρ0 + β0)
‖1,2 − ‖

vλ√
2(ρ0 + β0)

‖1,2
)−1

.

Now, choose p > 4π such that

(1 + ε)‖(un, vn)‖2H ≤ p < 4π(1− ‖ uλ√
2(ρ0 + β0)

‖1,2 − ‖
vλ√

2(ρ0 + β0)
‖1,2)−1.

Since un

‖(un,vn)‖H ⇀ uλ√
2(ρ0+β0)

and vn

‖(un,vn)‖H ⇀ vλ√
2(ρ0+β0)

weakly in H1
0 (Ω), by

Lemma 3.4, we have

sup
n

∫
Ω

exp
(
p
[( un
‖(un, vn)‖H

)2 +
( vn
‖(un, vn)‖H

)2])
dx <∞ (3.14)

From the definition of h1, for any δ > 0, there exists a constant C > 0 such that

sup
n
h1(un, vn) ≤ Ce(1+δ)(u

2
n+v2n).

Now, it is not difficult to show that h1(un, vn) ∈ Lq(Ω) for some q > 1. Indeed,
taking δ close to zero and q close to 1 such that q(1 + δ) < 1 + ε,∫

Ω

∣∣∣h1(un, vn)
∣∣∣qdx ≤ C

∫
Ω

eq(1+δ)(u
2
n+v2n)dx

≤ C

∫
Ω

e
q(1+δ)

[(
un

‖(un,vn)‖H

)2

+

(
vn

‖(un,vn)‖H

)2]
‖(un,vn)‖2H

dx

≤ C

∫
Ω

e
p

[(
un

‖(un,vn)‖H

)2

+

(
vn

‖(un,vn)‖H

)2]
dx

Now, using (3.14), we obtain that h1 ∈ Lq(Ω). So, by Hölder inequality we have
and the assumption that uλ = uλ, vλ = vλ, we have∫

Ω

h1(un, vn)undx −→
∫

Ω

h1(uλ, vλ) as n→∞.

Hence,

o(1) = E′(un, vn)(un, 0) =
1
2

∫
Ω

|∇un|2dx−
∫

Ω

h1(un, vn)undx

=
1
2

∫
Ω

|∇un|2dx−
∫

Ω

|∇uλ|2 + o(1).

Similarly, we obtain
∫
Ω
|∇vn|2dx =

∫
Ω
|∇vλ|2 + o(1). This is a contradiction to the

assumption that ρ0 6= E(uλ, vλ). �
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