ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE RADIAL P-LAPLACIAN EQUATION

SONIA BEN OTHMAN, HABIB MÂAGLI

Abstract. We study the existence, uniqueness and asymptotic behavior of positive solutions to the nonlinear problem

$$
\begin{gathered}
\frac{1}{A}\left(A \Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+q(x) u^{\alpha}=0, \quad \text { in }(0,1) \\
\lim _{x \rightarrow 0} A \Phi_{p}\left(u^{\prime}\right)(x)=0, \quad u(1)=0
\end{gathered}
$$

where $\alpha<p-1, \Phi_{p}(t)=t|t|^{p-2}, A$ is a positive differentiable function and q is a positive measurable function in $(0,1)$ such that for some $c>0$,

$$
\frac{1}{c} \leq q(x)(1-x)^{\beta} \exp \left(-\int_{1-x}^{\eta} \frac{z(s)}{s} d s\right) \leq c
$$

Our arguments combine monotonicity methods with Karamata regular variation theory.

1. Introduction

Let $p>1$ and $\alpha<p-1$. We consider the boundary-value problem

$$
\begin{gather*}
-\frac{1}{A}\left(A \Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+q(x) u^{\alpha}=0, \quad \text { in }(0,1) \tag{1.1}\\
A \Phi_{p}\left(u^{\prime}\right)(0):=\lim _{x \rightarrow 0} A \Phi_{p}\left(u^{\prime}\right)(x)=0, \quad u(1)=0
\end{gather*}
$$

Here, A is a continuous function in $[0,1)$, differentiable and positive on $(0,1)$ and for all $t \in \mathbb{R}, \Phi_{p}(t)=t|t|^{p-2}$. Our goal in this paper is to study problem (1.1) under appropriate conditions on q. We obtain the existence of a unique positive continuous solution to (1.1) and establish estimates on such solution.

Several articles have been devoted to the study of the differential equation

$$
-\frac{1}{A}\left(A \Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+q(x) u^{\alpha}=0, \quad \text { in }(0,1)
$$

with various boundary conditions, especially for the one-dimensional p-Laplacian equation (see [1, 2, 3, 4, 5, 11, 13, 14, 15]). For $\alpha<0$, problem (1.1) has been studied in [4, where the existence and uniqueness of positive solutions and some estimates for the solutions have been obtained. Thus, it is interesting to know the

[^0]exact asymptotic behavior of such solution as $x \rightarrow 1$ and to extend the study of (1.1) to $0 \leq \alpha<p-1$.

Asymptotic behavior of solutions of the semilinear elliptic equation

$$
\begin{equation*}
-\Delta u=q(x) u^{\alpha}, \quad \alpha<1, x \in \Omega \tag{1.2}
\end{equation*}
$$

for Ω bounded or an unbounded in $\mathbb{R}^{n}(n \geq 2)$, with homogeneous Dirichlet boundary conditions, has been investigated by several authors; see for example [6, 7, 8, 9, 10, 12, 16, 17, 20] and the references therein. Applying Karamata regular variation theory, Mâagli [16] studied (1.2), when Ω is a bounded $C^{1,1}$-domain. He showed that 1.2 has a unique positive classical solution that satisfies homogeneous Dirichlet boundary conditions and gave sharp estimates on such solution. This studied extended the estimates stated in [12, [17, 20. In this work, we extend the result established in [16] to the radial case associated to problem (1.1).

To simplify our statements, we need to fix some notation and make some assumptions. Throughout this paper, we shall use \mathcal{K} to denote the set of Karamata functions L defined on $(0, \eta$] by

$$
L(t):=c \exp \left(\int_{t}^{\eta} \frac{z(s)}{s} d s\right)
$$

for some positive constants η, c, and a function $z \in C([0, \eta])$ such that $z(0)=0$. Recall that $L \in \mathcal{K}$ if and only if L is a positive function in $C^{1}((0, \eta])$, for some $\eta>0$, such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{t L^{\prime}(t)}{L(t)}=0 \tag{1.3}
\end{equation*}
$$

For two nonnegative functions f and g defined on a set S, we write $f(x) \approx g(x)$, if there exists a constant $c>0$ such that $\frac{1}{c} g(x) \leq f(x) \leq c g(x)$, for each $x \in S$. Furthermore, we refer to $G_{p} f$, as the function defined on $(0,1)$ by

$$
G_{p} f(x):=\int_{x}^{1}\left(\frac{1}{A(t)} \int_{0}^{t} A(s) f(s) d s\right)^{\frac{1}{p-1}} d t
$$

where f is a nonnegative measurable function in $(0,1)$. We point out that if f is a nonnegative continuous function such that the mapping $x \mapsto A(x) f(x)$ is integrable in a neighborhood of 0 , then $G_{p} f$ is the solution of the problem

$$
\begin{gather*}
-\frac{1}{A}\left(A \Phi_{p}\left(u^{\prime}\right)\right)^{\prime}=f, \quad \text { in }(0,1) \tag{1.4}\\
A \Phi_{p}\left(u^{\prime}\right)(0)=0, \quad u(1)=0
\end{gather*}
$$

As it is mentioned above, our main purpose in this paper is to establish existence and global behavior of a positive solution for problem (1.1). Let us introduce our hypotheses.

The function A is continuous in $[0,1)$, differentiable and positive in $(0,1)$ such that

$$
A(x) \approx x^{\lambda}(1-x)^{\mu}
$$

with $\lambda \geq 0$ and $\mu<p-1$.
The function q is required to satisfy
(H1) q is a positive measurable function on $(0,1)$ such that

$$
q(x) \approx(1-x)^{-\beta} L(1-x)
$$

with $\beta \leq p$ and $L \in \mathcal{K}$ defined on $(0, \eta](\eta>1)$ such that

$$
\int_{0}^{\eta} t^{\frac{1-\beta}{p-1}}(L(t))^{\frac{1}{p-1}} d t<+\infty
$$

We need to verify the condition

$$
\int_{0}^{\eta} t^{\frac{1-\beta}{p-1}}(L(t))^{\frac{1}{p-1}} d t<+\infty
$$

in hypothesis (H1), only if $\beta=p$ (See Lemma 2.2 below).
As a typical example of function q satisfying (H1), we have

$$
q(x):=(1-x)^{-\beta}\left(\log \frac{2}{1-x}\right)^{-\nu}, \quad x \in[0,1)
$$

Then for $\beta<p$ and $\nu \in \mathbb{R}$ or $\beta=p$ and $\nu>p-1$, the function q satisfies (H1).
Our main result is as follows.
Theorem 1.1. Assume (H1). Then problem (1.1) has a unique positive and continuous solution u satisfying, for $x \in(0,1)$,

$$
\begin{equation*}
u(x) \approx \theta_{\beta}(x) \tag{1.5}
\end{equation*}
$$

where θ_{β} is the function defined on $[0,1)$ by

$$
\theta_{\beta}(x):= \begin{cases}\left(\int_{0}^{1-x} \frac{(L(s))^{\frac{1}{p-1}}}{s} d s\right)^{\frac{p-1}{p-1-\alpha}}, & \text { if } \beta=p \tag{1.6}\\ (1-x)^{\frac{p-\beta}{p-1-\alpha}}(L(1-x))^{\frac{1}{p-1-\alpha}}, & \text { if } \frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1}<\beta<p, \\ (1-x)^{\frac{p-1-\mu}{p-1}}, & \text { if } \beta<\frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1} \\ (1-x)^{\frac{p-1-\mu}{p-1}}\left(\int_{1-x}^{\eta} \frac{L(s)}{s} d s\right)^{\frac{1}{p-1-\alpha}}, & \text { if } \beta=\frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1} .\end{cases}
$$

The article is organized as follows. In Section 2, we prove some basic estimates and recall some results on functions belonging to \mathcal{K}. In Section 3, we prove Theorem 1.1. In the last section, we present some applications.

2. Estimates

In what follows, we give estimates on the functions $G_{p} q$ and $G_{p}\left(q \theta_{\beta}^{\alpha}\right)$, where q is a function satisfying (H1) and θ_{β} is the function given by (1.6). To this end, we recall some fundamental properties of functions belonging to the class \mathcal{K}, taken from [7, 18, 19 .

Lemma 2.1 (18, 19]). Let $L_{1}, L_{2} \in \mathcal{K}, m \in \mathbb{R}$ and $\epsilon>0$. Then $L_{1} L_{2} \in \mathcal{K}$, $L_{1}^{m} \in \mathcal{K}$, and $\lim _{t \rightarrow 0^{+}} t^{\epsilon} L_{1}(t)=0$.

Lemma 2.2 ([18, 19]). Let $L \in \mathcal{K}$ and $\delta \in \mathbb{R}$. Then we have the following:
(i) If $\delta<2$, then $\int_{0}^{\eta} t^{1-\delta} L(t) d t$ converges and

$$
\int_{0}^{s} t^{1-\delta} L(t) d t \sim \frac{s^{2-\delta} L(s)}{2-\delta} \quad \text { as } s \rightarrow 0^{+}
$$

(ii) If $\delta>2$, then $\int_{0}^{\eta} t^{1-\delta} L(t) d t$ diverges and

$$
\int_{s}^{\eta} t^{1-\delta} L(t) d t \sim \frac{s^{2-\delta} L(s)}{\delta-2} \quad \text { as } s \rightarrow 0^{+}
$$

Lemma 2.3 ([7]). Let $L \in \mathcal{K}$ be defined on $(0, \eta]$, then we have

$$
t \mapsto \int_{t}^{\eta} \frac{L(s)}{s} d s \in \mathcal{K}
$$

If further $\int_{0}^{\eta} \frac{L(s)}{s} d s$ converges, then

$$
t \mapsto \int_{0}^{t} \frac{L(s)}{s} d s \in \mathcal{K}
$$

Proposition 2.4. Assume q satisfies (H1). Then for $x \in(0,1)$, we have

$$
G_{p} q(x) \approx \Psi(1-x)
$$

where ψ is the function defined on $(0,1]$ by

$$
\Psi(t)= \begin{cases}\int_{0}^{t} \frac{(L(s))^{\frac{1}{p-1}}}{s} d s, & \text { if } \beta=p, \tag{2.1}\\ t^{\frac{p-\beta}{p-1}}(L(t))^{\frac{1}{p-1}}, & \text { if } \mu+1<\beta<p, \\ t^{\frac{p-1-\mu}{p-1}}, & \text { if } \beta<\mu+1 \\ t^{\frac{p-1-\mu}{p-1}}\left(\int_{t}^{\eta} \frac{L(s)}{s} d s\right)^{\frac{1}{p-1}}, & \text { if } \beta=\mu+1 .\end{cases}
$$

Proof. For $x \in(0,1)$, we have

$$
G_{p} q(x) \approx \int_{x}^{1} \frac{1}{t^{\frac{\lambda}{p-1}}(1-t)^{\frac{\mu}{p-1}}}\left(\int_{0}^{t} s^{\lambda}(1-s)^{\mu-\beta} L(1-s) d s\right)^{\frac{1}{p-1}} d t
$$

Put

$$
h(x):=\int_{x}^{1} \frac{1}{t^{\frac{\lambda}{p-1}}(1-t)^{\frac{\mu}{p-1}}}\left(\int_{0}^{t} s^{\lambda}(1-s)^{\mu-\beta} L(1-s) d s\right)^{\frac{1}{p-1}} d t, x \in(0,1) .
$$

We shall estimate $h(x)$. Since h is continuous and positive on $[0,1 / 2]$, it follows that $h(x) \approx 1$, for $x \in[0,1 / 2]$. Now, assume that $x \in[1 / 2,1)$. Then

$$
h(x) \approx \int_{x}^{1} \frac{1}{(1-t)^{\frac{\mu}{p-1}}}\left(\int_{0}^{t} s^{\lambda}(1-s)^{\mu-\beta} L(1-s) d s\right)^{\frac{1}{p-1}} d t .
$$

Moreover, for $t \in[x, 1)$, we have

$$
\begin{aligned}
& \int_{0}^{t} s^{\lambda}(1-s)^{\mu-\beta} L(1-s) d s \\
& =\int_{0}^{1 / 2} s^{\lambda}(1-s)^{\mu-\beta} L(1-s) d s+\int_{\frac{1}{2}}^{t} s^{\lambda}(1-s)^{\mu-\beta} L(1-s) d s \\
& \approx 1+\int_{1-t}^{1 / 2} s^{\mu-\beta} L(s) d s
\end{aligned}
$$

Then we distinguish the following cases:

- If $\beta<\mu+1$, then by Lemma 2.2. $\int_{0}^{1 / 2} s^{\mu-\beta} L(s) d s<\infty$. So, since $\mu<p-1$, we obtain

$$
h(x) \approx(1-x)^{\frac{p-1-\mu}{p-1}} .
$$

- If $p>\beta>\mu+1$, then by Lemma 2.2

$$
\int_{1-t}^{1 / 2} s^{\mu-\beta} L(s) d s \approx(1-t)^{\mu+1-\beta} L(1-t)
$$

So,

$$
\left(1+\int_{1-t}^{1 / 2} s^{\mu-\beta} L(s) d s\right)^{\frac{1}{p-1}} \approx(1-t)^{\frac{\mu+1-\beta}{p-1}} L^{\frac{1}{p-1}}(1-t)
$$

Thus, using the fact that $\beta<p$ and again Lemma 2.2 , we obtain that

$$
h(x) \approx(1-x)^{\frac{p-\beta}{p-1}} L^{\frac{1}{p-1}}(1-x)
$$

- If $\beta=\mu+1$, then

$$
h(x) \approx \int_{0}^{1-x} \frac{1}{t^{\frac{\mu}{p-1}}}\left(\int_{1-t}^{1} \frac{L(s)}{s} d s\right)^{\frac{1}{p-1}} d t .
$$

So, using Lemma 2.3 and the fact that $\mu<p-1$, by Lemma 2.2 it follows that

$$
h(x) \approx(1-x)^{\frac{p-1-\mu}{p-1}}\left(\int_{1-x}^{1} \frac{L(s)}{s} d s\right)^{\frac{1}{p-1}}
$$

- If $\beta=p$, we deduce by Lemma 2.2 that

$$
\int_{1-t}^{1 / 2} s^{\mu-\beta} L(s) d s \approx(1-t)^{\mu+1-p} L(1-t)
$$

hence

$$
h(x) \approx \int_{0}^{1-x} \frac{(L(s))^{\frac{1}{p-1}}}{s} d s
$$

This completes the proof.
The following proposition plays a crucial role in this article.
Proposition 2.5. Let q satisfy (H1) and let θ_{β} be the function given in (1.6). Then for $x \in(0,1)$, we have

$$
G_{p}\left(q \theta_{\beta}^{\alpha}\right)(x) \approx \theta_{\beta}(x)
$$

Proof. Let $\beta \leq p$ and $\mu<p-1$, a straightforward computation shows that for $x \in(0,1)$,

$$
q(x) \theta_{\beta}^{\alpha}(x) \approx \widetilde{q}(x)
$$

where

$$
\widetilde{q}(x):= \begin{cases}\frac{L(1-x)}{(1-x)^{p}}\left(\int_{0}^{1-x} \frac{(L(s))^{\frac{1}{p-1}}}{s} d s\right)^{\frac{\alpha(p-1)}{p-1-\alpha}} & \text { if } \beta=p \\ \frac{(L(1-x))^{\frac{p-1}{p-1-\alpha}}}{(1-x)^{\left(\beta-\frac{\alpha(p-\beta)}{p-1-\alpha}\right)}} & \text { if } \frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1}<\beta<p, \\ \frac{L(1-x)}{(1-x)^{\left(\beta-\frac{\alpha(p-1-\mu)}{p-1}\right)}} & \text { if } \beta<\frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1} \\ \frac{L(1-x)}{(1-x)^{(\mu+1)}}\left(\int_{1-x}^{\eta} \frac{L(s)}{s} d s\right)^{\frac{\alpha}{p-1-\alpha}} & \text { if } \beta=\frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1} .\end{cases}
$$

So, we deduce that

$$
\widetilde{q}(x)=(1-x)^{-\delta} \widetilde{L}(1-x),
$$

where $\delta \leq p$. Then, using Lemmas 2.1 and 2.3 we verify that $\widetilde{L} \in \mathcal{K}$ and $\int_{0}^{\eta} t^{\frac{1-\delta}{p-1}}(\widetilde{L}(t))^{\frac{1}{p-1}} d t<+\infty$. Hence, by Proposition 2.4 .

$$
G_{p}\left(q \theta_{\beta}^{\alpha}\right)(x) \approx G_{p} \widetilde{q}(x) \approx \widetilde{\psi}(1-x), \quad x \in(0,1)
$$

where $\widetilde{\psi}$ is the function defined in 2.1 by replacing L by \widetilde{L} and β by δ. This completes the proof.

3. Proof of Theorem 1.1

3.1. Existence and asymptotic behavior. Let q satisfy (H1) and let θ_{β} be the function given by (1.6). By Proposition 2.5 there exists a constant $m \geq 1$ such that for each $x \in(0,1)$,

$$
\begin{equation*}
\frac{1}{m} \theta_{\beta}(x) \leq G_{p}\left(q \theta_{\beta}^{\alpha}\right)(x) \leq m \theta_{\beta}(x) \tag{3.1}
\end{equation*}
$$

Now we look at the existence of positive solution of problem (1.1) satisfying (1.5). For the case $\alpha<0$, we refer to [4]. So prove the existence result only for the case $0 \leq \alpha<p-1$, and then give the precise asymptotic behavior of such solution for $\alpha<p-1$. We will split the proof into two cases.
Case 1: $\alpha<0$. Let u be a positive continuous solution of 1.1. To obtain estimates 1.5 on the function u, we need the following comparison result.
Lemma 3.1. Let $\alpha<0$ and $u_{1}, u_{2} \in C^{1}((0,1)) \cap C([0,1])$ be two positive functions such that

$$
\begin{gather*}
-\frac{1}{A}\left(A \Phi_{p}\left(u_{1}^{\prime}\right)\right)^{\prime} \leq q(x) u_{1}^{\alpha}, \quad \text { in }(0,1), \tag{3.2}\\
A \Phi_{p}\left(u_{1}^{\prime}\right)(0)=0, \quad u_{1}(1)=0
\end{gather*}
$$

and

$$
\begin{gather*}
-\frac{1}{A}\left(A \Phi_{p}\left(u_{2}^{\prime}\right)\right)^{\prime} \geq q(x) u_{2}^{\alpha}, \quad \text { in }(0,1) \tag{3.3}\\
A \Phi_{p}\left(u_{2}^{\prime}\right)(0)=0, \quad u_{2}(1)=0
\end{gather*}
$$

Then $u_{1} \leq u_{2}$.
Proof. Suppose that $u_{1}\left(x_{0}\right)>u_{2}\left(x_{0}\right)$ for some $x_{0} \in(0,1)$. Then there exists $x_{1}, x_{2} \in[0,1]$, such that $0 \leq x_{1}<x_{0}<x_{2} \leq 1$ and for $x_{1}<x<x_{2}, u_{1}(x)>u_{2}(x)$ with $u_{1}\left(x_{2}\right)=u_{2}\left(x_{2}\right), u_{1}\left(x_{1}\right)=u_{2}\left(x_{1}\right)$ or $x_{1}=0$.

We deduce that

$$
\begin{equation*}
A \Phi_{p}\left(u_{2}^{\prime}\right)\left(x_{1}\right) \leq A \Phi_{p}\left(u_{1}^{\prime}\right)\left(x_{1}\right) \tag{3.4}
\end{equation*}
$$

On the other hand, since $\alpha<0$, we have $u_{1}^{\alpha}(x)<u_{2}^{\alpha}(x)$, for each $x \in\left(x_{1}, x_{2}\right)$. This yields

$$
\frac{1}{A}\left(A \Phi_{p}\left(u_{1}^{\prime}\right)\right)^{\prime}-\frac{1}{A}\left(A \Phi_{p}\left(u_{2}^{\prime}\right)\right)^{\prime} \geq q\left(u_{2}^{\alpha}-u_{1}^{\alpha}\right) \geq 0 \quad \text { on }\left(x_{1}, x_{2}\right)
$$

Using further (3.4), we deduce that the function $\omega(x):=\left(A \Phi_{p}\left(u_{1}^{\prime}\right)-A \Phi_{p}\left(u_{2}^{\prime}\right)\right)(x)$ is nondecreasing on $\left(x_{1}, x_{2}\right)$ with $\omega\left(x_{1}\right) \geq 0$. Hence, from the monotonicity of Φ_{p}, we obtain that the function $x \mapsto\left(u_{1}-u_{2}\right)(x)$ is nondecreasing on $\left(x_{1}, x_{2}\right)$ with $\left(u_{1}-u_{2}\right)\left(x_{1}\right) \geq 0$ and $\left(u_{1}-u_{2}\right)\left(x_{2}\right)=0$. This yields to a contradiction. The proof is complete.

Now, we are ready to prove 1.5 . Put $c=m^{-\frac{\alpha}{p-1-\alpha}}$ and $v:=G_{p}\left(q \theta_{\beta}^{\alpha}\right)$. It follows from (1.4) that the function v satisfies

$$
-\frac{1}{A}\left(A \Phi_{p}\left(v^{\prime}\right)\right)^{\prime}=q \theta_{\beta}^{\alpha}, \quad \text { in }(0,1)
$$

According to (3.1), we obtain by simple calculation that $\frac{1}{c} v$ and $c v$ satisfy respectively (3.2) and (3.3). Thus, we deduce by Lemma 3.1 that

$$
\frac{1}{c} v(x) \leq u(x) \leq c v(x), x \in(0,1)
$$

This proves the result.

Case 2: $0 \leq \alpha<p-1$. Put $c_{0}=m^{\frac{p-1}{p-1-\alpha}}$ and let

$$
\Lambda:=\left\{u \in C([0,1]) ; \frac{1}{c_{0}} \theta_{\beta} \leq u \leq c_{0} \theta_{\beta}\right\} .
$$

Obviously, the function θ_{β} belongs to $C([0,1])$ and so Λ is not empty. We consider the integral operator T on Λ defined by

$$
T u(x):=G_{p}\left(q u^{\alpha}\right)(x), \quad x \in[0,1] .
$$

We prove that T has a fixed point in Λ, in order to construct a solution of problem (1.1). For this aim, first we observe that $T \Lambda \subset \Lambda$. Let $u \in \Lambda$, then for each $x \in[0,1)$

$$
\frac{1}{c_{0}^{\alpha}}\left(q \theta_{\beta}^{\alpha}\right)(x) \leq q(x) u^{\alpha}(x) \leq c_{0}^{\alpha}\left(q \theta_{\beta}^{\alpha}\right)(x)
$$

This together with (3.1) implies that

$$
\frac{1}{m c_{0}^{\frac{\alpha}{p-1}}} \theta_{\beta} \leq T u \leq m c_{0}^{\frac{\alpha}{p-1}} \theta_{\beta}
$$

Since $m c_{0}^{\frac{\alpha}{p-1}}=c_{0}$ and $T \Lambda \subset C([0,1])$, then T leaves invariant the convex Λ. Moreover, since $\alpha \geq 0$, then the operator T is nondecreasing on Λ. Now, let $\left\{u_{k}\right\}_{k}$ be a sequence of functions in $C([0,1])$ defined by

$$
u_{0}=\frac{1}{c_{0}} \theta_{\beta}, \quad u_{k+1}=T u_{k}, \quad \text { for } k \in \mathbb{N} .
$$

Since $T \Lambda \subset \Lambda$, we deduce from the monotonicity of T that for $k \in \mathbb{N}$, we have

$$
u_{0} \leq u_{1} \leq \cdots \leq u_{k} \leq u_{k+1} \leq c_{0} \theta_{\beta}
$$

Applying the monotone convergence theorem, we deduce that the sequence $\left\{u_{k}\right\}_{k}$ converges to a function $u \in \Lambda$ which satisfies

$$
u(x)=G_{p}\left(q u^{\alpha}\right)(x), x \in[0,1]
$$

We conclude that u is a positive continuous solution of problem (1.1) which satisfies (1.5).
3.2. Uniqueness. Assume that q satisfies (H1). For $\alpha<0$, the uniqueness of solution to problem (1.1) follows from Lemma 3.1. Thus, we look at the case $0 \leq \alpha<p-1$. Let

$$
\Gamma=\left\{u \in C([0,1]): u(x) \approx \theta_{\beta}(x)\right\} .
$$

Let u and v be two positives solutions of problem 1.1) in Γ. Then there exists a constant $k \geq 1$ such that

$$
\frac{1}{k} \leq \frac{v}{u} \leq k
$$

This implies that the set

$$
J=\left\{t \in(1,+\infty): \frac{1}{t} u \leq v \leq t u\right\}
$$

is not empty. Now, put $c:=\inf J$, then we aim to show that $c=1$. Suppose that $c>1$, then

$$
\begin{gathered}
-\frac{1}{A}\left(A \Phi_{p}\left(v^{\prime}\right)\right)^{\prime}+\frac{1}{A}\left(A \Phi_{p}\left(c^{\frac{-\alpha}{p-1}} u^{\prime}\right)\right)^{\prime}=q(x)\left(v^{\alpha}-c^{-\alpha} u^{\alpha}\right), \quad \text { in }(0,1) \\
\lim _{x \rightarrow 0^{+}}\left(A \Phi_{p}\left(v^{\prime}\right)-A \Phi_{p}\left(c^{\frac{-\alpha}{p-1}} u^{\prime}\right)\right)(x)=0
\end{gathered}
$$

$$
\left(v-c^{\frac{-\alpha}{p-1}} u\right)(1)=0
$$

So, we have

$$
-\frac{1}{A}\left(A \Phi_{p}\left(v^{\prime}\right)\right)^{\prime}+\frac{1}{A}\left(A \Phi_{p}\left(c^{\frac{-\alpha}{p-1}} u^{\prime}\right)\right)^{\prime} \geq 0 \quad \text { in }(0,1)
$$

which implies that the function $\theta(x):=\left(A \Phi_{p}\left(c^{\frac{-\alpha}{p-1}} u^{\prime}\right)-A \Phi_{p}\left(v^{\prime}\right)\right)(x)$ is nondecreasing on $(0,1)$ with $\lim _{x \rightarrow 0^{+}} \theta(x)=0$. Hence from the monotonicity of Φ_{p}, we obtain that the function $x \mapsto\left(c^{\frac{-\alpha}{p-1}} u-v\right)(x)$ is nondecreasing on $[0,1)$ with $\left(c^{-\frac{\alpha}{p-1}} u-v\right)(1)=0$. This implies that $c^{\frac{-\alpha}{p-1}} u \leq v$. On the other hand, we deduce by symmetry that $v \leq c^{\frac{\alpha}{p-1}} u$. Hence $c^{\frac{\alpha}{p-1}} \in J$. Now, since $\alpha<p-1$ and $c>1$, we have $c^{\frac{\alpha}{p-1}}<c$. This yields to a contradiction with the fact that $c:=\inf J$. Hence, $c=1$ and then $u=v$.

4. Applications

First application. Let q be a positive measurable function in $[0,1)$ satisfying for $x \in[0,1)$

$$
q(x) \approx(1-x)^{-\beta}\left(\log \frac{3}{1-x}\right)^{-\sigma}
$$

where the real numbers β and σ satisfy one of the following two conditions:

- $\beta<p$ and $\sigma \in \mathbb{R}$,
- $\beta=p$ and $\sigma>p-1$.

Using Theorem 1.1, we deduce that problem (1.1) has a positive continuous solution u in $[0,1]$ satisfying
(i) If $\beta<\frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1}$, then for $x \in(0,1)$,

$$
u(x) \approx(1-x)^{\frac{p-1-\mu}{p-1}}
$$

(ii) If $\beta=\frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1}$ and $\sigma=1$, then for $x \in(0,1)$,

$$
u(x) \approx(1-x)^{\frac{p-1-\mu}{p-1}}\left(\log \log \frac{3}{1-x}\right)^{\frac{1}{p-1-\alpha}}
$$

(iii) If $\beta=\frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1}$ and $\sigma<1$, then for $x \in(0,1)$,

$$
u(x) \approx(1-x)^{\frac{p-1-\mu}{p-1}}\left(\log \frac{3}{1-x}\right)^{\frac{1-\sigma}{p-1-\alpha}}
$$

(iv) If $\beta=\frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1}$ and $\sigma>1$, then for $x \in(0,1)$,

$$
u(x) \approx(1-x)^{\frac{p-1-\mu}{p-1}}
$$

(v) If $\frac{(\mu+1)(p-1-\alpha)+\alpha p}{p-1}<\beta<p$, then for $x \in(0,1)$,

$$
u(x) \approx(1-x)^{\frac{p-\beta}{p-1-\alpha}}\left(\log \frac{3}{1-x}\right)^{\frac{-\sigma}{p-1-\alpha}}
$$

(vi) If $\beta=p$ and $\sigma>p-1$, then for $x \in(0,1)$,

$$
u(x) \approx\left(\log \frac{3}{1-x}\right)^{\frac{p-1-\sigma}{p-1-\alpha}}
$$

Second application. Let q be a function satisfying (H1) and let $\alpha, \gamma<p-1$. We are interested in the nonlinear problem

$$
\begin{gather*}
-\frac{1}{A}\left(A \Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+\frac{\gamma}{u} \Phi_{p}\left(u^{\prime}\right) u^{\prime}=q(x) u^{\alpha}, \quad \text { in }(0,1), \tag{4.1}\\
A \Phi_{p}\left(u^{\prime}\right)(0)=0, \quad u(1)=0
\end{gather*}
$$

Put $v=u^{1-\frac{\gamma}{p-1}} ;$ then v satisfies

$$
\begin{gather*}
-\frac{1}{A}\left(A \Phi_{p}\left(v^{\prime}\right)\right)^{\prime}=\left(\frac{p-1-\gamma}{p-1}\right)^{p-1} q(x) v^{\frac{(\alpha-\gamma)(p-1)}{p-1-\gamma}}, \quad \text { in }(0,1) \tag{4.2}\\
A \Phi_{p}\left(v^{\prime}\right)(0)=0, \quad v(1)=0
\end{gather*}
$$

Using Theorem 1.1. we deduce that 4.2 has a unique solution v such that $v(x) \approx$ $\widetilde{\theta}_{\beta}(x)$, where

$$
\widetilde{\theta}_{\beta}(x)= \begin{cases}\left(\int_{0}^{1-x} \frac{(L(s))^{\frac{1}{p-1}}}{s} d s\right)^{\frac{p-1-\gamma}{p-1-\alpha}} & \text { if } \beta=p \\ (1-x)^{\frac{(p-\beta)(p-1-\gamma)}{(p-1)(p-1-\alpha)}}(L(1-x))^{\frac{p-1-\gamma}{(p-1)(p-1-\alpha)}}, & \text { if } \frac{(\mu+1)(p-1-\alpha)+(\alpha-\gamma) p}{p-1-\gamma} \\ & <\beta<p, \\ (1-x)^{\frac{p-1-\mu}{p-1}} & \text { if } \beta<\frac{(\mu+1)(p-1-\alpha)+(\alpha-\gamma) p}{p-1-\gamma} \\ (1-x)^{\frac{p-1-\mu}{p-1}}\left(\int_{1-x}^{\eta} \frac{L(s)}{s} d s\right)^{\frac{p-1-\gamma}{(p-1)(p-1-\alpha)}} & \text { if } \beta=\frac{(\mu+1)(p-1-\alpha)+(\alpha-\gamma) p}{p-1-\gamma} .\end{cases}
$$

Consequently, 4.1 has a unique solution u satisfying

$$
u(x) \approx \begin{cases}\left(\int_{0}^{1-x} \frac{(L(s))^{\frac{1}{p-1}}}{s} d s\right)^{\frac{p-1}{p-1-\alpha}}, & \text { if } \beta=p \\ (1-x)^{\frac{p-\beta}{p-1-\alpha}}(L(1-x))^{\frac{1}{p-1-\alpha}}, & \text { if } \frac{(\mu+1)(p-1-\alpha)+(\alpha-\gamma) p}{p-1-\gamma}<\beta<p, \\ (1-x)^{\frac{p-1-\mu}{p-1-\gamma}}, & \text { if } \beta<\frac{(\mu+1)(p-1-\alpha)+(\alpha-\gamma) p}{p-1-\gamma} \\ (1-x)^{\frac{p-1-\mu}{p-1-\gamma}}\left(\int_{1-x}^{\eta} \frac{L(s)}{s} d s\right)^{\frac{1}{p-1-\alpha}}, & \text { if } \beta=\frac{(\mu+1)(p-1-\alpha)+(\alpha-\gamma) p}{p-1-\gamma} . \\ \text { REFERENCES }\end{cases}
$$

[1] R. P. Agarwal, H. Lü, D. O'Regan; Existence theorems for the one-dimensional singular p-Laplacian equation with sign changing nonlinearities, Appl. Math. Comput. 143 (2003) 15-38.
[2] R. P. Agarwal, H. Lü, D. O'Regan; An upper and lower solution method for the onedimensional singular p-Laplacian, Mem. Differential Equations Math. Phys. 28 (2003) 13-31.
[3] R. P. Agarwal, H. Lü, D. O'Regan; Eigenvalues and one-dimensional p-Laplacian, J. Math. Anal. Appl. 226 (2002) 383-400.
[4] I. Bachar, S. Ben Othman, H. Mâagli; Existence results of positive solutions for the radial p-Laplacian, Nonlinear Studies 15, No. 2 p. 177-189, 2008.
[5] I. Bachar, S. Ben Othman, H. Mâagli; Radial solutions for the p-Laplacian equation, Nonlin. Anal. 70 (2009) 2198-2205.
[6] S. Ben Othman, H. Mâagli, S. Masmoudi, M. Zribi; Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems, Nonlin. Anal. 71 (2009) 4137-4150.
[7] R. Chemmam, H. Mâagli, S. Masmoudi, M. Zribi; Combined effects in nonlinear singular elliptic problems in a bounded domain, Advances in Nonlinear Analysis, vol. 1 (4) 2012, 301-318.
[8] F. C. Cîrstea, V. D. Rădulescu; Extremal singular solutions for degenerate logistic-type equations in anistropic media, C. R. Acad. Sci. Paris Sér. I 339 (2004) 119-124.
[9] M. Ghergu, V. D. Rădulescu; Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Applications, Vol.37, Oxford University Press, 320 pp. (2008).
[10] M. Ghergu, V.D. Rădulescu; Nonlinear PDEs Mathematical Models in Biology, Chemistry and Population Genetics, Springer Monographs in Mathematics, Springer Verlag (2012).
[11] J. V. Goncalves, C. A. P. Santos; Positive solutions for a class of quasilinear singular equations, Electron. J. Diff. Equ. vol. 2004 (2004), no. 56, 1-15.
[12] S. Gontara, H. Mâagli, S. Masmoudi, S. Turki; Asymptotic behavior of positive solutions of a singular non-linear Dirichlet problems, J. Math. Anal. Appl. 369 (2010) 719-729.
[13] D. D. Hai, R. Shivaji; Existence and uniqueness for a class of quasilinear elliptic boundary value problem, J. Diff. Equat. 193 (2003), 500-510.
[14] X. He, W. Ge; Twin positive solutions for the one-dimensional singular p-Laplacian boundary value problems, Nonlin. Anal. 56 (2004) 975-984.
[15] M. Karls, A. Mohamed; Integrability of blow-up solutions to some non-linear differential equations, Electronic. J. Diff. Equat. vol. 2004 (2004), no. 33, 1-8.
[16] H. Mâagli; Asymptotic behavior of positive solutions of a semilinear Dirichlet problems, Nonlin. Anal. 74 (2011), 2941-2947.
[17] H. Mâagli, M. Zribi; Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl. 263 (2001) 522-542.
[18] V. Maric; Regular Variation and Differential Equations, Lecture Notes in Math., Vol. 1726, Springer-Verlag, Berlin, 2000.
[19] R. Seneta; Regular Varying Functions, Lectures in Math., Vol. 508, Springer-Verlag, Berlin, 1976.
[20] Z. Zhang; The asymptotic behavior of the unique solution for the singular Lane-EmdemFowler equation, J. Math. Anal. Appl. 312 (2005), 33-43.

Sonia Ben Othman
Département de Mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 2092 Tunis, Tunisia

E-mail address: Sonia.benothman@fsb.rnu.tn
Habib Mâagli
King Abdulaziz University, College of Sciences and Arts, Rabigh Campus, Department of Mathematics, P.O. Box 344, Rabigh 21911, Saudi Arabia

E-mail address: habib.maagli@fst.rnu.tn

[^0]: 2000 Mathematics Subject Classification. 34B15, 35J65.
 Key words and phrases. p-Laplacian; asymptotic behavior; positive solutions;
 Schauder's fixed point theorem.
 (C) 2012 Texas State University - San Marcos.

 Submitted September 23, 2012. Published December 28, 2012.

