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ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE
RADIAL P-LAPLACIAN EQUATION

SONIA BEN OTHMAN, HABIB MÂAGLI

Abstract. We study the existence, uniqueness and asymptotic behavior of
positive solutions to the nonlinear problem

1

A
(AΦp(u′))′ + q(x)uα = 0, in (0, 1),

lim
x→0

AΦp(u′)(x) = 0, u(1) = 0,

where α < p− 1, Φp(t) = t|t|p−2, A is a positive differentiable function and q
is a positive measurable function in (0, 1) such that for some c > 0,

1

c
≤ q(x)(1− x)β exp

“
−

Z η

1−x

z(s)

s
ds

”
≤ c.

Our arguments combine monotonicity methods with Karamata regular varia-
tion theory.

1. Introduction

Let p > 1 and α < p− 1. We consider the boundary-value problem

− 1
A

(AΦp(u′))′ + q(x)uα = 0, in (0, 1)

AΦp(u′)(0) := lim
x→0

AΦp(u′)(x) = 0, u(1) = 0.
(1.1)

Here, A is a continuous function in [0, 1), differentiable and positive on (0, 1) and
for all t ∈ R, Φp(t) = t|t|p−2. Our goal in this paper is to study problem (1.1)
under appropriate conditions on q. We obtain the existence of a unique positive
continuous solution to (1.1) and establish estimates on such solution.

Several articles have been devoted to the study of the differential equation

− 1
A

(AΦp(u′))′ + q(x)uα = 0, in (0, 1)

with various boundary conditions, especially for the one-dimensional p-Laplacian
equation (see [1, 2, 3, 4, 5, 11, 13, 14, 15]). For α < 0, problem (1.1) has been
studied in [4], where the existence and uniqueness of positive solutions and some
estimates for the solutions have been obtained. Thus, it is interesting to know the
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exact asymptotic behavior of such solution as x → 1 and to extend the study of
(1.1) to 0 ≤ α < p− 1.

Asymptotic behavior of solutions of the semilinear elliptic equation

−∆u = q(x)uα, α < 1, x ∈ Ω, (1.2)

for Ω bounded or an unbounded in Rn (n ≥ 2), with homogeneous Dirichlet
boundary conditions, has been investigated by several authors; see for example
[6, 7, 8, 9, 10, 12, 16, 17, 20] and the references therein. Applying Karamata regu-
lar variation theory, Mâagli [16] studied (1.2), when Ω is a bounded C1,1-domain.
He showed that (1.2) has a unique positive classical solution that satisfies homo-
geneous Dirichlet boundary conditions and gave sharp estimates on such solution.
This studied extended the estimates stated in [12, 17, 20]. In this work, we extend
the result established in [16] to the radial case associated to problem (1.1).

To simplify our statements, we need to fix some notation and make some as-
sumptions. Throughout this paper, we shall use K to denote the set of Karamata
functions L defined on (0, η] by

L(t) := c exp
( ∫ η

t

z(s)
s
ds

)
,

for some positive constants η, c, and a function z ∈ C([0, η]) such that z(0) = 0.
Recall that L ∈ K if and only if L is a positive function in C1((0, η]), for some
η > 0, such that

lim
t→0

tL′(t)
L(t)

= 0. (1.3)

For two nonnegative functions f and g defined on a set S, we write f(x) ≈ g(x),
if there exists a constant c > 0 such that 1

cg(x) ≤ f(x) ≤ cg(x), for each x ∈ S.
Furthermore, we refer to Gpf , as the function defined on (0, 1) by

Gpf(x) :=
∫ 1

x

( 1
A(t)

∫ t

0

A(s)f(s)ds
) 1

p−1
dt,

where f is a nonnegative measurable function in (0, 1). We point out that if f is a
nonnegative continuous function such that the mapping x 7→ A(x)f(x) is integrable
in a neighborhood of 0, then Gpf is the solution of the problem

− 1
A

(AΦp(u′))′ = f, in (0, 1),

AΦp(u′)(0) = 0, u(1) = 0.
(1.4)

As it is mentioned above, our main purpose in this paper is to establish existence
and global behavior of a positive solution for problem (1.1). Let us introduce our
hypotheses.

The function A is continuous in [0, 1), differentiable and positive in (0, 1) such
that

A(x) ≈ xλ(1− x)µ

with λ ≥ 0 and µ < p− 1.
The function q is required to satisfy
(H1) q is a positive measurable function on (0, 1) such that

q(x) ≈ (1− x)−βL(1− x),
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with β ≤ p and L ∈ K defined on (0, η] (η > 1) such that∫ η

0

t
1−β
p−1 (L(t))

1
p−1 dt < +∞.

We need to verify the condition∫ η

0

t
1−β
p−1 (L(t))

1
p−1 dt < +∞

in hypothesis (H1), only if β = p (See Lemma 2.2 below).
As a typical example of function q satisfying (H1), we have

q(x) := (1− x)−β(log
2

1− x
)−ν , x ∈ [0, 1).

Then for β < p and ν ∈ R or β = p and ν > p− 1, the function q satisfies (H1).
Our main result is as follows.

Theorem 1.1. Assume (H1). Then problem (1.1) has a unique positive and con-
tinuous solution u satisfying, for x ∈ (0, 1),

u(x) ≈ θβ(x), (1.5)

where θβ is the function defined on [0, 1) by

θβ(x) :=



( ∫ 1−x

0
(L(s))

1
p−1

s ds
) p−1

p−1−α

, if β = p

(1− x)
p−β

p−1−α (L(1− x))
1

p−1−α , if (µ+1)(p−1−α)+αp
p−1 < β < p,

(1− x)
p−1−µ

p−1 , if β < (µ+1)(p−1−α)+αp
p−1

(1− x)
p−1−µ

p−1 (
∫ η

1−x
L(s)

s ds)
1

p−1−α , if β = (µ+1)(p−1−α)+αp
p−1 .

(1.6)

The article is organized as follows. In Section 2, we prove some basic estimates
and recall some results on functions belonging to K. In Section 3, we prove Theorem
1.1. In the last section, we present some applications.

2. Estimates

In what follows, we give estimates on the functions Gpq and Gp(qθα
β ), where q

is a function satisfying (H1) and θβ is the function given by (1.6). To this end,
we recall some fundamental properties of functions belonging to the class K, taken
from [7, 18, 19].

Lemma 2.1 ([18, 19]). Let L1, L2 ∈ K, m ∈ R and ε > 0. Then L1L2 ∈ K,
Lm

1 ∈ K, and limt→0+ tεL1(t) = 0.

Lemma 2.2 ([18, 19]). Let L ∈ K and δ ∈ R. Then we have the following:
(i) If δ < 2, then

∫ η

0
t1−δL(t)dt converges and∫ s

0

t1−δL(t)dt ∼ s2−δL(s)
2− δ

as s→ 0+.

(ii) If δ > 2, then
∫ η

0
t1−δL(t)dt diverges and∫ η

s

t1−δL(t)dt ∼ s2−δL(s)
δ − 2

as s→ 0+.
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Lemma 2.3 ([7]). Let L ∈ K be defined on (0, η], then we have

t 7→
∫ η

t

L(s)
s

ds ∈ K.

If further
∫ η

0
L(s)

s ds converges, then

t 7→
∫ t

0

L(s)
s

ds ∈ K.

Proposition 2.4. Assume q satisfies (H1). Then for x ∈ (0, 1), we have

Gpq(x) ≈ Ψ(1− x),

where ψ is the function defined on (0, 1] by

Ψ(t) =



∫ t

0
(L(s))

1
p−1

s ds, if β = p,

t
p−β
p−1 (L(t))

1
p−1 , if µ+ 1 < β < p,

t
p−1−µ

p−1 , if β < µ+ 1

t
p−1−µ

p−1 (
∫ η

t
L(s)

s ds)
1

p−1 , if β = µ+ 1.

(2.1)

Proof. For x ∈ (0, 1), we have

Gpq(x) ≈
∫ 1

x

1

t
λ

p−1 (1− t)
µ

p−1

( ∫ t

0

sλ(1− s)µ−βL(1− s)ds
) 1

p−1
dt.

Put

h(x) :=
∫ 1

x

1

t
λ

p−1 (1− t)
µ

p−1

( ∫ t

0

sλ(1− s)µ−βL(1− s)ds
) 1

p−1
dt, x ∈ (0, 1).

We shall estimate h(x). Since h is continuous and positive on [0, 1/2], it follows
that h(x) ≈ 1, for x ∈ [0, 1/2]. Now, assume that x ∈ [1/2, 1). Then

h(x) ≈
∫ 1

x

1

(1− t)
µ

p−1

( ∫ t

0

sλ(1− s)µ−βL(1− s)ds
) 1

p−1
dt.

Moreover, for t ∈ [x, 1), we have∫ t

0

sλ(1− s)µ−βL(1− s)ds

=
∫ 1/2

0

sλ(1− s)µ−βL(1− s)ds+
∫ t

1
2

sλ(1− s)µ−βL(1− s)ds

≈ 1 +
∫ 1/2

1−t

sµ−βL(s)ds.

Then we distinguish the following cases:
• If β < µ+ 1, then by Lemma 2.2,

∫ 1/2

0
sµ−βL(s)ds <∞. So, since µ < p− 1, we

obtain
h(x) ≈ (1− x)

p−1−µ
p−1 .

• If p > β > µ+ 1, then by Lemma 2.2,∫ 1/2

1−t

sµ−βL(s)ds ≈ (1− t)µ+1−βL(1− t).
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So,

(1 +
∫ 1/2

1−t

sµ−βL(s)ds)
1

p−1 ≈ (1− t)
µ+1−β

p−1 L
1

p−1 (1− t).

Thus, using the fact that β < p and again Lemma 2.2, we obtain that

h(x) ≈ (1− x)
p−β
p−1 L

1
p−1 (1− x).

• If β = µ+ 1, then

h(x) ≈
∫ 1−x

0

1

t
µ

p−1

( ∫ 1

1−t

L(s)
s

ds
) 1

p−1
dt.

So, using Lemma 2.3 and the fact that µ < p− 1, by Lemma 2.2 it follows that

h(x) ≈ (1− x)
p−1−µ

p−1 (
∫ 1

1−x

L(s)
s

ds)
1

p−1 .

• If β = p, we deduce by Lemma 2.2 that∫ 1/2

1−t

sµ−βL(s)ds ≈ (1− t)µ+1−pL(1− t),

hence

h(x) ≈
∫ 1−x

0

(L(s))
1

p−1

s
ds.

This completes the proof. �

The following proposition plays a crucial role in this article.

Proposition 2.5. Let q satisfy (H1) and let θβ be the function given in (1.6).
Then for x ∈ (0, 1), we have

Gp(qθα
β )(x) ≈ θβ(x).

Proof. Let β ≤ p and µ < p − 1, a straightforward computation shows that for
x ∈ (0, 1),

q(x)θα
β (x) ≈ q̃(x),

where

q̃(x) :=



L(1−x)
(1−x)p

( ∫ 1−x

0
(L(s))

1
p−1

s ds
)α(p−1)

p−1−α

if β = p

(L(1−x))
p−1

p−1−α

(1−x)
(β−α(p−β)

p−1−α
)

if (µ+1)(p−1−α)+αp
p−1 < β < p,

L(1−x)

(1−x)
(β−α(p−1−µ)

p−1 )
if β < (µ+1)(p−1−α)+αp

p−1

L(1−x)
(1−x)(µ+1)

( ∫ η

1−x
L(s)

s ds
) α

p−1−α

if β = (µ+1)(p−1−α)+αp
p−1 .

So, we deduce that
q̃(x) = (1− x)−δL̃(1− x),

where δ ≤ p. Then, using Lemmas 2.1 and 2.3, we verify that L̃ ∈ K and∫ η

0
t

1−δ
p−1 (L̃(t))

1
p−1 dt < +∞. Hence, by Proposition 2.4,

Gp(qθα
β )(x) ≈ Gpq̃(x) ≈ ψ̃(1− x), x ∈ (0, 1),

where ψ̃ is the function defined in (2.1) by replacing L by L̃ and β by δ. This
completes the proof. �
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3. Proof of Theorem 1.1

3.1. Existence and asymptotic behavior. Let q satisfy (H1) and let θβ be the
function given by (1.6). By Proposition 2.5, there exists a constant m ≥ 1 such
that for each x ∈ (0, 1),

1
m
θβ(x) ≤ Gp(qθα

β )(x) ≤ mθβ(x). (3.1)

Now we look at the existence of positive solution of problem (1.1) satisfying (1.5).
For the case α < 0, we refer to [4]. So prove the existence result only for the case
0 ≤ α < p − 1, and then give the precise asymptotic behavior of such solution for
α < p− 1. We will split the proof into two cases.
Case 1: α < 0. Let u be a positive continuous solution of (1.1). To obtain
estimates (1.5) on the function u, we need the following comparison result.

Lemma 3.1. Let α < 0 and u1, u2 ∈ C1((0, 1))∩C([0, 1]) be two positive functions
such that

− 1
A

(AΦp(u′1))
′ ≤ q(x)uα

1 , in (0, 1),

AΦp(u′1)(0) = 0, u1(1) = 0
(3.2)

and
− 1
A

(AΦp(u′2))
′ ≥ q(x)uα

2 , in (0, 1),

AΦp(u′2)(0) = 0, u2(1) = 0.
(3.3)

Then u1 ≤ u2.

Proof. Suppose that u1(x0) > u2(x0) for some x0 ∈ (0, 1). Then there exists
x1, x2 ∈ [0, 1], such that 0 ≤ x1 < x0 < x2 ≤ 1 and for x1 < x < x2, u1(x) > u2(x)
with u1(x2) = u2(x2), u1(x1) = u2(x1) or x1 = 0.

We deduce that
AΦp(u′2)(x1) ≤ AΦp(u′1)(x1). (3.4)

On the other hand, since α < 0, we have uα
1 (x) < uα

2 (x), for each x ∈ (x1, x2). This
yields

1
A

(AΦp(u′1))
′ − 1

A
(AΦp(u′2))

′ ≥ q(uα
2 − uα

1 ) ≥ 0 on (x1, x2).

Using further (3.4), we deduce that the function ω(x) := (AΦp(u′1)− AΦp(u′2))(x)
is nondecreasing on (x1, x2) with ω(x1) ≥ 0. Hence, from the monotonicity of Φp,
we obtain that the function x 7→ (u1 − u2)(x) is nondecreasing on (x1, x2) with
(u1− u2)(x1) ≥ 0 and (u1− u2)(x2) = 0. This yields to a contradiction. The proof
is complete. �

Now, we are ready to prove (1.5). Put c = m− α
p−1−α and v := Gp(qθα

β ). It
follows from (1.4) that the function v satisfies

− 1
A

(AΦp(v′))′ = qθα
β , in (0, 1).

According to (3.1), we obtain by simple calculation that 1
cv and cv satisfy respec-

tively (3.2) and (3.3). Thus, we deduce by Lemma 3.1 that
1
c
v(x) ≤ u(x) ≤ cv(x), x ∈ (0, 1).

This proves the result.
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Case 2: 0 ≤ α < p− 1. Put c0 = m
p−1

p−1−α and let

Λ :=
{
u ∈ C([0, 1]);

1
c0
θβ ≤ u ≤ c0θβ

}
.

Obviously, the function θβ belongs to C([0, 1]) and so Λ is not empty. We consider
the integral operator T on Λ defined by

Tu(x) := Gp(quα)(x), x ∈ [0, 1].

We prove that T has a fixed point in Λ, in order to construct a solution of problem
(1.1). For this aim, first we observe that TΛ ⊂ Λ. Let u ∈ Λ, then for each x ∈ [0, 1)

1
cα0

(qθα
β )(x) ≤ q(x)uα(x) ≤ cα0 (qθα

β )(x).

This together with (3.1) implies that
1

mc
α

p−1
0

θβ ≤ Tu ≤ mc
α

p−1
0 θβ .

Since mc
α

p−1
0 = c0 and TΛ ⊂ C([0, 1]), then T leaves invariant the convex Λ.

Moreover, since α ≥ 0, then the operator T is nondecreasing on Λ. Now, let {uk}k

be a sequence of functions in C([0, 1]) defined by

u0 =
1
c0
θβ , uk+1 = Tuk, for k ∈ N.

Since TΛ ⊂ Λ, we deduce from the monotonicity of T that for k ∈ N, we have

u0 ≤ u1 ≤ · · · ≤ uk ≤ uk+1 ≤ c0θβ .

Applying the monotone convergence theorem, we deduce that the sequence {uk}k

converges to a function u ∈ Λ which satisfies

u(x) = Gp(quα)(x), x ∈ [0, 1].

We conclude that u is a positive continuous solution of problem (1.1) which satisfies
(1.5).

3.2. Uniqueness. Assume that q satisfies (H1). For α < 0, the uniqueness of
solution to problem (1.1) follows from Lemma 3.1. Thus, we look at the case
0 ≤ α < p− 1. Let

Γ = {u ∈ C([0, 1]) : u(x) ≈ θβ(x)}.
Let u and v be two positives solutions of problem (1.1) in Γ. Then there exists a
constant k ≥ 1 such that

1
k
≤ v

u
≤ k.

This implies that the set

J = {t ∈ (1,+∞) :
1
t
u ≤ v ≤ tu}

is not empty. Now, put c := inf J , then we aim to show that c = 1. Suppose that
c > 1, then

− 1
A

(AΦp(v′))′ +
1
A

(AΦp(c
−α
p−1u′))′ = q(x)(vα − c−αuα), in (0, 1),

lim
x→0+

(AΦp(v′)−AΦp(c
−α
p−1u′))(x) = 0,
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(v − c
−α
p−1u)(1) = 0.

So, we have

− 1
A

(AΦp(v′))′ +
1
A

(AΦp(c
−α
p−1u′))′ ≥ 0 in (0, 1),

which implies that the function θ(x) := (AΦp(c
−α
p−1u′) − AΦp(v′))(x) is nonde-

creasing on (0, 1) with limx→0+ θ(x) = 0. Hence from the monotonicity of Φp,
we obtain that the function x 7→ (c

−α
p−1u − v)(x) is nondecreasing on [0, 1) with

(c−
α

p−1u− v)(1) = 0. This implies that c
−α
p−1u ≤ v. On the other hand, we deduce

by symmetry that v ≤ c
α

p−1u. Hence c
α

p−1 ∈ J . Now, since α < p− 1 and c > 1, we
have c

α
p−1 < c. This yields to a contradiction with the fact that c := inf J . Hence,

c = 1 and then u = v.

4. Applications

First application. Let q be a positive measurable function in [0, 1) satisfying for
x ∈ [0, 1)

q(x) ≈ (1− x)−β
(

log
3

1− x

)−σ

,

where the real numbers β and σ satisfy one of the following two conditions:
• β < p and σ ∈ R,
• β = p and σ > p− 1.

Using Theorem 1.1, we deduce that problem (1.1) has a positive continuous solution
u in [0, 1] satisfying

(i) If β < (µ+1)(p−1−α)+αp
p−1 , then for x ∈ (0, 1),

u(x) ≈ (1− x)
p−1−µ

p−1 .

(ii) If β = (µ+1)(p−1−α)+αp
p−1 and σ = 1, then for x ∈ (0, 1),

u(x) ≈ (1− x)
p−1−µ

p−1

(
log log

3
1− x

) 1
p−1−α

.

(iii) If β = (µ+1)(p−1−α)+αp
p−1 and σ < 1, then for x ∈ (0, 1),

u(x) ≈ (1− x)
p−1−µ

p−1

(
log

3
1− x

) 1−σ
p−1−α

.

(iv) If β = (µ+1)(p−1−α)+αp
p−1 and σ > 1, then for x ∈ (0, 1),

u(x) ≈ (1− x)
p−1−µ

p−1 .

(v) If (µ+1)(p−1−α)+αp
p−1 < β < p, then for x ∈ (0, 1),

u(x) ≈ (1− x)
p−β

p−1−α

(
log

3
1− x

) −σ
p−1−α

.

(vi) If β = p and σ > p− 1, then for x ∈ (0, 1),

u(x) ≈
(

log
3

1− x

) p−1−σ
p−1−α
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Second application. Let q be a function satisfying (H1) and let α, γ < p− 1. We
are interested in the nonlinear problem

− 1
A

(AΦp(u′))′ +
γ

u
Φp(u′)u′ = q(x)uα, in (0, 1),

AΦp(u′)(0) = 0, u(1) = 0.
(4.1)

Put v = u1− γ
p−1 ; then v satisfies

− 1
A

(AΦp(v′))′ = (
p− 1− γ

p− 1
)p−1q(x)v

(α−γ)(p−1)
p−1−γ , in (0, 1),

AΦp(v′)(0) = 0, v(1) = 0.
(4.2)

Using Theorem 1.1, we deduce that (4.2) has a unique solution v such that v(x) ≈
θ̃β(x), where

θ̃β(x) =



( ∫ 1−x

0
(L(s))

1
p−1

s ds
) p−1−γ

p−1−α

if β = p,

(1− x)
(p−β)(p−1−γ)
(p−1)(p−1−α) (L(1− x))

p−1−γ
(p−1)(p−1−α) , if (µ+1)(p−1−α)+(α−γ)p

p−1−γ

< β < p,

(1− x)
p−1−µ

p−1 if β < (µ+1)(p−1−α)+(α−γ)p
p−1−γ ,

(1− x)
p−1−µ

p−1 (
∫ η

1−x
L(s)

s ds)
p−1−γ

(p−1)(p−1−α) if β = (µ+1)(p−1−α)+(α−γ)p
p−1−γ .

Consequently, (4.1) has a unique solution u satisfying

u(x) ≈



( ∫ 1−x

0
(L(s))

1
p−1

s ds
) p−1

p−1−α

, if β = p

(1− x)
p−β

p−1−α (L(1− x))
1

p−1−α , if (µ+1)(p−1−α)+(α−γ)p
p−1−γ < β < p,

(1− x)
p−1−µ
p−1−γ , if β < (µ+1)(p−1−α)+(α−γ)p

p−1−γ

(1− x)
p−1−µ
p−1−γ (

∫ η

1−x
L(s)

s ds)
1

p−1−α , if β = (µ+1)(p−1−α)+(α−γ)p
p−1−γ .
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