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EXISTENCE OF SOLUTIONS FOR DISCONTINUOUS
p(x)-LAPLACIAN PROBLEMS WITH CRITICAL EXPONENTS

XUDONG SHANG, ZHIGANG WANG

Abstract. In this article, we study the existence of solutions to the problem

− div(|∇u|p(x)−2∇u) = λ|u|p
∗(x)−2u + f(u) x ∈ Ω,

u = 0 x ∈ ∂Ω,

where Ω is a smooth bounded domain in RN , p(x) is a continuous function with

1 < p(x) < N and p∗(x) =
Np(x)

N−p(x)
. Applying nonsmooth critical point theory

for locally Lipschitz functionals, we show that there is at least one nontrivial
solution when λ less than a certain number, and f maybe discontinuous.

1. Introduction and statement of main results

In recent years, the study of problems in differential equations involving variable
exponents has been a topic of interest. This is due to their applications in im-
age restoration, mathematical biology, the study of dielectric breakdown, electrical
resistivity, polycrystal plasticity, the growth of heterogeneous sandpiles and fluid
dynamics, etc. We refer the reader to [4, 5, 6, 12, 14, 20, 26] and references therein
for more information.

In this article, we discuss the existence of solutions to the problem

−div(|∇u|p(x)−2∇u) = λ|u|p
∗(x)−2u+ f(u) x ∈ Ω,

u = 0 x ∈ ∂Ω,
(1.1)

where Ω is a smooth bounded domain in RN , p(x) is a continuous function defined
on Ω with 1 < p(x) < N , p∗(x) = Np(x)

N−p(x) , and λ > 0. The function f(u) can have
discontinuities, so that functionals associated with (1.1) may not be differentiable,
and standard variational techniques can not be applied. There are many publica-
tions for the case when p(x) is a constant function; see for example [1, 2, 3, 9, 24].
For the existence of solutions for p(x)-Laplacian problems we refer the reader to
[7, 11, 13, 16, 19, 22].

The existence of solutions for p(x)-Laplacian problems with critical growth is rel-
atively new. In 2012, Bonder and Silva [8] extended the concentration-compactness
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principle of Lions to the variable exponent spaces and proved the existence of so-
lutions to the problem

−∆p(x)u = |u|q(x)−2u+ λ(x)|u|r(x)−2u x ∈ Ω,
u = 0 x ∈ ∂Ω.

Where Ω is a smooth bounded domain in RN , with q(x) ≤ p∗(x) and the set
{q(x) = p∗(x)} 6= ∅, we can find a similar result in [15]. Fu [17] studied the
existence of solutions for p(x)-Laplacian equationd involving the critical exponent
and obtained a sequence of radially symmetric solutions.

In the present paper, we study the discontinuous p(x)-Laplacian problems with
critical growth for (1.1). To handle the gaps at the discontinuity points, our ap-
proach uses nonsmooth critical point theory for locally Lipschitz functionals, we
obtain some general results for the simple case when f has only one point of dis-
continuity.

Because f is discontinuous, we say that a function u ∈ W 1,p(x)
0 (Ω) is a solution

of the multivalued problem associated to (1.1) if u satisfies

−∆p(x)u− λ|u|p
∗(x)−2u ∈ f̂(u) a.e. in Ω,

where f̂(u) is the multivalued function f̂(u) = [f(u), f(u)] with

f(t) = lim inf
s→t

f(s), f(t) = lim sup
s→t

f(s).

In this article, we assume f : R → R is a measurable function satisfying:
(F1) f(t) = 0 if t ≤ 0 and for all t ∈ R, there exist the limits:

f(t+ 0) = lim
δ→0+

f(t+ δ); f(t− 0) = lim
δ→0+

f(t− δ).

(F2) there exist C1, C2 > 0 such that |f(t)| ≤ C1 + C2|t|q(x)−1, where q(x) ∈
C(Ω) such that p(x) < q(x) < p∗(x).

(F3) f(t) = o(|t|p(x)−1) as t→ 0.
(F4) f(t)t ≥ q−F (t) > 0, for all t ∈ R\{0}, where F (t) =

∫ t

0
f(s)ds.

Note that by hypothesis (F1),

f(u) = max{f(u− 0), f(u+ 0)}, f(u) = min{f(u− 0), f(u+ 0)}.

Theorem 1.1. Suppose f satisfies (F1)-(F4). Then there exists λ0 > 0 such that
(1.1) has a nontrivial solution for every λ ∈ (0, λ0).

One of the main motivations is to consider the particular case associated with
(1.1),

−∆p(x)u = λ|u|p
∗(x)−2u+ bh(u− a)|u|q(x)−2u x ∈ Ω,
u = 0 x ∈ ∂Ω,

(1.2)

where h(t) = 0 if t ≤ 0 and h(t) = 1 if t > 0, a and b are positive real parameters,
p(x) < q(x) < p∗(x). As a direct consequence of Theorem 1.1, we have

Theorem 1.2. For every a, b > 0, there exists λ0 > 0 such that for every λ ∈
(0, λ0), Equation (1.2) has a nontrivial solution satisfying meas{x ∈ Ω : u(x) >
a} > 0.

The rest of this article is organized as follows: In section 2 we introduce some
necessary preliminary knowledge; in section 3 contains the proof of our main results.
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2. Preliminaries

First, we recall some definitions and properties of generalized gradient of locally
Lipschitz functionals, which will be used later. Let X be a Banach space, X∗ be
its topological dual and 〈·, ·〉 be the duality. A functional I : X → R is said to
be locally Lipschitz if for every u ∈ X there exists a neighborhood U of u and a
constant K > 0 depending on U such that

|I(u)− I(v)| ≤ K‖u− v‖, ∀u, v ∈ U.
For a locally Lipschitz functional I, we define the generalized directional derivative
at u ∈ X in the direction v ∈ X by

I0(u; v) = lim sup
h→0, δ↓0

I(u+ h+ δv)− I(u+ h)
δ

.

It is easy to show that I0(u; v) is subadditive and positively homogeneus. The
generalized gradient of I at u is the set

∂I(u) = {w ∈ X∗ : I0(u; v) ≥ 〈w, v〉,∀v ∈ X}.
Then, for each v ∈ X, I0(u; v) = max{〈ω, v〉 : ω ∈ ∂I(u)}. A point u ∈ X is a
critical point of I if 0 ∈ ∂I(u). It is easy to see that if u ∈ X is a local minimum
or maximum, then 0 ∈ ∂I(u).

Next, we recall some definitions and basic properties of the generalized Lebesgue-
Sobolev spaces Lp(x)(Ω) andW 1,p(x)

0 (Ω), where Ω ⊂ RN is an arbitrary domain with
smooth boundary. Set

C+(Ω) = {p(x) ∈ C(Ω) : p(x) > 1,∀x ∈ Ω},
p+ = max

x∈Ω
p(x), p− = min

x∈Ω
p(x).

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u ∈M(Ω) :
∫

Ω

|u(x)|p(x)dx <∞},

with the norm
|u|p(x) = inf{µ > 0 :

∫
Ω

|u
µ
|p(x)dx ≤ 1},

where M(Ω) is the set of all measurable real functions defined on Ω.
Define the space

W
1,p(x)
0 (Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

with the norm
‖u‖ = |u|p(x) + |∇u|p(x).

Proposition 2.1 ([18, 21]). There is a constant C > 0 such that for all u ∈
W

1,p(x)
0 (Ω),

|u|p(x) ≤ C|∇u|p(x).

So |∇u|p(x) and ‖u‖ are equivalent norms in W
1,p(x)
0 (Ω). Hence we will use the

norm ‖u‖ = |∇u|p(x) for all u ∈W 1,p(x)
0 (Ω).

Proposition 2.2 ([18, 21]). Set ρ(u) =
∫
Ω
|u|p(x)dx. For u, un ∈ Lp(x)(Ω), we

have:
(1) |u|p(x) < 1 (= 1;> 1) ⇔ ρ(u) < 1 (= 1;> 1).



4 X. SHANG, Z. WANG EJDE-2012/25

(2) If |u|p(x) > 1, then |u|p−p(x) ≤ ρ(u) ≤ |u|p+

p(x).
(3) If |u|p(x) < 1, then |u|p+

p(x) ≤ ρ(u) ≤ |u|p−p(x).
(4) limn→∞ un = u⇔ limn→∞ ρ(un − u) = 0.
(5) limn→∞ |un|p(x) = ∞⇔ limn→∞ ρ(un) = ∞.

Proposition 2.3 ([18]). If q(x) ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, the
imbedding W 1,p(x)(Ω) → Lq(x)(Ω) is compact.

Proposition 2.4 ([21]). The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where 1
p(x) +

1
q(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω),∫

Ω

|uv|dx ≤ (
1
p−

+
1
q−

)|u|p(x)|v|q(x).

Proposition 2.5 ([16]). If |u|q(x) ∈ L
s(x)
q(x) (Ω), where q(x), s(x) ∈ L∞+ (Ω), q(x) ≤

s(x), then u ∈ Ls(x)(Ω) and there is a number q ∈ [q−, q+] such that ||u|q(x)| s(x)
q(x)

=

(|u|s(x))q.

Let Iλ(u) : W 1,p(x)
0 (Ω) → R be the energy functional defined as

Iλ(u) =
∫

Ω

1
p(x)

|∇u|p(x)dx− λ

∫
Ω

1
p∗(x)

|u|p
∗(x)dx−

∫
Ω

F (u)dx, (2.1)

denote Φ(u) =
∫
Ω
F (u)dx. We say that Iλ(u) satisfies the nonsmooth (PS)c con-

dition, if any sequence {un} ⊆ X such that Iλ(un) → c and m(un) = min{‖w‖X∗ :
w ∈ ∂Iλ(un)} → 0, as n → ∞, possesses a convergent subsequence. To prove our
main results, we use the generalizations of the mountain pass theorem [10].

Theorem 2.6. Let X be a reflexive Banach space, I : X → R is locally Lipschitz
functional which satisfies the nonsmooth (PS)c condition, I(0) = 0 and there are
ρ, r > 0 and e ∈ X with ‖e‖ > r, such that

I(u) ≥ β if ‖u‖ = r and I(e) ≤ 0.

Then there exists u ∈ X such that 0 ∈ ∂I(u) and I(u) = c. Where

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)),

Γ = {γ ∈ C([0, 1], X)|γ(0) = 0, γ(1) = e}.

Recall the concentration-compactness principle for variable exponent spaces.
This will be the keystone that enable us to verify that Iλ satisfies the nonsmooth
(PS)c condition.

Proposition 2.7 ([8]). Let {un} converge weakly to u in W
1,p(x)
0 (Ω) such that

|un|p
∗(x) and |∇un|p(x) converge weakly to nonnegative measures ν and µ on RN

respectively. Then, for some countable set J , we have:

(i) ν = |u|p∗(x) +
∑

j∈J νjδxj ,
(ii) µ ≥ |∇u|p(x) +

∑
j∈J µjδxj ,

(iii) Sν
1

p∗(xj)

j ≤ µ
1

p(xj)

j ,
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where xj ∈ Ω, δxj is the Dirac measure at xj, νj and µj are constants and S is the
best constant in the Gagliardo-Nirenberg-Sobolev inequality for variable exponents,
namely

S = inf
{‖u‖1,p(x)

|u|p∗(x)
: u ∈W 1,p(x)

0 (Ω), u 6= 0
}
.

3. Proof of main results

In this section, we denote by un ⇀ u the weak convergence of a sequence un to
u in W

1,p(x)
0 (Ω), and o(1) denote a real vanishing sequence, C and Ci, i = 1, 2, . . .

are positive constants, |A| is the Lebesgue measure of A and p′(x) as the conjugate
function of p(x). u ∈ W 1,p(x)

0 (Ω) is called a solution of (1.1) if u is a critical point
of Iλ(u) and satisfies

−div(|∇u|p(x)−2∇u)− λ|u|p
∗(x)−2u ∈ [f(u), f(u)] a.e. x ∈ Ω.

Lemma 3.1. The function Φ(u) is locally Lipschitz on W
1,p(x)
0 (Ω).

Proof. By (F2), Proposition 2.4 and 2.5, for all u, v ∈W 1,p(x)
0 (Ω),

|Φ(u)− Φ(v)| ≤
∫

Ω

∣∣ ∫ v

u

|f(t)|dt
∣∣dx

≤
∫

Ω

∣∣ ∫ v

u

|C1 + C2|t|q(x)−1|dt
∣∣dx

≤ (|C1| q(x)
q(x)−1

+ C3|u|q−1
q(x) + C3|v|q−1

q(x))|u− v|q(x).

From Proposition 2.3, we obtain that there is a neighborhood U ⊂W
1,p(x)
0 (Ω) of u

such that
|Φ(u)− Φ(v)| ≤ K‖u− v‖,

whereK > 0 depends on max{‖u‖, ‖v‖}. So, Φ(u) is locally Lipschitz inW 1,p(x)
0 (Ω).

The proof is complete. �

From Lemma 3.1, by Chang’s results we have that Iλ(u) is locally Lipschitz and
ω ∈ ∂Iλ(u) if and only if there is ω ∈W−1,p

′
(x)(Ω) such that for all ϕ ∈W 1,p(x)

0 (Ω),

〈ω, ϕ〉 =
∫

Ω

|∇u|p(x)−2∇u∇ϕdx− λ

∫
Ω

|u|p
∗(x)−2uϕdx−

∫
Ω

ωϕdx, (3.1)

and
ω(x) ∈ [f(u(x)), f(u(x))] a.e. x ∈ Ω. (3.2)

Lemma 3.2. Assume (F1), (F2). Let {un} be a bounded sequence in W
1,p(x)
0 (Ω)

such that Iλ(un) → c and m(un) → 0. Then there exists a subsequence (denoted
again by un) and some u ∈W 1,p(x)

0 (Ω), such that

|∇un|p(x)−2∇un ⇀ |∇u|p(x)−2∇u weakly in [L
p(x)

p(x)−1 (Ω)]N .

Proof. The proof is similar to that of [25, Theorem 1]. Because {un} is bounded
in W

1,p(x)
0 (Ω), there exist a subsequence and u ∈ W

1,p(x)
0 (Ω) such that un ⇀ u in

W
1,p(x)
0 (Ω) and un → u in Lp(x)(Ω) as n→∞.
We claim that the set J given by Proposition 2.7 is finite. Choose a function

ϕ(x) ∈ C∞0 (RN ) such that 0 ≤ ϕ(x) ≤ 1, ϕ(x) ≡ 1 on B(0, 1) and ϕ(x) ≡ 0 on
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RN \ B(0, 2). Let ϕj,ε(x) = ϕ(x−xj

ε ), for any x ∈ RN , ε > 0 and j ∈ J . It is clear
that {ϕj,εun} ⊂ W

1,p(x)
0 (Ω) for any j ∈ J , and is bounded in W

1,p(x)
0 (Ω). Take

ϕ = ϕj,εun in 〈ωn, ϕ〉, we obtain∫
Ω

|∇un|p(x)−2∇un · un∇ϕj,εdx+
∫

Ω

|∇un|p(x)ϕj,εdx

− λ

∫
Ω

|un|p
∗(x)ϕj,εdx−

∫
Ω

ωnϕj,εundx = o(1).
(3.3)

Taking into account that ωn ∈ ∂Iλ(un), by (F2) and un ⇀ u in W
1,p(x)
0 (Ω), we

infer that ωn is bounded in W−1,p
′
(x)(Ω), and so there exists ω0 ∈ W−1,p

′
(x)(Ω)

such that
ωn ⇀ ω0 in W−1,p

′
(x)(Ω) and ω0 ∈ [f(u), f(u)]. (3.4)

Let n→∞ in (3.3), by Proposition 2.7, we have

lim
n→∞

∫
Ω

|∇un|p(x)−2∇un · un∇ϕj,εdx

= λ

∫
Ω

ϕj,εdν −
∫

Ω

ϕj,εdµ+
∫

Ω

ω0ϕj,εu dx.

(3.5)

By Hölder inequality it is easy to check that

0 ≤ | lim
n→∞

∫
Ω

|∇un|p(x)−2∇un∇ϕj,ε · un dx|

≤
( ∫

Ω

|∇un|p+dx
) p+−1

p+
( ∫

Ω

|un|p+ |∇ϕj,ε|p+dx
) 1

p+

+
( ∫

Ω

|∇un|p−dx
) p−−1

p−
( ∫

Ω

|un|p− |∇ϕj,ε|p−dx
) 1

p−

≤ C4(
∫

Ω

|∇un|p+dx)
p+−1

p+

( ∫
B(xj ,2ε)

|un|(p+)∗dx
) 1

(p+)∗

+ C5

( ∫
Ω

|∇un|p−dx
) p−−1

p−
( ∫

B(xj ,2ε)

|un|(p−)∗dx
) 1

(p−)∗ → 0, as ε→ 0.

From (3.5), as ε→ 0, we obtain λνj = µj . From Proposition 2.7, we conclude that

νj = 0 or νj ≥ SN max{λ−
N

p+ , λ
− N

p− }. (3.6)

It implies that J is a finite set.
Without loss of generality, let J = {1, 2, . . . ,m}. For any δ > 0, we denote

Ωδ = {x ∈ Ω|dist(x, xj) > δ}. Choose R large enough such that Ω ⊂ {x ∈
RN ||x| < R}, ψ(x) ∈ C∞(RN ), 0 ≤ ψ(x) ≤ 1, ψ(x) ≡ 0 on B(0, 2R) and ψ(x) ≡ 1
on RN \ B(0, 3R). Take ε > 0 small enough such that B(xi, ε) ∩ B(xj , ε) = ∅,
∀i, j ∈ J , i 6= j and ∪m

j=1B(xj , ε) ⊂ B(0, 2R). We take

ψε(x) = 1−
m∑

j=1

ϕj,ε − ψ(x), x ∈ RN .

Then ψε(x) ∈ C∞(RN ), suppψε ⊂ B(0, 3R) with ψε(x) = 0 on ∪m
j=1B(xj , ε/2) and

ψε(x) = 1 on (RN \B(xj , ε)) ∩B(0, 2R).
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As {ψεun} is bounded in W 1,p(x)
0 (Ω), let ϕ = ψεun in 〈ωn, ϕ〉, we obtain∫

Ω

|∇un|p(x)−2∇un · un∇ψεdx+
∫

Ω

|∇un|p(x)ψεdx

− λ

∫
Ω

|un|p
∗(x)ψεdx−

∫
Ω

ωnψεundx = o(1).

By (3.4) and un ⇀ u in W 1,p(x)
0 (Ω), we can easily obtain

lim
n→∞

∫
Ω

ωnψεundx =
∫

Ω

ω0ψεudx.

Since ψε(x) = 0 on ∪m
j=1B(xj ,

ε
2 ) and ν = |u|p∗(x) +

∑
j∈J νjδxj

, we obtain

lim
n→∞

∫
Ω

|un|p
∗(x)ψεdx =

∫
Ω

ψεdν =
∫

Ω

|u|p
∗(x)ψεdx.

Hence

lim
n→∞

∫
Ω

|∇un|p(x)ψεdx = lim
n→∞

(−
∫

Ω

|∇un|p(x)−2∇un · un∇ψεdx)

+ λ

∫
Ω

|u|p
∗(x)ψεdx+

∫
Ω

ω0ψεudx.

(3.7)

In the same way, taking ϕ = ψεu in 〈ωn, ϕ〉, we obtain∫
Ω

|∇un|p(x)−2∇un · u∇ψεdx+
∫

Ω

|∇un|p(x)−2∇un∇u · ψεdx

− λ

∫
Ω

|un|p
∗(x)−2unuψεdx−

∫
Ω

ωnψεudx = o(1).

Thus

lim
n→∞

∫
Ω

|∇un|p(x)−2∇un∇u · ψεdx

= lim
n→∞

(−
∫

Ω

|∇un|p(x)−2∇un · u∇ψεdx) + λ

∫
Ω

|u|p
∗(x)ψεdx+

∫
Ω

ω0ψεudx.

(3.8)

So, from (3.7) and (3.8), as n→∞, we have

0 ≤
∫

Ωδ

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx

≤
∫

Ω

ψε(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx

=
∫

Ω

|∇un|p(x)−2∇un∇ψε · (u− un)dx

+
∫

Ω

ψε|∇u|p(x)−2∇u · (∇u−∇un)dx+ o(1)

≤ ‖∇ψε‖∞ · ||∇un|p(x)−1|p′ (x) · |u− un|p(x)

+
∫

Ω

ψε|∇u|p(x)−2∇u · (∇un −∇u)dx+ o(1).

Thus we have

lim
n→∞

∫
Ωδ

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx = 0. (3.9)
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Denote
gn(x) = (|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u),

then gn(x) ≥ 0, and by (3.9), gn(x) → 0 a.e. on Ωδ. Let E be a compact subset of
Ωδ, suppose gn(x) → 0 a.e. on E. If ∇un were not convergence to ∇u everywhere
on E, there would at least exist x0 ∈ E such that

lim
n→∞

∇un(x0) 6= ∇u(x0).

Then

|∇un(x0)|p(x0) = |∇un(x0)|p(x0)−2∇un(x0)∇u(x0)

+ |∇u(x0)|p(x0)−2∇un(x0)∇u(x0)− |∇u(x0)|p(x0) + gn(x0).

By the interpolation inequality,

||∇un(x0)|p(x0)−2∇un(x0)∇u(x0)| ≤ |∇un(x0)|p(x0)−1 · |∇u(x0)|

≤ ε1|∇un(x0)|p(x0) + Cε1 |∇u(x0)|p(x0),

and

||∇u(x0)|p(x0)−2∇un(x0)∇u(x0)| ≤ |∇u(x0)|p(x0)−1 · |∇un(x0)|

≤ ε2|∇u(x0)|p(x0) + Cε2 |∇un(x0)|p(x0).

We choose ε1, ε2 properly, because gn(x0) is bounded, then |∇u(x0)| ≤ C. Let
∇u(x0) = η, so we can assume ∇un(x0) → η 6= η. Thus

gn(x0) → (|η|p(x0)−2η − |η|p(x0)−2η)(η − η) > 0.

This contradicts gn(x0) → 0. Hence, ∇un(x0) → ∇u(x0) everywhere on E. So
∇un(x0) → ∇u(x0) a.e. on Ωδ. Since δ is arbitrary, we obtain ∇un(x0) → ∇u(x0)
a.e. on Ω. Since {|∇un|p(x)−2∇un} is integrable in L1(Ω), we obtain that as
n→∞,

|∇un|p(x)−2∇un ⇀ |∇u|p(x)−2∇u weakly in [L
p(x)

p(x)−1 (Ω)]N .

The proof is complete �

Lemma 3.3. Suppose f satisfies (F2), (F4). Then Iλ satisfies the nonsmooth

(PS)c condition provided c < ( 1
p+

− 1
q−

)SN max{λ1− N
p+ , λ

1− N
p− }.

Proof. Let {un} ⊂W
1,p(x)
0 (Ω) be such that Iλ(un) → c and m(un) → 0 as n→∞.

We must show the existence of a subsequence of {un} which converges strongly in
W

1,p(x)
0 (Ω). First, we show that {un} is bounded. We know that

Iλ(un) =
∫

Ω

1
p(x)

|∇un|p(x)dx− λ

∫
Ω

1
p∗(x)

|un|p
∗(x)dx−

∫
Ω

F (un)dx

≥ 1
p+

∫
Ω

|∇un|p(x)dx− λ

p∗−

∫
Ω

|un|p
∗(x)dx−

∫
Ω

F (un)dx.
(3.10)

Let ωn ∈ ∂Iλ(un) such that ‖ωn‖ = m(un) = o(1). From (3.1) we have

〈ωn, un〉 =
∫

Ω

|∇un|p(x)dx− λ

∫
Ω

|un|p
∗(x)dx−

∫
Ω

ωnundx, (3.11)
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where ωn(x) ∈ [f(un), f(un)] for a.e. x ∈ Ω. By (F4) we obtain

1
q−
ωnun ≥

1
q−
f(un)un ≥ F (un). (3.12)

From (3.10), (3.11) and (3.12), we obtain

C6(1 + ‖un‖) ≥ Iλ(un)− 1
q−
〈ωn, un〉 ≥ (

1
p+

− 1
q−

)
∫

Ω

|∇un|p(x)dx. (3.13)

If ‖un‖ > 1, by Proposition 2.2, we obtain

(
1
p+

− 1
q−

)‖un‖p− ≤ C6(1 + ‖un‖).

Thus {un} is bounded in W
1,p(x)
0 (Ω). Then there exist a subsequence and u ∈

W
1,p(x)
0 (Ω) such that un ⇀ u in W

1,p(x)
0 (Ω), so we know that {|un|p

∗(x)−2unϕ} is
uniformly integrable in L1(Ω). By this fact, Lemma 3.2 and m(un) → 0, taking
n→∞ in 〈ωn, ϕ〉, we have

0 =
∫

Ω

|∇u|p(x)−2∇u∇ϕdx− λ

∫
Ω

|u|p
∗(x)−2uϕdx−

∫
Ω

ωϕdx, ∀ ϕ ∈ C∞0 (RN ).

So we derive that

−∆p(x)u− λ|u|p
∗(x)−2u ∈ [f(u), f(u)]. (3.14)

Now we applying Proposition 2.7 to prove that νj = 0 in (3.6). Assume νj 6= 0
for some j ∈ J . From (3.13), we have

Iλ(un)− 1
q−
〈ωn, un〉 ≥ (

1
p+

− 1
q−

)
∫

Ω

|∇un|p(x)dx.

Since Iλ(un) → c and m(un) → 0, using Proposition 2.7, taking n→∞, we obtain

c ≥ (
1
p+

− 1
q−

)
∫

Ω

|∇u|p(x)dx+ (
1
p+

− 1
q−

)
∑
j∈J

µj

≥ (
1
p+

− 1
q−

)SN max{λ1− N
p+ , λ

1− N
p− }.

Since c < ( 1
p+

− 1
q−

)SN max{λ1− N
p+ , λ

1− N
p− }, then νj = 0 for all j ∈ J . Hence we

have ∫
Ω

|un|p
∗(x)dx→

∫
Ω

|u|p
∗(x)dx. (3.15)

So we can use [15, Lemma 2.1]. Set vn = un − u and we have∫
Ω

|un|p
∗(x)dx =

∫
Ω

|vn|p
∗(x)dx+

∫
Ω

|u|p
∗(x)dx+ o(1), (3.16)∫

Ω

|∇un|p(x)dx =
∫

Ω

|∇vn|p(x)dx+
∫

Ω

|∇u|p(x)dx+ o(1). (3.17)

Thus, by (3.15) and (3.16), un → u strongly in Lp∗(x)(Ω). From (3.11), using (3.14)
and (3.17), we obtain

〈ωn, un〉 =
∫

Ω

|∇vn|p(x)dx+
∫

Ω

|∇u|p(x)dx− λ

∫
Ω

|un|p
∗(x)dx−

∫
Ω

ωnundx+ o(1).
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By (3.4) and (3.15), letting n→∞, we conclude that∫
Ω

|∇vn|p(x)dx→ 0.

This fact and Proposition 2.2 imply that un → u strongly in W 1,p(x)
0 (Ω). The proof

is complete. �

Lemma 3.4. Suppose f satisfies (F2), (F3). Then, for every λ > 0, there are
α, ρ > 0, such that Iλ(u) ≥ α, ‖u‖ = ρ.

Proof. By (F2) and (F3), we have

|f(t)| ≤ ε|t|p(x)−1 + C|t|q(x) ≤ ε|t|p(x)−1 + C(ε)|t|p
∗(x)−1.

Therefore,

Iλ(u) =
∫

Ω

1
p(x)

|∇u|p(x)dx− λ

∫
Ω

1
p∗(x)

|u|p
∗(x)dx−

∫
Ω

F (u)dx

≥ 1
p+

∫
Ω

|∇u|p(x)dx− ε

p−

∫
Ω

|u|p(x)dx− λ+ C(ε)
p∗−

∫
Ω

|u|p
∗(x)dx.

(3.18)

we can take ‖u‖ < 1 sufficiently small such that |u|p(x) < 1 and |u|p∗(x) < 1. From
(3.18), Propositions 2.1 and 2.4, and the definition of S, using the usual arguments,
we obtain

Iλ(u) ≥ 1
p+
‖u‖p+ − ε

p−
|u|p−p(x) −

λ+ C(ε)
p∗−

|u|p
∗
−

p∗(x)

≥ 1
2p+

‖u‖p+ − λ+ C(ε)
p∗−

S−p∗−‖u‖p∗−

= (
1

2p+
− λ+ C(ε)

p∗−
S−p∗−‖u‖p∗−−p+)‖u‖p+ .

Considering

g(t) =
1

2p+
− λ+ C(ε)

p∗−
S−p∗−‖t‖p∗−−p+ ,

since p+ < p∗−, we have g(t) → 1
2p+

as t → 0. Hence, there exists ρ > 0 such that
g(ρ) > 0. So, we obtain α and ρ > 0, such that

Iλ(u) ≥ α, ‖u‖ = ρ.

The proof is complete. �

Next, we choose ϕ(x) ∈W 1,p(x)
0 (Ω), such that ‖ϕ‖ = 1.

Lemma 3.5. Suppose f satisfies (F4). Then, there exists λ0 > 0, t0 > 0 such that
Iλ(t0ϕ) < 0, and for all λ ∈ (0, λ0),

sup
t≥0

Iλ(tϕ) < (
1
p+

− 1
q−

)SN max{λ1− N
p+ , λ

1− N
p− }.

Proof. By (F4), we have

f(u)u ≥ f(u)u ≥ q−F (u), ∀u 6= 0.

This implies F (tu) ≥ tq−F (u), for all t ≥ 1. Then, for any t > 1,

Iλ(tϕ) ≤ tp+

p−
− λtp

∗
+

p∗+

∫
Ω

|ϕ|p
∗(x)dx−

∫
Ω

F (tϕ)dx ≤
tp+
p−

− tq−
∫

Ω

F (ϕ)dx = J1(tϕ).
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Since q− > p+ and F (ϕ) > 0, there exists t0 > 0 sufficiently large such that
Iλ(t0ϕ) < 0 and ‖t0ϕ‖ > ρ with ρ given by Lemma 3.4. If 0 ≤ t < 1, then

Iλ(tϕ) ≤ tp−

p−
−

∫
Ω

F (tϕ)dx = J2(tϕ).

Let J(tϕ) = max{J1(tϕ), J2(tϕ)}, so we have

sup
t≥0

Iλ(tϕ) ≤ sup
t≥0

J(tϕ).

Hence, we can find λ0 > 0 such that

sup
t≥0

Jλ(tϕ) < (
1
p+

− 1
q−

)SN max{λ1− N
p+ , λ

1− N
p− }.

So, for all λ ∈ (0, λ0), we have

sup
t≥0

Iλ(tϕ) < (
1
p+

− 1
q−

)SN max{λ1− N
p+ , λ

1− N
p− }.

The proof is complete. �

Proof of Theorem 1.1. It is obvious that Iλ(0) = 0. By Lemmas 3.1, 3.3–3.5, ac-
cording to Theorem 2.6, there exist λ0 > 0, and for all λ ∈ (0, λ0), we can find
an u ∈ W

1,p(x)
0 (Ω) such that Iλ(u) > 0 and 0 ∈ ∂Iλ(u). Hence, u is a nontrivial

solution of (1.1). The proof is complete. �

Proof of Theorem 1.2. In (1.2), f(u) = bh(u−a)|u|q(x)−2u has only one discontinu-
ity point a, so by the consequence of Theorem 1.1, we obtain that an u ∈W 1,p(x)

0 (Ω)
is a nontrivial nonnegative solution of (1.2). That is,

−∆p(x)u− λ|u|p
∗(x)−2u ∈ f̂(u) a.e. in Ω (3.19)

where f̂(u) is the multivalued function given by

f̂(s) =

{
{f(s)} s 6= a,

[0, bh(x)uq(x)−1] s = a.
(3.20)

If V = {x ∈ Ω : u(x) = a} exists, by (3.19) and (3.20), we have

−∆p(x)u− λ|u|p
∗(x)−2u ∈ [0, bh(x)uq(x)−1] a.e. in V.

Using the Morrey-Stampacchia’s theorem [23], we have −∆p(x)u = 0 a.e. x ∈ V .
So

−λap∗(x)−1 ≥ 0 a.e. in V.

This is a contradiction. Thus |V | = 0. The proof is complete. �
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