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SOLVABILITY OF NONLOCAL PROBLEMS FOR SEMILINEAR
ONE-DIMENSIONAL WAVE EQUATIONS

SERGO KHARIBEGASHVILI, BIDZINA MIDODASHVILI

Abstract. In this article, we prove theorems on existence, uniqueness, and
nonexistence of solutions for nonlocal problems of a semilinear wave equations
in one space variable.

1. Introduction

In a domain Ω : 0 < x < l, 0 < t < l, we consider the question of finding a
solution u(x, t) to the nonlocal problem

Lλu := utt − uxx + λf(x, t, u) = F (x, t), (x, t) ∈ Ω, (1.1)

satisfying the homogeneous boundary conditions

u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ l, (1.2)

the initial condition
u(x, 0) = ϕ(x), 0 ≤ x ≤ l, (1.3)

and the nonlocal condition

Kµut := ut(x, 0)− µut(x, l) = ψ(x), 0 ≤ x ≤ l, (1.4)

where f, F, ϕ, ψ are given continuous functions; λ and µ are given nonzero constants.
The agreement conditions: ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0, −ϕ′′(0) + λf(0, 0, 0) =
F (0, 0), −ϕ′′(l) + λf(l, 0, 0) = F (l, 0) represent necessary conditions for the solv-
ability of (1.1)-(1.4).

There are many articles devoted to the study nonlocal problems for partial differ-
ential equations. In the case of abstract evolution equations and hyperbolic differ-
ential equations we refer the reader to [1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 20].

Definition 1.1. Let f ∈ C(Ω × R), F ∈ C(Ω) and functions ϕ ∈ C1([0, l]), ψ ∈
C([0, l]) satisfy the agreement conditions ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0. Let
Γ = Γ1 ∪ Γ2, where Γ1 : x = 0, 0 ≤ t ≤ l, Γ2 : x = l, 0 ≤ t ≤ l. We call function
u a strong generalized solution of (1.1)-(1.4) of the class C in the domain Ω, if
u ∈ C0(Ω,Γ) := {u ∈ C(Ω), u|Γ = 0} and there exists a sequence of functions
un ∈ C2(Ω) ∩ C0(Ω,Γ), such that un → u and Lλun → F in the space C(Ω),
un|t=0 → ϕ in the space C1([0, l]), and Kµunt → ψ in the space C([0, l]).
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Remark 1.2. Note that a classical solution of (1.1)-(1.4) in the space C2(Ω) rep-
resents a strong generalized solution of this problem of class C in the domain Ω in
the sense of Definition 1.1. In turn, if the generalized solution of (1.1)-(1.4) of the
class C in the domain Ω belongs to the space C2(Ω), then it will be also a classical
solution of this problem. Note that a strong generalized solution of (1.1)-(1.4) of
the class C in the domain Ω satisfies the conditions (1.2), (1.3) in the ordinary
classical sense.

Remark 1.3. Even in the linear case; i.e., for λ = 0, problem (1.1)-(1.4) is not
always well-posed. For example, when λ = 0 and |µ| = 1, the corresponding to
(1.1)-(1.4) homogeneous problem has infinite set of linearly independent solutions
(see the Lemma 3.3).

This work is organized as follows. In the Section 2 we study semilinear equation
(1.1), when for |µ| < 1 a priori estimate is valid for the strong generalized solution
of (1.1)-(1.4) of the class C in the domain Ω in the sense of Definition 1.1. In
the Section 3 we reduce problem (1.1)-(1.4) to an equivalent nonlinear integral
equation. In the Section 4, base on the results obtained in previous sections, we
prove theorems on existence and uniqueness of a solution of (1.1)-(1.4). Finally,
in the Section 5, using the method of test-functions [18], we show that when the
conditions of nonlinear term of (1.1), introduced in the Section 2, are violated then
problem (1.1)-(1.4) may not have solution.

2. a priori estimate for the solution of (1.1)-(1.4)

Let
g(x, t, u) =

∫ u

0

f(x, t, s)ds, (x, t, u) ∈ Ω× R. (2.1)

Consider the following conditions imposed on function g = g(x, t, u):

g(x, t, u) ≥ −M1, (x, t, u) ∈ Ω× R, (2.2)

gt ∈ C(Ω× R), gt(x, t, u) ≤M2, (x, t, u) ∈ Ω× R, (2.3)

where Mi is a non-negative constant for i = 1, 2.

Lemma 2.1. Let λ > 0, |µ| < 1, f ∈ C(Ω × R), F ∈ C(Ω), ϕ ∈ C1([0, l]),
ψ ∈ C([0, l]), ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0, and the conditions (2.2), (2.3) be
fulfilled. Then for the strong generalized solution u = u(x, t) of (1.1)-(1.4) in class
C in the domain Ω in the sense of Definition 1.1, following a priori estimate is
valid:

‖u‖C(Ω) ≤ c1‖F‖C(Ω) + c2‖g(x, 0, ϕ(x))‖1/2
C([0,l]) + c3‖ϕ‖C1([0,l])

+ c4‖ψ‖C([0,l]) + c5
(2.4)

with nonnegative constants ci = ci(λ, µ, l,M1,M2) independent of u, F, ϕ, ψ, and
ci > 0 for i < 5.

Proof. Let u be a strong generalized solution of (1.1)-(1.4) of class C in the domain
Ω. In view of Definition 1.1 there exists a sequence of the functions un ∈ C2(Ω) ∩
C0(Ω,Γ) such that

lim
n→∞

‖un − u‖C(Ω) = 0, lim
n→∞

‖Lλun − F‖C(Ω) = 0, (2.5)

lim
n→∞

‖un|t=0 − ϕ‖C1([0,l]) = 0, lim
n→∞

‖Kµunt − F‖C([0,l]) = 0, (2.6)
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and therefore
lim

n→∞
‖f(·, ·, un(·, ·))− f(·, ·, u(·, ·))‖C(Ω) = 0.

Consider function un ∈ C2(Ω) ∩ C0(Ω,Γ) as a solution of the problem

Lλun = Fn, (2.7)

un(0, t) = 0, un(l, t) = 0, 0 ≤ t ≤ l, (2.8)

un(x, 0) = ϕn(x), 0 ≤ x ≤ l, (2.9)

Kµunt = ψn(x), 0 ≤ x ≤ l. (2.10)

Here
Fn := Lλun, ϕn := un|t=0, ψn(x) := Kµunt. (2.11)

Multiplying both sides of the equation (2.7) by unt and integrating in the domain
Ωτ := {(x, t) ∈ Ω : t < τ}, 0 < τ ≤ l, due to the (2.1), we have

1
2

∫
Ωτ

∂

∂t

(∂un

∂t

)2

dx dt−
∫

Ωτ

∂2un

∂x2

∂un

∂t
dx dt

+ λ

∫
Ωτ

d

dt

(
g(x, t, un(x, t)

)
dx dt− λ

∫
Ωτ

gt(x, t, un(x, t) dx dt

=
∫

Ωτ

Fn
∂un

∂t
dx dt.

(2.12)

Let ωτ : 0 < x < l, t = τ ; 0 ≤ τ ≤ l and denote by ν := (νx, νt) the unit vector of
the outer normal to ∂Ωτ . Since

νx

∣∣
ωτ∪ω0

= 0, νx

∣∣
Γ1

= −1, νx

∣∣
Γ2

= 1, νt

∣∣
Γ

= 0, νt

∣∣
ωτ

= 1, νt

∣∣
ω0

= −1,

taking into account the equalities (2.8) and integrating by parts, we obtain
1
2

∫
Ωτ

∂

∂t

(∂un

∂t

)2

dx dt =
1
2

∫
∂Ωτ

(∂un

∂t

)2

νt ds =
1
2

∫
ωτ

u2
ntdx−

1
2

∫
ω0

u2
ntdx,

(2.13)

−
∫

Ωτ

∂2un

∂x2

∂un

∂t
dx dt =

∫
Ωτ

[1
2
(u2

nx)t − (unxunt)x

]
dx dt

=
1
2

∫
ωτ

u2
nxdx−

1
2

∫
ω0

u2
nxdx,

(2.14)

λ

∫
Ωτ

d

dt

(
g(x, t, un(x, t)

)
dx dt

= λ

∫
∂Ωτ

g(x, t, un(x, t)νt ds

= λ

∫
ωτ

g(x, t, un(x, t))dx− λ

∫
ω0

g(x, t, un(x, t))dx.

(2.15)

In view of (2.13), (2.14), (2.15) from (2.12) we obtain∫
ωτ

[u2
nt + u2

nx]dx

=
∫

ω0

[u2
nt + u2

nx]dx− 2λ
∫

ωτ

g(x, t, un(x, t))dx+ 2λ
∫

ω0

g(x, t, un(x, t))dx

+ 2λ
∫

Ωτ

gt(x, t, un(x, t)) dx dt+ 2
∫

Ωτ

Fnunt dx dt.

(2.16)
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Since g ∈ C(Ω × R), then due to (2.6), for any ε > 0 there exists the number
N = N(ε) > 0 such that

‖g(x, 0, un(x, 0)‖C([0,l]) ≤ ‖g(x, 0, ϕ(x))‖C([0,l]) + ε, n > N. (2.17)

Below we assume that n > N . Let

wn(τ) :=
∫

ωτ

[u2
nt + u2

nx]dx. (2.18)

Since 2Fnunt ≤ ε−1
1 F 2

n + ε1u
2
nt for any ε1 = const > 0, then due to (2.2), (2.3),

(2.17) and (2.18) from (2.16) it follows that

wn(τ) ≤ wn(0) + 2λlM1 + 2λl
(
‖g(x, 0, ϕ(x))‖C([0,l]) + ε

)
+ 2λlM2 + ε1

∫
Ωτ

u2
nt dx dt+ ε−1

1

∫
Ωτ

F 2
n dx dt.

(2.19)

Taking into account that∫
Ωτ

u2
nt dx dt =

∫ τ

0

[ ∫
ωs

u2
ntdx

]
ds ≤

∫ τ

0

[ ∫
ωs

[u2
nt + u2

nx]dx
]
ds =

∫ τ

0

wn(s)ds,

from (2.19) we obtain

wn(τ)

≤ ε1

∫ τ

0

wn(s)ds+ wn(0) + 2λl
[
M1 +M2 + ‖g(x, 0, ϕ(x))‖C([0,l]) + ε

]
+ ε−1

1

∫
Ωτ

F 2
n dx dt, 0 < τ ≤ l.

(2.20)

Because Ωτ ⊂ Ω, by the Gronwall’s Lemma [11, p. 13], from (2.20) it follows that
for 0 < τ ≤ l,

wn(τ) ≤
[
wn(0) + 2λl

(
M1 +M2 + ‖g(x, 0, ϕ(x))‖C([0,l]) + ε

)
+ ε−1

1 l2‖Fn‖2C(Ω)

]
eε1τ ,

(2.21)

Using the inequality

|a+ b|2 = a2 + b2 + 2ab ≤ a2 + b2 + ε2a
2 + ε−1

2 b2 = (1 + ε2)a2 + (1 + ε−1
2 )b2 ∀ε2 > 0,

from (2.10), we have

|unt(x, 0)|2 = |µunt(x, l)+ψn(x)|2 ≤ |µ|2(1+ε2)u2
nt(x, l)+(1+ε−1

2 )ψn(x)2. (2.22)

From which we obtain∫
ω0

u2
ntdx =

∫ l

0

|unt(x, 0)|2dx

≤ |µ|2(1 + ε2)
∫ l

0

u2
nt(x, l)dx+ (1 + ε−1

2 )
∫ l

0

ψ2
n(x)dx

= |µ|2(1 + ε2)
∫

ωl

u2
ntdx+ (1 + ε−1

2 )l‖ψn‖2C([0,l]).

(2.23)

In view of (2.18) from (2.21), we have∫
ωl

u2
ntdx ≤ wn(l) ≤

[ ∫
ω0

ϕ2
nxdx+

∫
ω0

u2
ntdx+M3

]
eε1l, (2.24)
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where

M3 = 2λl
(
M1 +M2 + ‖g(x, 0, ϕ(x))‖C([0,l]) + ε

)
+ ε−1

1 l2‖Fn‖2C(Ω)
. (2.25)

From (2.23) and (2.24) it follows that∫
ω0

u2
ntdx ≤ |µ|2(1 + ε2)

[ ∫
ω0

ϕ2
nxdx+

∫
ω0

u2
ntdx+M3

]
eε1l

+ (1 + ε−1
2 )l‖ψn‖2C([0,l]).

(2.26)

Because |µ| < 1, then positive constants ε1 and ε2 can be chosen so small that

µ1 = |µ|2(1 + ε2)eε1l < 1. (2.27)

Due to (2.27), from (2.26) we obtain∫
ω0

u2
ntdx ≤ (1− µ1)−1

[
|µ|2(1 + ε2)

( ∫
ω0

ϕ2
nxdx+M3

)
eε1l

+ (1 + ε−1
2 )l‖ψn‖2C([0,l])

]
.

(2.28)

From (2.9) and (2.28) it follows that

wn(0) =
∫

ω0

[u2
nx + u2

nt]dx

≤
∫

ω0

ϕ2
nxdx+ (1− µ1)−1

[
|µ|2(1 + ε2)

( ∫
ω0

ϕ2
nxdx+M3

)
eε1l

+ (1 + ε−1
2 )l‖ψn‖2C([0,l])

]
≤ l‖ϕn‖2C1([0,l]) + (1− µ1)−1

[
|µ|2(1 + ε2)

(
l‖ϕn‖2C1([0,l]) +M3

)
eε1l

+ (1 + ε−1
2 )l‖ψn‖2C([0,l])

]
.

(2.29)

In view of (2.25) and (2.29), from (2.21) we obtain

wn(τ) ≤
[
l‖ϕn‖2C1([0,l]) + (1− µ1)−1

{
|µ|2(1 + ε2)

(
l‖ϕn‖2C1([0,l]) +M3

)
eε1l

+ (1 + ε−1
2 )l‖ψn‖2C([0,l])

}
+M3

]
eε1τ , 0 < τ ≤ l.

(2.30)

In view of (2.8), (2.18), using the Schwartz inequality, for any (x, τ) ∈ Ω we have

|un(x, τ)|2 =
( ∫ x

0

unx(ξ, τ)dξ
)2

≤
∫ x

0

12dξ

∫ x

0

u2
nx(ξ, τ)dξ

≤ l

∫ l

0

u2
nx(ξ, τ)dξ = l

∫
ωτ

u2
nxdx ≤ lwn(τ),

from which it follows that

|un(x, τ)| ≤ [lwn(τ)]1/2 ∀(x, τ) ∈ Ω. (2.31)

Using the inequality ( n∑
i=1

a2
i

)1/2

≤
n∑

i=1

|ai|
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and taking into account (2.25), from (2.30) and (2.31), we obtain

|un(x, τ)| ≤ c1‖Fn‖C(Ω) + c2‖g(x, 0, ϕ(x)‖1/2
C([0,l]) + c3‖ϕn‖C1([0,l])

+ c4‖ψn‖C([0,l]) + c̃5(ε) ∀(x, τ) ∈ Ω.
(2.32)

Here

c1 = ε
− 1

2
1 l3/2α

1/2
1 , c2 = (2λα1)1/2l, α1 = (1− µ1)−1µ2(1 + ε2)e2ε1l + eε1l,

(2.33)

c3 = l1/2
[
l + (1− µ1)−1|µ|2l(1 + ε2)eε1l

]1/2
e

1
2 ε1l, (2.34)

c4 = (1− µ1)−
1
2 (1 + ε−1

2 )1/2le
1
2 ε1l, c̃5(ε) = l(2λα1)1/2(M1 +M2 + ε)1/2, (2.35)

where positive constants ε1, ε2, µ1 satisfy (2.27), and M1, M2 are from (2.2) and
(2.3).

Since (2.32) is valid for any ε = const > 0 and natural number n > N(ε), then,
passing in the (2.32) to the limit for n→∞, in view of (2.5) and (2.6), we obtain
a priori estimate (2.4) with constants c1, c2, c3 and c4 from (2.33)-(2.35), and for c5
we have

c5 := lim
ε→0

c̃5(ε) = l(2λα1)1/2(M1 +M2)1/2. (2.36)

This completes the proof. �

3. Reduction of (1.1)-(1.4) to a nonlinear integral equation

First let us consider in the domain Ω : 0 < x, t < l the linear mixed problem

utt − uxx = F (x, t), (x, t) ∈ Ω, (3.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 ≤ x ≤ l, (3.2)

u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ l, (3.3)

where F ∈ C1(Ω), u0 ∈ C2([0, l]), u1 ∈ C1([0, l]) are given functions, satisfying the
agreement conditions

u0(0) = u0(l) = u1(0) = u1(l) = 0,−u′′0(0) = F (0, 0),−u′′0(l) = F (l, 0).

For obtaining the solution u ∈ C2(Ω) of (3.1)-(3.3) in convenient form we divide
the domain Ω, being a quadrate with vertices in points O(0, 0), A(0, l), B(l, l) and
C(l, 0), into four right triangles 41 = 4OO1C,42 = 4OO1A, 43 = 4CO1B and
44 = 4O1AB, where point O1(l/2, l/2) is the center of quadrate Ω. In the triangle
41 = 4OO1C the solution of (3.1)-(3.3), as it is known, is given by the formula
[4, p. 67]

u(x, t) =
1
2
[u0(x+ t) + u0(x− t)] +

1
2

∫ x+t

x−t

u1(τ)dτ

+
1
2

∫
Ω1

x,t

F (ξ, τ)dξdτ, (x, t) ∈ 41,

(3.4)

where Ω1
x,t is a triangle with vertices in points (x, t), (t− x, 0) and (t+ x, 0).

For obtaining the solution of (3.1)-(3.3) in the other triangles 42,43 and 44,
we use the equality [4, p. 66]

u(P ) = u(P1) + u(P2)− u(P3) +
1
2

∫
PP1P2P3

F (ξ, τ)dξ dτ, (3.5)
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which is valid for any rectangle PP1P2P3 ⊂ Ω characteristic for (3.1), where P , P3

and P1, P2 are opposite vertices of this rectangle, besides, the ordinate of point P
is greater than the ordinates of other points. Indeed, if point (x, t) ∈ 42, then,
using the equality (3.5) for characteristic rectangle with vertices in points P (x, t),
P1(0, t−x), P2(t, x), P3(t−x, 0) and the formula (3.4) for point P2(t, x) ∈ 41, and
taking into account (3.3), we obtain

u(x, t) = u(P1) + u(P2)− u(P3) +
1
2

∫
PP1P2P3

F (ξ, τ)dξdτ

= −u0(t− x) +
1
2
[u0(t− x) + u0(t+ x)] +

1
2

∫ t+x

t−x

u1(τ)dτ

+
1
2

∫
Ω1

t,x

F (ξ, τ)dξdτ +
1
2

∫
PP1P2P3

F (ξ, τ)dξdτ

=
1
2
[u0(t+ x)− u0(t− x)] +

1
2

∫ t+x

t−x

u1(τ)dτ

+
1
2

∫
Ω2

x,t

F (ξ, τ)dξdτ, (x, t) ∈ 42.

(3.6)

Here Ω2
x,t is a quadrangle PP1P̃2P3, where P̃2 = P̃2(t+ x, 0). Analogously,

u(x, t) =
1
2
[u0(x− t)− u0(2l − t− x)] +

1
2

∫ 2l−t−x

x−t

u1(τ)dτ

+
1
2

∫
Ω3

x,t

F (ξ, τ)dξdτ, (x, t) ∈ 43,

(3.7)

u(x, t) = −1
2
[u0(t− x) + u0(2l − t− x)] +

1
2

∫ 2l−t−x

t−x

u1(τ)dτ

+
1
2

∫
Ω4

x,t

F (ξ, τ)dξdτ, (x, t) ∈ 44.

(3.8)

Here Ω3
x,t is a quadrangle with vertices P 3(x, t), P 3

1 (l, t + x − l), P 3
2 (x − t, 0) and

P 3
3 (2l− t−x, 0), while Ω4

x,t is a pentagon with vertices P 4(x, t), P 4
1 (0, t−x), P 4

2 (t−
x, 0), P 4

3 (2l − t− x, 0) and P 4
4 (l, t+ x− l).

Remark 3.1. Note that for F ∈ C(Ω), u0 ∈ C1([0, l]), u1 ∈ C([0, l]), satisfying the
agreement conditions u0(0) = u0(l) = u1(0) = u1(l) = 0, the function u ∈ C1(Ω)
represented in Ω by formulas (3.4), (3.6)-(3.8) is a generalized solution of (3.1)–(3.3)
of the class C1.

Further, using formulas (3.4), (3.6)-(3.8) let us solve a linear problem corre-
sponding to (1.1)-(1.4); i.e., when in (1.1) the parameter λ = 0 and the problem
has the form

L0u := utt − uxx = F (x, t), (x, t) ∈ Ω, (3.9)

u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ l, (3.10)

u(x, 0) = ϕ(x), 0 ≤ x ≤ l, (3.11)

Kµut := ut(x, 0)− µut(x, l) = ψ(x), 0 ≤ x ≤ l. (3.12)
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Indeed, differentiating the equality (3.8) on t, we have

ut(x, t) = −1
2
[u′0(t− x)− u′0(2l − t− x)]

− 1
2
[u1(2l − t− x) + u1(t− x)] + F1(x, t),

(3.13)

where

F1(x, t) :=
∂

∂t

[1
2

∫
Ω4

x,t

F (ξ, τ)dξdτ
]
. (3.14)

From (3.13) for t = l we obtain

ut(x, l) = −u1(l − x) + F1(x, l), 0 ≤ x ≤ l. (3.15)

Substituting (3.15) in (3.12), with respect to unknown function u1(x) = ut(x, 0),
we obtain the functional equation

u1(x) + µu1(l − x) = ψ1(x), 0 ≤ x ≤ l. (3.16)

Here
ψ1(x) := ψ(x) + µF1(x, l), 0 ≤ x ≤ l. (3.17)

Putting in (3.16) the value l − x instead of x we obtain

µu1(x) + u1(l − x) = ψ1(l − x), 0 ≤ x ≤ l. (3.18)

For |µ| 6= 1, eliminating u1(l − x) from the system (3.16), (3.18), we have

u1(x) = (1− µ2)−1(ψ1(x)− µψ1(l − x)), (3.19)

Substituting in (3.4), (3.6)-(3.8) the function ϕ(x) from (3.11) instead the function
u0(x), and the right side part of (3.19) instead of the function u1(x), fulfilling the
certain conditions of smoothness and agreement imposed on the functions F,ϕ and
ψ, we obtain a unique solution u = u(x, t) of (3.9)-(3.12).

Remark 3.2. It is easy to see that for |µ| = 1 the homogeneous equation, cor-
responding to (3.18), has an infinite set of linearly independent solutions, which
for µ = 1 are arbitrary odd functions u0

1 with respect to point x = l/2; i.e.,
u0

1(l/2 + ξ) = −u0
1(l/2 − ξ), |ξ| ≤ l/2, while for µ = −1 they are arbitrary even

functions u0
1 with respect to point x = l/2; i.e., u0

1(l/2+ ξ) = u0
1(l/2− ξ), |ξ| ≤ l/2.

Due to (3.4), (3.6)-(3.8), (3.19) and Remark 3.2 the following lemma is valid.

Lemma 3.3. Let F ∈ C1(Ω), ϕ ∈ C2([0, l]), ψ ∈ C1([0, l]) and the agreement
conditions ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0, −ϕ′′(0) = F (0, 0),−ϕ′′(l) = F (l, 0) be
fulfilled. Then for |µ| 6= 1, problem (3.9)-(3.12) has an unique solution u ∈ C2(Ω),
which is given by formulas (3.4), (3.6)-(3.8), where instead of u0(x) must be put
ϕ(x) from (3.11) and instead of the function u1(x) must be put the function from
(3.19). These formulas, when |µ| 6= 1 and F ∈ C(Ω), ϕ ∈ C1([0, l]), ψ ∈ C([0, l])
with the agreement conditions ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0, give the function
u ∈ C1(Ω), being a generalized solution of (3.9)-(3.12) of the class C1. Finally, for
|µ| = 1 the homogeneous problem, corresponding to (3.9)-(3.12), has an infinite set
of linearly independent solutions of the class C2(Ω), which are given by formulas
(3.4), (3.6)-(3.8), where F = 0, u0 = 0, and u1 ∈ C1([0, l]), u1(0) = u2(l) = 0 is
an arbitrary odd (even) function with respect to point x = l/2 in the case µ = 1
(µ = −1).
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Remark 3.4. In view of Lemma 3.3 and formulas (3.4), (3.6)-(3.8), (3.14), (3.17)
and (3.19), it is easy to see that for |µ| 6= 1 a unique solution u ∈ C2(Ω) of (3.9)-
(3.12) can be represented in the form

u(x, t) =
(
l−1
0 (ϕ,ψ)

)
(x, t) +

(
L−1

0 F
)
(x, t), (x, t) ∈ Ω, (3.20)

where l−1
0 (ϕ,ψ) represents a solution of (3.9)-(3.12) for F = 0, and L−1

0 F is also a
solution to this problem for ϕ = 0, ψ = 0. Note that for ϕ ∈ C1([0, l]), ψ ∈ C([0, l])
and ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0 the function l−1

0 (ϕ,ψ) is a generalized solution
of (3.9)-(3.12) of the class C1(Ω) for F = 0, and when F ∈ C(Ω) the function
L−1

0 F is a generalized solution of this problem of the class C1(Ω) for ϕ = 0, ψ = 0.
In this case the linear operator l−1

0 : C01([0, l]) × C0([0, l]) → C(Ω) is continuous,
where C0k([0, l]) := {χ ∈ Ck([0, l]) : χ(0) = χ(l) = 0}; i.e.,

‖l−1
0 (ϕ,ψ)‖C(Ω) ≤ c̃‖(ϕ,ψ)‖C01([0,l])×C0([0,l]) (3.21)

for all (ϕ,ψ) ∈ C01([0, l]) × C0([0, l]) with positive constant c̃, not depending on
(ϕ,ψ).

Remark 3.5. Using standard reasoning one may show that the operator L−1
0 from

(3.20), being a linear integral operator, acts continuously from the space C(Ω) into
the space C1(Ω); i.e.,

‖L−1
0 F‖C1(Ω) ≤ c0‖F‖C(Ω) ∀F ∈ C(Ω) (3.22)

with positive constant c0, not depending on F .

Remark 3.6. Since the space C1(Ω) is compactly embedded into the space C(Ω)
[9, p. 135], in view of (3.22) the operator L−1

0 : C(Ω) → C(Ω) from (3.20) is
a linear compact operator. One may come to the same conclusion noting that
the continuous operator L−1

0 : C(Ω) → C(Ω) maps bounded in C(Ω) sets into
equicontinuous sets, and further using the criterium of precompactness of a set in
the space C(Ω) [19, p. 414].

Remark 3.7. If u ∈ C2(Ω) is a classical solution of (1.1)-(1.4), then due to the
representation (3.20) it will satisfy the nonlinear integral equation

u(x, t) + λ
(
L−1

0 f
∣∣
u=u(x,t)

)
(x, t)

=
(
l−1
0 (ϕ,ψ)

)
(x, t) +

(
L−1

0 F
)
(x, t), (x, t) ∈ Ω.

(3.23)

Lemma 3.8. Let f ∈ C1(Ω × R). A function u ∈ C(Ω) is a strong generalized
solution of (1.1)-(1.4) of the class C in the domain Ω in the sense of Definition 1.1
if and only if it is a continuous solution of the nonlinear integral equation (3.23).

Proof. Let u ∈ C(Ω) be a solution of (3.23). Since F ∈ C(Ω) (ϕ ∈ C1([0, l]),
ψ ∈ C([0, l]), ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0), and the space C2(Ω) (Ck([0, l]))
is dense in C(Ω) (Ck1([0, l]), k1 < k) [21, p. 37], then there exist the sequences of
functions Fn ∈ C2(Ω), ϕn ∈ C2([0, l]) and ψn ∈ C1([0, l]) such that ϕn(0) = ϕn(l) =
ψn(0) = ψn(l) = 0, −ϕ′′(0) + λf(0, 0, 0) = Fn(0, 0), −ϕ′′n(l) + λf(l, 0, 0) = Fn(l, 0),
and

lim
n→∞

‖Fn − F‖C(Ω) = 0, lim
n→∞

‖ϕn − ϕ‖C1([0,l]) = 0,

lim
n→∞

‖ψn − ψ‖C([0,l]) = 0.
(3.24)
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Since u ∈ C(Ω) represents a solution of the integral equation (3.23), as it is easy
to verify u|Γ = 0; i.e., u ∈ C0(Ω,Γ), and therefore there exists the sequence of
functions wn ∈ C2(Ω) ∩ C0(Ω,Γ) such that

lim
n→∞

‖wn − u‖C(Ω) = 0. (3.25)

Let
un = −λL−1

0 f
∣∣
u=wn

+ l−1
0 (ϕn, ψn) + L−1

0 Fn. (3.26)

Since wn|Γ = 0, −ϕ′′n(0) + λf(0, 0, 0) = Fn(0, 0), −ϕ′′n(l) + λf(l, 0, 0) = Fn(l, 0),
it is obvious that −ϕ′′n(0) = (−λf |u=wn + Fn)(0, 0) and −ϕ′′n(l) = (−λf |u=wn +
Fn)(l, 0). Therefore, since f ∈ C1(Ω × R), wn ∈ C2(Ω), Fn ∈ C2(Ω) and

(
−

λf |u=wn + Fn

)
∈ C1(Ω), then in view of Remark 3.4 the function un from (3.26)

belongs to the space C2(Ω) ∩ C0(Ω,Γ), and

un

∣∣
t=0

= ϕn,Kµun = ψn. (3.27)

From (3.21), (3.22), (3.24)-(3.27) it follows immediately that

un(x, t) →
[
− λ

(
L−1

0 f |u=u(x,t)

)
(x, t) +

(
l−1
0 (ϕ,ψ)

)
(x, t) +

(
L−1

0 F
)
(x, t)

]
in the space C(Ω). Also, from (3.23) it follows that

−λ
(
L−1

0 f |u=u(x,t)

)
(x, t) +

(
l−1
0 (ϕ,ψ)

)
(x, t) +

(
L−1

0 F
)
(x, t) = u(x, t).

Therefore,
lim

n→∞
‖un − u‖C(Ω) = 0. (3.28)

Due to Remark 3.4, from (3.26) it follows that L0un = −λf |u=wn
+Fn and, there-

fore,
Lλun = L0un + λf |u=un = −λf |u=wn + Fn + λf |u=un

= −λ(f(·, wn)− f(·, u)) + λ(f(·, un)− f(·, u)) + Fn.
(3.29)

Since f ∈ C(Ω× R), in view of (3.25), (3.28) from (3.29), we have

lim
n→∞

‖Lλun − Fn‖C(Ω) = 0. (3.30)

Due to (3.24) and (3.27), we have

lim
n→∞

‖un|t=0 − ϕ‖C1([0,l]) = 0, lim
n→∞

‖Kµun − ψ‖C([0,l]) = 0. (3.31)

Therefore, from (3.28), (3.30) and (3.21) we conclude that a continuous solution
u ∈ C(Ω) of the nonlinear integral equation (3.23) is also a strong generalized
solution of (1.1)-(1.4) of the class C in the domain Ω in the sense of Definition 1.1.
The inverse is obvious. �

4. existence and uniqueness of the solution to (1.1) - (1.4)

Rewrite the equation (3.23) in the form

u = Tu := −λ
(
L−1

0 f |u=u(x,t)

)
(x, t) + l−1

0 (ϕ,ψ) + L−1
0 F, (4.1)

where operator T : C(Ω) → C(Ω) is continuous and compact, since the operator
N : C(Ω) → C(Ω), acting according to the formula Nu := −λf(x, t, u) is bounded
and continuous, and the linear operator L−1

0 : C(Ω) → C(Ω) due to Remark 3.6, it
is compact. Here we take into account that the component T1u := l−1

0 (ϕ,ψ)+L−1
0 F

of the operator T from (4.1) is constant, and therefore, continuous and compact
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operator, acting in the space C(Ω). At the same time, according to Lemmas 2.1
and 3.8, and also (2.2), (2.3), (2.33)-(2.36) for any parameter τ ∈ [0, 1] and every
solution u ∈ C(Ω) of the equation u = τTu it is valid a priori estimate (2.4) with
the same constants ci, i = 1, . . . , 5, not depending on u, F, ϕ, ψ and τ . Therefore,
according to the Leray-Schauder theorem [22, p. 375], the equation (4.1) for the
conditions of the Lemmas 2.1 and 3.8 has at least one solution u ∈ C(Ω). In this
way, due to the Lemmas 2.1, 3.8 and also Remark 3.6, we have proved the following
theorem.

Theorem 4.1. Let λ > 0, |µ| < 1, f ∈ C1(Ω × R), F ∈ C(Ω), ϕ ∈ C1([0, l]),
ψ ∈ C([0, l]), ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0 and the conditions (2.2), (2.3) be
fulfilled. Then (1.1)-(1.4) has at least one strong generalized solution of the class
C in the domain Ω in the sense of Definition 1.1.

Remark 4.2. Since (3.23) can be rewritten in the form of (3.20):

u(x, t) =
(
l−1
0 (ϕ,ψ)

)
(x, t) +

(
L−1

0

(
− λf |u=u(x,t) + F

)
(x, t), (x, t) ∈ Ω,

in view of Lemma 3.3 and Remark 3.4, the generalized solution u of the class
C, the existence of which is asserted in the Theorem 4.1, belongs to the class
C1(Ω). Moreover, if we require in addition that F ∈ C1(Ω), ϕ ∈ C2([0, l]), ψ ∈
C1([0, l]) and ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0, −ϕ′′(0) + λf(0, 0, 0) = F (0, 0),
−ϕ′′(l)+λf(l, 0, 0) = F (l, 0), then this solution will belong to the class C2(Ω); i.e.,
it will be a classical solution of (1.1)-(1.4).

Remark 4.3. Let us consider some classes of functions f = f(x, t, u) frequently
encountered in applications and which satisfy the conditions (2.2), (2.3):

1. f(x, t, u) = f0(x, t)ψ(u), where f0, ∂
∂tf0 ∈ C(Ω) and ψ ∈ C(R). In this case

g(x, t, u) = f0(x, t)
∫ u

0
ψ(s)ds and when f0 ≥ 0, ∂

∂tf0 ≤ 0,
∫ u

0
ψ(s)ds ≥ −M , M is

a non-negative constant, the conditions (2.2), (2.3) will be fulfilled.
2. f(x, t, u) = f0(x, t)|u|αsgn u, where f0, ∂

∂tf0 ∈ C(Ω) and α > 1. In this case

g(x, t, u) = f0(x, t)
|u|α+1

α+1 and when f0 ≥ 0, ∂
∂tf0 ≤ 0, the conditions (2.2), (2.3) will

be fulfilled.
3. f(x, t, u) = f0(x, t)eu, where f0,

∂
∂tf0 ∈ C(Ω). In this case g(x, t, u) =

f(x, t, u) and when f0 ≥ 0, ∂
∂tf0 ≤ 0, the conditions (2.2), (2.3) will be also fulfilled.

Therefore, if function f ∈ C1(Ω×R) belongs to the one of the classes considered
above, then according to the Theorem 4.1, problem (1.1)-(1.4) is solvable in the
class C in the sense of Definition 1.1.

Remark 4.4. Let us consider the example of the function f , which is also often
encountered in applications, when at least one of the conditions (2.2) and (2.3) is
violated. Such function is

f(x, t, u) = f0(x, t)|u|α, α > 1, (4.2)

where f0, ∂
∂tf0 ∈ C(Ω) and f0 6= 0. In this case due to (2.1) we have g(x, t, u) =

f0(x, t)
|u|αu
α+1 , and since α > 1 and f0 6= 0, then the condition (2.2) will be violated.

If ∂
∂tf0 6= 0, then the condition (2.3) will be also violated. Below we show that

when (2.2) and (2.3) are violated then the problem (1.1)-(1.4) may be insoluble.

Let us consider the uniqueness of the solution of (1.1)-(1.4). Let the function f
satisfy the Lipshitz local condition on the set Ω×R with respect to variable u; i.e.,

|f(x, t, u2)− f(x, t, u1)| ≤M(R)|u2 − u1|, (x, t) ∈ Ω, |ui| ≤ R, i = 1, 2, (4.3)
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where M = M(R) is a non-negative constant, it is nondecreasing function of vari-
able R.

Theorem 4.5. Let |µ| < 1, F ∈ C(Ω);ϕ ∈ C1([0, l]), ψ ∈ C([0, l]), ϕ(0) = ϕ(l) =
ψ(0) = ψ(l) = 0, function f ∈ C(Ω×R) and satisfy the condition (4.3). Then there
exists a positive number λ0 = λ0(F, f, ϕ, µ, l) such that for 0 < λ < λ0, problem
(1.1)-(1.4) can not have more than one strong generalized solution of the class C
in the domain Ω in the sense of Definition 1.1.

Proof. Suppose that (1.1)-(1.4) has two strong generalized solutions u1 and u2 of
the class C in the domain Ω. According to Definition 1.1 there exists a sequence of
functions ujn ∈ C2(Ω) ∩ C0(Ω,Γ) such that

lim
n→∞

‖ujn − uj‖C(Ω) = 0, lim
n→∞

‖Lλujn − F‖C(Ω) = 0, (4.4)

lim
n→∞

‖ujn|t=0 − ϕ‖C1([0,l]) = 0, lim
n→∞

‖Kµujnt − ψ‖C([0,l]) = 0, (4.5)

for j = 1, 2. Let vn := u2n − u1n. It is easy to see that the function vn ∈
C2(Ω) ∩ C0(Ω,Γ) represents a classical solution of the problem( ∂2

∂t2
− ∂2

∂x2

)
vn =

(
Fn + gn

)
(x, t), (x, t) ∈ Ω, (4.6)

vn(0, t) = 0, vn(l, t) = 0, 0 ≤ t ≤ l, (4.7)

vn(x, 0) = ϕn(x), 0 ≤ x ≤ l, (4.8)

Kµvnt := vnt(x, 0)− µvnt(x, l) = ψn(x), 0 ≤ x ≤ l. (4.9)

Here

gn := λ(f(x, t, u1n)− f(x, t, u2n)), (4.10)

Fn := Lλu2n − Lλu1n, (4.11)

ϕn := vn|t=0, (4.12)

ψn := Kµvnt. (4.13)

From the proof of Lemma 2.1 it follows easily that a priori estimate (2.4) is valid
in the linear case too; i.e., when in (1.1) the parameter λ = 0. In this case due to
(2.33)-(2.36), determining the constants ci, we have c2 = c5 = 0 and the estimate
(2.4) takes the form

‖u‖C(Ω) ≤ c1‖F‖C(Ω) + c3‖ϕ‖C1([0,l]) + c4‖ψ‖C([0,l]), (4.14)

where the constants c1, c3 and c4 do not depend on the parameter λ and the func-
tions u, F, ϕ, ψ.

In view of (4.14) for the solution vn ∈ C2(Ω) ∩ C0(Ω,Γ) of (4.6)-(4.9), the
following estimate is valid

‖vn‖C(Ω) ≤ c1‖Fn + gn‖C(Ω) + c3‖ϕn‖C1([0,l]) + c4‖ψn‖C([0,l]). (4.15)

From (4.4), (4.5) and (4.11)-(4.13) it follows that

lim
n→∞

‖Fn‖C(Ω) = 0, lim
n→∞

‖ϕn‖C1([0,l]) = 0, lim
n→∞

‖ψn‖C([0,l]) = 0. (4.16)

Due to a priori estimate (2.4) for the solutions u1 and u2 of (1.1)-(1.4), we have

‖uj‖C(Ω) ≤ m3 + λ1/2m4, j = 1, 2, (4.17)

where according to (2.33)-(2.36) positive constants mi = mi(µ, l,M1,M2, F, ϕ, ψ),
i = 3, 4, do not depend on λ.
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Let us fix arbitrarily the number λ1 > 0 and put M0 = M(m3 + λ
1/2
1 m4 + 1),

where M = M(R) is nondecreasing function from (4.3). In view of (4.4) for any
ε > 0 there exists number N > 0 such that ‖ujn‖C(Ω) ≤ ‖uj‖C(Ω) + ε, j = 1, 2, for
n > N , and, therefore, for 0 < λ < λ1, taking into account (4.17), we have

‖ujn‖C(Ω) ≤ m3 + λ1/2m4 + ε ≤ m3 + λ
1/2
1 m4 + ε, j = 1, 2; n > N. (4.18)

From (4.3), (4.10) and (4.18) for 0 < λ < λ1 and ε = 1 it follows that

‖gn‖C(Ω) ≤ λ‖f(x, t, u1n)− f(x, t, u2n)‖C(Ω) ≤ λM0‖vn‖C(Ω), (4.19)

for n > N . Due to (4.15) and (4.19) we have

‖vn‖C(Ω) ≤ c1‖Fn‖C(Ω) + λc1M0‖vn‖C(Ω) + c3‖ϕn‖C1([0,l]) + c4‖ψn‖C([0,l]),

for n > N , whence for λ0 := min
(
λ1,

1
c1M0

)
and 0 < λ < λ0 it follows that

‖vn‖C(Ω) ≤ (1− λc1M0)−1
[
c1‖Fn‖C(Ω) + c3‖ϕn‖C1([0,l]) + c4‖ψn‖C([0,l])

]
, (4.20)

for n > N . From (4.4) we find that

lim
n→∞

‖vn‖C(Ω) = ‖u2 − u1‖C(Ω).

Also, in view of (4.16) and (4.20) we have

lim
n→∞

‖vn‖C(Ω) = 0.

Thus ‖u2 − u1‖C(Ω) = 0; i.e., u2 = u1, which leads to contradiction, the proof is
complete. �

Since the function f ∈ C1(Ω × R) satisfies condition (4.3), then from theorems
4.1 and 4.5, we have the following theorem.

Theorem 4.6. Let |µ| < 1, f ∈ C1(Ω×R), F ∈ C(Ω), ϕ ∈ C1([0, l]), ψ ∈ C([0, l]),
ϕ(0) = ϕ(l) = ψ(0) = ψ(l) = 0, and the conditions (2.2), (2.3) be fulfilled. Then
there exists a positive number λ0 = λ0(F,ϕ, ψ, µ, l) such that for 0 < λ < λ0 the
problem (1.1)-(1.4) has a unique strong generalized solution of the class C in the
domain Ω in the sense of Definition 1.1.

5. Cases of nonexistence of solutions to (1.1)-(1.4)

Below, using the method of test-functions [18], we show that when condition (2.2)
or (2.3) is violated, problem (1.1)-(1.4) may have no strong generalized solution of
the class C in the domain Ω, in the sense of Definition 1.1.

Lemma 5.1. Let u is a strong generalized solution of (1.1)-(1.4) of the class C in
the domain Ω in the sense of Definition 1.1. Then the integral equation∫

Ω

u�v dx dt = −λ
∫

Ω

f(x, t, u)v dx dt+
∫

Ω

Fv dx dt (5.1)

is valid for any test function v such that

v ∈ C2(Ω), v|∂Ω = vt|∂Ω = vx|∂Ω = 0, (5.2)

where � := ∂2

∂t2 −
∂2

∂x2 .
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Proof. According to the definition of a strong generalized solution u of (1.1)-(1.4)
of the class C in the domain Ω in the sense of Definition 1.1 there exists a sequence
of functions un ∈ C2(Ω) ∩ C0(Ω,Γ) such that the equalities (2.5), (2.6) are valid
and also, as an implication, the equality

lim
n→∞

‖f(x, t, un)− f(x, t, u)‖C(Ω) = 0. (5.3)

Let Fn := Lλun. Multiply both parts of the equality Lλun = Fn by the function
v and integrate the received equality in the domain Ω. By integration by parts of
the left side of this equality and due to (5.2) we have∫

Ω

un�v dx dt+ λ

∫
Ω

f(x, t, un)v dx dt =
∫

Ω

Fnv dx dt. (5.4)

In view of (2.5) and (5.3), passing in the equality (5.4) to the limit for n→∞, we
obtain (5.1). The proof is complete. �

Consider the following condition imposed on function f :

f(x, t, u) ≤ −|u|α+1, (x, t, u) ∈ Ω× R, (5.5)

where α is a positive constant. It is easy to verify that when (5.5) is fulfilled,
condition (2.2) is violated.

Let us introduce a function v0 = v0(x, t) such that

v0 ∈ C2(Ω), v0|Ω > 0, v0|∂Ω = v0x|∂Ω = v0t|∂Ω = 0 (5.6)

and

æ0 =
∫

Ω

|�v0|p
′

|v0|p′−1
dx dt < +∞, p′ = 1 +

1
α
. (5.7)

Simple verification shows that for function v0, satisfying conditions (5.6) and (5.7),
can be chosen as

v0(x, t) = [xt(l − x)(l − t)]k, (x, t) ∈ Ω,

for k a sufficiently large constant.
Due to (5.5) and (5.6) from (5.1), where instead of v is chosen v0, in the case

λ > 0, we have

λ

∫
Ω

|u|pv0 dx dt ≤
∫

Ω

|u|�v0| dx dt−
∫

Ω

Fv0 dx dt, p = α+ 1. (5.8)

Theorem 5.2. Let f ∈ C(Ω × R) satisfy (5.5), and F = γF 0, where F 0 ∈ C(Ω),
F 0 ≥ 0 and F 0 6= 0. The functions ϕ,ψ satisfy the conditions from Definition 1.1.
Then for λ > 0 there exists the number γ0 = γ0(F 0, α, λ) > 0, such that for γ > γ0,
problem (1.1)-(1.4) does not have a strong generalized solution of the class C in the
domain Ω in the sense of Definition 1.1.

Proof. If in the Young’s inequality with the parameter ε > 0,

ab <
ε

p
ap +

1
p′εp′−1

bp
′
; a, b ≥ 0,

1
p

+
1
p′

= 1, p = α+ 1 > 1

we take a = |u|v
1
p

0 , b = |�v0|

v
1
p
0

, then, since p′

p = p′ − 1, we obtain

|u‖�v0| = |u|v
1
p

0

|�v0|

v
1
p

0

≤ ε

p
|u|pv0 +

1
p′εp′−1

|�v0|p
′

vp′−1
0

. (5.9)
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Since F = γF 0 and due to (5.9), from (5.8) it follows that(
λ− ε

p

) ∫
Ω

|u|pv0 dx dt ≤
1

p′εp′−1

∫
Ω

|�v0|p
′

vp′−1
0

dx dt− γ

∫
Ω

F 0v0 dx dt,

whence for ε < λp, we obtain∫
Ω

|u|pv0 dx dt ≤
p

(λp− ε)p′εp′−1

∫
Ω

|�v0|p
′

vp′−1
0

dx dt− pγ

λp− ε

∫
Ω

F 0v0 dx dt. (5.10)

Taking into account that p′ = p
p−1 , p = p′

p′−1 and

min
0<ε<λp

p

(λp− ε)p′εp′−1
=

1
λp
,

which is achieved at ε = λ, from (5.10) it follows that∫
Ω

|u|pv0 dx dt ≤
1
λp′

∫
Ω

|�v0|p
′

vp′−1
0

dx dt− p′γ

λ

∫
Ω

F 0v0 dx dt. (5.11)

In view of the conditions imposed on function F 0 and v0|Ω > 0 we have

0 < æ1 :=
∫

Ω

F 0v0 dx dt < +∞. (5.12)

Denoting the right part of the inequality (5.11) by χ = χ(γ), which is a linear
function with respect to the parameter γ, from (5.7) and (5.12) we have

χ(γ)

{
< 0 for γ > γ0

> 0 for γ < γ0,
(5.13)

where

χ(γ) =
æ0

λp′ −
p′γ

λ
æ1, γ0 =

λæ0

λp′p′æ1
.

There remains only to note that the left-hand side of (5.11) is nonnegative, whereas
the right-hand side, due to (5.13), is negative for γ > γ0. Thus, for γ > γ0, problem
(1.1)-(1.4) does not have a strong generalized solution of the class C in the domain
Ω in the sense of Definition 1.1. The proof is complete. �
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