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EXISTENCE OF SOLUTIONS FOR THE P-LAPLACIAN
INVOLVING A RADON MEASURE

NEDRA BELHAJ RHOUMA, WAHID SAYEB

Abstract. In this article we study the existence of solutions to eigenvalue
problem

− div(|∇u|p−2∇u)− λ|u|p−2uµ = f in Ω,

u = 0 on ∂Ω

where Ω is a bounded domain in RN and µ is a nonnegative Radon measure.

1. Introduction

In this article study the existence of weak solutions of the quasilinear elliptic
problem

−∆pu− λ|u|p−2uµ = f(x), in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in RN , N ≥ 2, 1 < p < N , and µ is a
nonnegative bounded measure on Ω.

Singular nonlinear problems were studied in [8, 9, 12, 17, 21, 28, 31, 32, 33].
Some recent papers [2, 3, 6, 10, 11, 16, 18] studied functional

1
p

∫
Ω

|∇u|pdx− λ

p

∫
Ω

|u|p

|x|p
dx−

∫
Ω

f(x)u(x)dx,

where f belongs to Lp′(Ω) and λ is a real positive number sufficiently small. This
functional is coercive, and one can expect that there exists a global minimum. Since
the Nemitski operator u(x) 7→ u(x)

|x| from W 1,p
0 (Ω) in Lp(Ω) is continuous but not

compact, it is not clear if we can obtain directly the weak lower semicontinuity
of the functional on W 1,p

0 (Ω) by using De Giorgi Theorem [13, 19], so that it
seems that we cannot apply the direct methods of the calculus of variations. In
[3], using a critical point technique based on the coercivity and the homogeneity
of the functional, it is shown the existence of a global minimum (for λ belonging
to the set in which the functional is coercive) without using the direct methods
of the calculus of variations. Reference [6] treats more general problems with an
interesting nonvariational method, which does not require homogeneity, but only
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coercivity of the quadratic form associated to the equation. In any case, both papers
leave open the question of whether the functional is weakly lower semicontinuous.
In [25], the author proved that the functionals

Hλ(u) =
1
p

∫
Ω

|∇u|pdx− λ

p

∫
Ω

|u|p

|x|p
dx

and

Sλ(u) =
1
p

∫
Ω

|∇u|pdx− λ

p

( ∫
Ω

|u|p
?

dx
)p/p∗

are weakly lower semicontinuous in W 1,p
0 (Ω), provided λ belongs to the set of R

in which the functionals are coercive. Note that both functionals have a nonlinear
term which is continuous but not compact on W 1,p

0 (Ω). The author showed the
following result.

Theorem 1.1. For all λ ∈ [0, 1/C] and all f ∈ Lp′(Ω), 1 < p < N , the problem

−∆pu = λ
|u|p−2u

|x|p
+ f(x), in Ω,

u = 0 on ∂Ω,

has a weak solution u ∈ W 1,p
0 (Ω), where C = ( p

N−p )p is the best constant satisfying∫
Ω

|u|p

|x|p
dx ≤ C

∫
Ω

|∇u|pdx.

For p = 2, Dupaigne [14] showed that the problem

−∆u− c

|x|2
u = f in Ω,

u = 0 on ∂Ω,

has a unique solution for all 0 < c < (p − 2)2/4 and f ∈ H−1(Ω). Moreover Peral
[27] showed that the problem

−∆pu−
λ

|x|p
|u|p−2u = f in Ω,

u = 0 on ∂Ω,

has at least one solution in W 1,p
0 (Ω) for all 0 < λ < 1

C and f ∈ W−1,p′(Ω). For
the proof of this result, the author used the convergence Theorem by Boccardo and
Murat [7].

Remark 1.2. When p > 2, the uniqueness is in general not true, see [15]. However,
the uniqueness in the case 1 < p < 2 seems to be an open problem.

In this paper we assume that the measure µ is a nonnegative Radon measure
satisfying the following assumptions.

(H0) For each Borel set A ⊂ Ω, µ(A) = 0 implies |A| = 0, where | · | denotes the
Lebesgue measure.

(H1) There exists a constant C > 0 such that∫
Ω

|u|pdµ ≤ C

∫
Ω

|∇u|pdx, ∀u ∈ C∞
0 (Ω).
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(H2) There exists (µn)n ⊂ M(Ω) such that for each integer n, the embedding
W 1,p

0 (Ω, dx) ↪→ Lp(Ω, µn) is compact, where M(Ω) is the set of bounded
Radon measures.

(H3) µn ↗ µ in M(Ω); i.e.,
∫
Ω

ϕdµn →
∫
Ω

ϕdµ, for all ϕ ∈ C∞
0 (Ω).

Remark 1.3. When dµ(x) = (1/|x|p)dx, (H1) is the classical Hardy inequality for
p > 1, where the constant C = ( p

N−p )p is optimal.

Remark 1.4. Let dµ(x) = 1
(δ(x))p dx, where δ(x) is the distance function to the

boundary, the following inequality holds true (see [20, 26]).∫
Ω

|u|p

(δ(x))p
dx ≤ Cn,p(Ω)

∫
Ω

|∇u|pdx, ∀u ∈ C∞
0 (Ω).

Moreover, we will show that dµ(x) = 1
|x|p dx and dµ(x) = 1

(δ(x))p dx are special cases
of measures satisfying (H2) and (H3).

Theorem 1.5. The measure dµ(x) = 1
|x|p dx and dµ(x) = 1

(δ(x))p dx satisfy condi-
tions (H2) and (H3).

We define the problem

−div(|∇u|p−2∇u)− λ|u|p−2uµn = f in Ω,

u = 0 on ∂Ω.
(1.2)

Let f ∈ Lp′(Ω). We shall say that u ∈ W 1,p
0 (Ω) is a weak solution of (1.2) (resp.

(1.1)) if u satisfies∫
Ω

|∇u|p−2∇u∇ϕdx− λ

∫
Ω

|u|p−2uϕdµn =
∫

Ω

fϕdx, (1.3)

respectively,∫
Ω

|∇u|p−2∇u∇ϕdx− λ

∫
Ω

|u|p−2uϕdµ =
∫

Ω

fϕdx, ∀ϕ ∈ W 1,p
0 (Ω). (1.4)

Notice that assumption (H3) ensures that the integral
∫
Ω
|u|p−2uϕdµ makes sense

whenever u and ϕ are in W 1,p
0 (Ω). We prove the following results.

Theorem 1.6. Let f ∈ Lp′(Ω), 1 < p < N and C satisfying (H1). Then for all
0 < λ < 1

C , the problem (1.1) has at least a weak solution u ∈ W 1,p
0 (Ω).

Theorem 1.7. Consider the Dirichlet problem

−∆pu− λ|u|p−2uµ = |u|α−2u in W 1,p
0 (Ω),

u = 0 on ∂(Ω).
(1.5)

For every 0 < λ < 1/C and p < α < p? = Np/(N − p), there exists a nontrivial
solution u ∈ W 1,p

0 (Ω).

Note that problem (1.5) has been studied by Peral [27] when dµ(x) = dx
|x|p .

Next, we prove an auxiliary result.

Theorem 1.8. For every n ∈ N, the problem

−∆pu = λ|u|p−2uµn in Ω,

u = 0 on ∂Ω.
(1.6)
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has a sequence of eigenvalues (λk)k∈N, such that limk→∞λk = +∞. Moreover, the
first eigenvalue λ1(n) is simple, isolated and is defined by

λ1(n) = inf
{
‖∇u‖p

Lp : u ∈ W 1,p
0 (Ω) and

∫
Ω

|u|pdµn = 1
}

. (1.7)

Notation. for p > 1, we denote by p′ the real number satisfying 1
p + 1

p′ = 1. As
usual W 1,p(Ω) is the Sobolev space equipped with the norm

‖u‖W 1,p(Ω) =
(
‖u‖p

Lp + ‖∇u‖p
Lp

)1/p;

W 1,p
0 (Ω) is the Sobolev space equipped with the norm

‖u‖ = ‖u‖W 1,p
0 (Ω) =

(
‖∇u‖p

Lp

)1/p
.

For a positive Radon measure, we set

Lp(Ω, µ) = {u : u is measurable and
∫

Ω

|u|pdµ < ∞}.

When dµ = dx, we set Lp = Lp(Ω, dx).

Proof of Theorem 1.5. We start by proving that dµ = 1
|x|p dx and dµ = 1

(δ(x))p dx

satisfy conditions (H2) and (H3). For each n ∈ N?, we define wn(x) = min(n, |x|−p)
and dµn(x) = wn(x)dx.

Case dµ(x) = 1
|x|p dx. Since dµn(x) ≤ ndx, (H2) is obvious. To prove (H3), let

f ∈ C∞
0 (Ω). Using the fact that p < N , we obtain∫

Ω

f

|x|p
dx ≤ ‖f‖∞

∫
Ω

1
|x|p

dx < +∞.

On the other hand, since (fwn)n converges to f. 1
|x|p , by Dominated Convergence

Theorem we obtain,

lim
n→∞

∫
Ω

fwndx =
∫

Ω

f

|x|p
dx.

Case: dµ(x) = 1
(δ(x))p dx. For n ∈ N?, we define wn(x) = min(n, (δ(x))−p) and

dµn(x) = wn(x)dx. As in the example from above, (H2) is obvious. Now using the
fact that |fwn| ≤ |f |

(δ(x))p and∫
Ω

f

(δ(x))p
dx ≤ C

∫
Ω

|∇f |pdx, ∀f ∈ C∞
0 (Ω),

we obtain (H3). �

2. Proof of Theorem 1.8

The proof is rather straightforward adaptation of [20, Theorem 3.2] with dµn =
v(x)dx, where the weight v is in Lr with r = r(p, N) satisfying the following
conditions

r


> N

p if 1 < p < N,

= 1 if p > N,

> p if p = N.

Let n ∈ N fixed and define G : W 1,p
0 (Ω) → R and F : W 1,p

0 (Ω) → R by

G(u) =
1
p

∫
Ω

|∇u|p dx, F (u) =
1
p

∫
Ω

|u|pdµn.
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In the sequel we consider the functional

φ :W 1,p
0 (Ω)→R

u 7→(G(u))2 − F (u).

Proposition 2.1. The functionals G and F are of class C1 on W 1,p
0 (Ω). Moreover

〈DG(u), v〉 =
∫

Ω

|∇u|p−2∇u∇vdx,

and
〈DF (u), v〉 =

∫
Ω

|u|p−2uvdµn, ∀v ∈ W 1,p
0 (Ω).

Proof. We only consider F , the proof for G is similar. Let u and ϕ ∈ W 1,p
0 (Ω).

lim
t→0+

F (u + tϕ)− F (u)
t

=
1
p

d

dt
F (u + tϕ)|t=0

=
1
p

d

dt

∫
Ω

|u + tϕ|p|t=0dµn

=
1
p

∫
Ω

∂

∂t
|u + tϕ|p|t=0dµn

=
∫

Ω

|u|p−2uϕdµn = 〈DF (u), ϕ〉.

The differentiation under the integral is allowed since, if |t| < 1 then

‖u + tϕ|p−2(u + tϕ)ϕ| ≤ (|u|+ |t‖ϕ|)p−1|ϕ|
≤ (|u|+ |ϕ|)p−1|ϕ| ∈ L1(Ω, µn).

Next, we show that DF (u) is continuous. Indeed, by Hölder inequality and using
hypotheses (H1)–(H3), we obtain

|〈DF (u), ϕ〉| = |
∫

Ω

|u|p−2uϕdµn|

≤
∫

Ω

|u|p−1|ϕ|dµn ≤ ‖u‖p−1
Lp(Ω,µn)‖ϕ‖Lp(Ω,µn)

≤ C‖u‖p−1‖ϕ‖.
�

Lemma 2.2. The eigenvalues and eigenfunctions associated to the problem (1.6)
are entirely determined by the nontrivial critical values of φ.

Proof. Let u 6≡ 0 be a critical point of φ associated with a critical value c, which
means that φ(u) = c and φ′(u) = 0. Hence

2G′(u)G(u) = F ′(u).

With the condition G′(u) 6= 0 we obtain G(u) = 1
2λ = λF (u) thus

F (u) =
1

2λ2

so c = −G2(u). Therefore,

〈G′(u), v〉 =
1

2
√
−c
〈F ′(u), v〉 for all v ∈ C∞

c (Ω),
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〈φ′(u), v〉 =
1

2
√
−c
〈F ′(u), v〉 for all v ∈ C∞

c (Ω).

Thus, we deduce that λ = 1/(2
√
−c) is a positive eigenvalue of (1.6) and u is its

associated eigenfunction. Conversely, let (u 6≡ 0, λ) be a solution of (1.6). Then,
for every β ∈ R?, βu is also an eigenfunction associated to λ. In particular for
β = 1/(2λG(u))1/p, the function v = (2λG(u))−1/pu is an eigenfunction associated
to λ = 1/(2

√
−c), which proves that v is a critical point associated to the critical

value c = −1/(4λ2). �

Next, we recall the Genus function defined as follows γ : Σ → N ∪ {∞}, where
Σ = {A ⊂ W 1,p

0 (Ω) : A is closed , A = −A} by

γ(A) = min{i ∈ N : ∃ ϕ ∈ C(A, Ri\{0}), ϕ(x) = −ϕ(−x)}.

Let us now consider the sequence

ck = inf
K∈Ak

sup
v∈K

φ(v), (2.1)

where for k ≥ 1, and

Ak = {K ⊂ W 1,p
0 (Ω) : K is compact symmetric and γ(K) ≥ k}.

Proposition 2.3. The values ck defined by (2.1) are the critical values of φ. More-
over ck < 0 for k ≥ 1 and limk→∞ ck = 0.

Proof. The proof is based on the fundamental theorem of multiplicity and the
approximation of Sobolev imbedding by operators of finite rank. We first show
that for all k ≥ 1, ck is a critical value of φ and ck < 0. Since φ is even and is C1

on W 1,p
0 (Ω), then the result follows from the fundamental theorem of multiplicity

if φ satisfies the following conditions:
(1) φ is bounded below.
(2) φ verify the Palais-Smale condition (P-S).
(3) For all k ≥ 1, there exists a compact symmetric subset K such that γ(K) =

k and supv∈K φ(v) < 0.
Let us verify assertion (1). Indeed, condition (H1) implies that

φ(u) ≥ 1
p2
‖u‖p(‖u‖p − Cp), ∀u ∈ W 1,p

0 (Ω),

which proves that φ is bounded below and φ(u) → +∞ as ‖u‖ → +∞.
Assertion (2). We show that φ verify the Palais-Smale condition. Let (uk)k

be a sequence in W 1,p
0 (Ω) such that (φ(uk))k is bounded and (φ′(uk))k → 0 in

(W 1,p
0 (Ω))′. Since φ is coercive then (uk)k is bounded in W 1,p

0 (Ω). Thus, there
exists a subsequence still denoted by (uk)k such that (∇uk)k converges to ∇u
weakly in Lp, and (uk)k converges to strongly in Lp. By (H3), we obtain that (uk)k

converges strongly in Lp(Ω, µn). Suppose that (‖uk‖)k converges to some constant
α ≥ 0. We distinguish two cases.

Case 1: α = 0. Since (uk)k ⇀ u in W 1,p
0 (Ω) and ‖uk‖ → 0, then (uk)k → 0 in

W 1,p
0 (Ω). Consequently, the condition (P-S) is satisfied.
Case 2: α > 0. For k ≥ 1 we have

φ′(uk) = 2G(uk)G′(uk)− F ′(uk)
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which yields

G′(uk) =
1

2G(uk)
(φ′(uk) + F ′(uk));

i.e.,
p

2
(φ′(uk) + F ′(uk))

‖∇uk‖p
Lp

= G′(uk).

Since u 7→ |u|p−2u is strongly continuous in Lp(Ω, µn), ‖uk‖ → α > 0 and
(φ′(uk))k → 0, then the expression

Vk =
p

2
(φ′(uk) + F ′(uk))

‖∇uk‖p
Lp

converges strongly in (W 1,p
0 (Ω))′. However, G′ is continuous, thus uk = (G′)−1Vk

converge strongly in W 1,p
0 (Ω), from where the (P-S) condition holds.

Next, we prove (3). Indeed, by (H0), there exists a family of balls (Bi)1≤i≤k in
Ω such that Bi ∩Bj = ∅ if i 6= j and µn(Ω ∩Bi) 6= 0. We define

vi =

{
ui(x)

( ∫
Bi
|ui|pdµn

)−1/p if x ∈ Bi,

0 if x ∈ Ω\Bi.

Let Xk denote subspace of W 1,p
0 (Ω) spanned by {v1, v2, . . . , vk}. Since the vi’s are

linearly independent, we have that dim Xk = k. For each v ∈ Xk, v =
∑i=k

i=1αivi,
we obtain F (v) =

∑i=k
i=1 |αi|p.

Thus u 7→ (F (u))1/p defines a norm on Xk. Then there exists c > 0 such that

cF (u) ≤ G(u) ≤ 1
c
F (u) ∀u ∈ Xk.

Let K be defined as

K = {u ∈ W 1,p
0 (Ω) such that

c2

3
≤ F (u) ≤ c2

2
}.

It is clear that K1 = K ∩ Xk 6= ∅ and supu∈K1
φ(u) < −c/12 < 0. Since Xk is

isomorphic to Rk, one can identify K1 to a crown K ′
1 of Rk such that Sk−1 ⊂

K ′
1 ⊂ Rk\{0} where Sk−1 is the unit sphere of Rk. Then γ(K1) = k and the result

follows.
Finally, we shall prove that limk→+∞ ck = 0. Consider {Ei} sequence of linear

subspaces in W 1,p
0 (Ω), such that

• Ei ⊂ Ei+1,
• ∪Ei = W 1,p

0 (Ω),
• dim(Ei) = i.

Define
c̃k = inf

K∈Ak

sup
v∈K∩Ec

i−1

φ(v)

where Ec
i is the linear topological complementary of Ei. Obviously c̃k ≤ ck < 0.

So, it is sufficient to prove that

lim
k→+∞

c̃k = 0.

Assume, by contradiction, that there exists a constant α < 0 such that c̃k <
α < 0 for all k ∈ N, then for each k ∈ N, there exists Kk such that c̃k <
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supu∈Kk∩Ec
i−1

φ(u) < α and there exists uk ∈ Kk ∩Ec
i−1 such that c̃k < φ(uk) < α.

In this way, φ is bounded, hence for some subsequence still denoted (uk),

uk ⇀ u in W 1,p
0 (Ω),

uk → u in Lp(Ω, µn).

Hence φ(u) < α < 0, which is a contradiction with the fact that u ≡ 0 because
uk ∈ Ec

i−1. �

Remark 2.4. It is clear that the sequence (λk)k defined by the formula
λk = 1

2
√
−ck

→ +∞ as k → +∞.

Remark 2.5. We consider λk = infK∈Γk
supu∈KG(u), where Γk is define by

{K ⊂ W 1,p
0 (Ω)\{0} : K is compact, symmetric γ(K) ≥ k, ‖u‖Lp(Ω,µn) = 1}.

Particulary

λ1(n) = inf
{
‖∇u‖p

Lp : u ∈ W 1,p
0 (Ω) and ‖u‖Lp(Ω,µn) = 1

}
.

Moreover, using [23, Theorem 4.11], we obtain the following result.

Theorem 2.6. If u ∈ W 1,p
0 (Ω) is an eigenfunction of (1.3), then u is continuous

in Ω.

In what follows we will use the so-called Picone’s identity proved in [1]. We recall
it here for completeness.

Theorem 2.7 (Picone’s identity). Let u > 0, v > 0 be two continuous functions
in Ω, differentiable a.e.. Denote

L(u, v) = |∇u|p + (p− 1)
up

vp
|∇v|p − p

up−1

vp−1
|∇v|p−2 −∇u∇v,

R(u, v) = |∇u|p − |∇v|p−2∇
( up

vp−1

)
∇v.

Then

(i) L(u, v) = R(u, v),
(ii) L(u, v) ≥ 0 a.e.,
(iii) L(u, v) = 0 a.e. in Ω if and only if u = kv for some k ∈ R.

We will show that the first eigenvalue λ1(n) of (1.6) defined by (1.7) is simple
and isolated, and only eigenfunctions associated with λ1(n) do not change sign.

Proposition 2.8. The first eigenvalue λ1(n) is simple.

Proof. Let u, v be two eigenfunctions associated to λ1(n) and fixed ε > 0. We can
assume without restriction that u and v are positive in Ω. From Picone’s identity
we have∫

Ω

L(u, v + ε)dx =
∫

Ω

R(u, v + ε)dx

= λ1(n)
∫

Ω

updµn −
∫

Ω

|∇v|p−2∇(
up

(v + ε)p−1
)∇vdx.
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The functional up/(v + ε)p−1 belongs to W 1,p
0 (Ω) and then it is admissible for the

weak formulation of −∆pu = λ1(n)|u|p−2uµn. It follows that

0 ≤
∫

Ω

L(u, v + ε)dx = λ1(n)
∫

Ω

up(1− vp−1

(v + ε)p−1
)dµn.

Letting ε → 0, we obtain L(u, v) = 0, a.e. in Ω, and therefore using (iii), we obtain
u = kv. �

Proposition 2.9. Let u ∈ W 1,p
0 (Ω) be a nonnegative weak solution of (1.6), then

either u ≡ 0 or u(x) > 0 for all x ∈ Ω.

The proof of the above proposition is a direct consequence of Harnack’s inequal-
ity, see [35, 36].

Theorem 2.10. Let (u, λ) ∈ W 1,p
0 (Ω) × R+ be an eigensolution of (1.1). Then

u ∈ L∞(Ω, µn).

The proof of the above theorem is rather a straightforward adaptation of [22,
Theorem 4.1] with dµn = dx.

Theorem 2.11. Let u be an eigenfunction of (1.6) associated to an eigenvalue
λ 6= λ1(n) and 1 ≤ q < p. We define

I = min
{ ∫

Ω

|u|qdµn, u ∈ Lp(Ω, µn),
∫

Ω

|u|pdµn = 1
}
.

Then
min(µn(Ω−), µn(Ω+)) ≥ ((Cλ)−1/pI)

pq
p−q , (2.2)

where Ω+ = {x ∈ Ω, u(x) > 0} and Ω− = {x ∈ Ω, u(x) < 0}.

Proof. Let u be an eigenfunction associated to λ, then∫
Ω

|∇u|p−2∇u∇vdx = λ

∫
Ω

|u|p−2uvdµn, ∀v ∈ W 1,p
0 (Ω). (2.3)

For λ 6= λ1(n), u changes sign i.e., u+ 6= 0 and u− 6= 0. Since u+ ∈ W 1,p
0 (Ω) we

have ∫
Ω

|∇u+|pdx = λ

∫
Ω

|u+|pdµn.

For 1 ≤ q < p, we have:∫
Ω

|u+|qdµn ≤
( ∫

Ω

|u+|pdµn

)q/p

(µn(Ω+))1−
q
p

≤ Cq/pµn(Ω+)1−
q
p

( ∫
Ω

|∇u+|pdx
)q/p

≤ (λC)q/pµn(Ω+)1−
q
p

( ∫
Ω

|u+|pdµn

)q/p

and
‖u+‖q

Lq(Ω,µn) ≤ (λC)q/pµn(Ω+)
p−q
pp ‖u+‖Lp(Ω,µn).

Finally
µn(Ω+) ≥ ((Cλ)−1/pI)

pq
p−q . (2.4)

�

Now, we establish the isolation of the first eigenvalue.
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Theorem 2.12. Let λ1(n) be the first eigenvalue of the problem (1.6). Then λ1(n)
is isolated.

Proof. Our approach is related to the method of [4, 5]. Let λ > 0 be an eigenvalue
of (1.6) and let v be the corresponding eigenfunction. By (1.7), it follows that
λ1(n) < λ and so λ1(n) is left-isolated. To prove that λ1(n) is right-isolated, we
argue by contradiction. We suppose that there exists a sequence of eigenvalues
(λk)k∈N, such that λk 6= λ1(n) and λk → λ1(n). Let (uk)k∈N be the corresponding
sequence of eigenfunctions such that∫

Ω

|∇uk|pdx = 1, ∀ k ∈ N. (2.5)

There exists a subsequence, denoted again by (uk)k and a function u ∈ W 1;p
0 (Ω)

such that

uk ⇀ u on W 1,p
0 (Ω)

uk → u on Lp(Ω, µn).

Our next aim is to show that u is the eigenfunction corresponding to λ1(n). First,
since −∆p is a continuous and one-to-one operator from W 1,p

0 (Ω) into W−1,p′

0 (Ω)
and so is its inverse operator (−∆p)−1 defined from W−1,p′

0 (Ω) into W 1,p
0 (Ω) (see

[27]). Thus,
uk = (−∆p)−1(λk|uk|p−2uµn).

By Vitali’s Theorem, we have

λkup−2
k uk → λ|u|p−2u strongly in L

p
p−1 (Ω, µn) ↪→ W−1,p′(Ω).

The continuity property of (−∆p)−1 implies that

uk → u strongly in W 1,p
0 (Ω).

Hence, u is an eigenfunction of (1.6), corresponding to λ1(n). Using Vitali’s Theo-
rem, again, we have

|∇uk|p−2∇uk → |∇u|p−2∇u strongly in L1.∫
Ω

|uk|p−2ukvdµn ≤
( ∫

Ω

|uk|pdµn

) p−1
p

.
( ∫

Ω

|v|pdµn

)1/p

≤ ‖v‖.

It should appear a constant ηε > 0 for every ε > 0 and Ωε ⊂ Ω such that

µn(Ω\Ωε) ≤
ε

2
and u(x) ≥ 2ηε for every x ∈ Ωε. (2.6)

Let us denote

Ω+
k = {x ∈ Ω, uk(x) > 0}, (2.7)

Ω−k = {x ∈ Ω, uk(x) < 0}. (2.8)

Moreover, by Egorov’s Theorem, there exists Ω′ε ⊂ Ω such that

µn(Ω\Ω′ε) ≤
ε

2
and uk converges uniformly to u. On the other hand, there exists Nε > 0 such that
for every k > Nε, we have

Ωε ∩ Ω′ε ⊂ Ω+
k
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and then

µn(Ω+
k ) ≥ µn(Ωε ∩ Ω′ε) ≥ µn(Ω)− (µn(Ω\Ω′ε) + µn(Ω\Ωε)) ≥ µn(Ω)− ε.

Hence, it follows that µn(Ω+
k ) and µn(Ω−k ) ≥ K, where K = ((Cλ)−1/pI)

pq
p−q . If

we choose ε = K
2 , we obtain

µn(Ω) = µn(Ω−k ) + µn(Ω+
k ) ≥ µn(Ω)− ε + K = µn(Ω) + ε > µn(Ω),

which is a contradiction. Therefore λ1(n) is isolated. �

3. Proof of Theorem 1.6

Lemma 3.1. Let λ1(n) be the first eigenvalue associated to (1.6). Then, λ1(n) ≥ 1
C

and limn→∞λ1(n) = 1
C .

Proof. Notice that

λ1(n) = inf
Ω

∫
Ω
|∇u|pdx∫

Ω
|u|pdµn

≥ inf
Ω

∫
Ω
|∇u|pdx∫

Ω
|u|pdµ

≥ 1
C

.

Since (λ1(n))n is a non increasing sequence, we have to prove that the limit can
not be larger than 1

C . Assume by contradiction that limn→∞ λ1(n) = 1
C + δ, for

some δ > 0. Then we can choose φ ∈ C∞
0 (Ω) such that∫

Ω
|∇φ|pdx∫

Ω
|φ|pdµ

<
1
C

+
δ

2
.

Which gives us

λ1(n) ≤
∫
Ω
|∇φ|pdx∫

Ω
|φ|pdµn

≤ 1
C

+
δ

2

for n large enough. �

In the sequel for λ > 0 let us denote by Lµn

λ the operator defined on W 1,p
0 (Ω) by

Lµn

λ u = −∆pu− λ|u|p−2uµn.

The first result in this section is an easy consequence of the Hardy’s inequality.

Lemma 3.2. If 0 < λ < 1
C , then Lµn

λ is a positive operator.

Proof. From assumption (H1) we have

〈Lµn

λ u, u〉 ≥ (1− λC)‖u‖p ≥ 0

whenever 0 < λ < 1/C. �

Next we recall a formula from [34].

Lemma 3.3. Let a, b ∈ RN and 〈., .〉 be the standard scalar product in RN . Then

〈|a|p−2a− |b|p−2b, (a− b)〉 ≥

{
Cp|a− b|p if p ≥ 2

Cp
|a−b|2

(|a|+|b|)2−p if 1 < p < 2.

Lemma 3.4. The operator Lµn

λ : W 1,p
0 (Ω) → W−1,p′(Ω) is uniformly continuous

on bounded sets.
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Proof. Assume p > 2 and consider K ⊂ W 1,p
0 (Ω) be a bounded set; i.e., there exists

M > 0 such that
‖u‖ ≤ M, ∀u ∈ K.

Then, using Lemma 3.3 and Hölder inequality, for u, v ∈ K and φ ∈ W 1,p
0 (Ω), we

obtain

|〈Lµn

λ u− Lµn

λ v, φ〉|

≤
∫

Ω

(|∇u|p−2 + |∇v|p−2)|∇u−∇v||∇φ|dx + λ

∫
Ω

(|u|p−2 + |v|p−2)|u− v‖φ|dµn

≤ 2cpM
p−2‖∇u−∇v‖Lp + 2λcpM

p−2‖u− v‖Lp(Ω,µn)

≤ 2cpM
p−2(min{1, Cλ})‖u− v‖.

The same process is applied for 1 < p < 2. �

Lemma 3.5. The operator Lµn

λ : W 1,p
0 (Ω) → W−1,p′(Ω) is pseudo-monotone.

Proof. Let (uk)k≥1 ⊂ W 1,p
0 (Ω) such that uk ⇀ u in W 1,p

0 (Ω) and

lim sup
k→∞

< Lµn

λ uk, uk − u >≤ 0.

We want to prove that

lim inf〈Lµn

λ uk, uk − v〉 ≥ 〈Lµn

λ u, u− v〉 for all v ∈ W 1,p
0 (Ω).

Since uk ⇀ u in W 1,p
0 (Ω), it follows that∫
Ω

|∇u|p−2∇u∇(uk − u)dx → 0, as k → +∞. (3.1)

We estimate∫
Ω

|uk|p−2uk(uk − u)dµn ≤ ‖uk‖p−1
Lp(Ω,µn)‖uk − u‖Lp(Ω,µn).

Through uk → u in Lp(Ω, µn) and uk is bounded in Lp(Ω, µn) then∫
Ω

|uk|p−2uk(uk − u)dµn → 0, as k → +∞.

So

lim sup
k→∞

( ∫
Ω

|∇uk|p−2∇uk∇(uk − u)dx + (−λ

∫
Ω

|uk|p−2uk(uk − u)dµn)
)
≤ 0,

which yields

lim sup
k→∞

∫
Ω

|∇uk|p−2∇uk∇(uk − u)dx ≤ 0. (3.2)

Combining (3.1), (3.2) and Lemma 3.3 we obtain that (uk)k → u in W 1,p
0 (Ω). The

proof is complete. �

Proposition 3.6. For every 0 < λ < 1/C, the operator Lµn

λ is coercive.

Proof. Using (H1)–(3̋), we have

〈Lµn

λ u, u〉 =
∫

Ω

|∇u|pdx− λ

∫
Ω

|u|pdµn ≥ (1− λC)
∫

Ω

|∇u|pdx,

which implies that Lµn

λ is coercive, whenever 0 < λ < 1
C . �
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By Proposition 3.6 and Lemma 3.5 the operator Lµn

λ : W 1,p
0 (Ω) → W−1,p′(Ω)

is coercive, bounded from below and pseudo-monotone. Hence, by [23, Theorem
4.11], it is onto. Thus we have the following result.

Theorem 3.7. For every f ∈ Lp′ , there exists un ∈ W 1,p
0 (Ω) which is a solution

of (1.2).

Lemma 3.8. For each n ∈ N, let un be a solution of the Dirichlet problem (1.2).
Then the sequence (un)n is bounded in W 1,p

0 (Ω).

Proof. Since ∫
Ω

|∇un|pdx− λ

∫
Ω

|un|pdµn =
∫

Ω

fundx,

and using (H1), we obtain

(1− λC)‖un‖p ≤ ‖f‖Lp′‖un‖Lp ,

‖un‖ ≤
(
C1

‖f‖Lp′

(1− λC)

) 1
p−1

,

where C1 is the positive constant of the continuous of Sobolev embedding satisfied.
�

Lemma 3.9. Let (un)n be the sequence as defined in Theorem 3.7. Then (un)n

converges to a weak solution u of (1.1).

Proof. By Lemma 3.8, since un is bounded in W 1,p
0 (Ω), we have

un ⇀ u in W 1,p
0 (Ω),

un ⇀ u in Lp(Ω, µ),

un → u in Lp.

(3.3)

Then ∫
Ω

|∇un|p−2∇un∇ϕdx → |∇u|p−2∇u∇ϕdx, for all ϕ ∈ W 1,p
0 (Ω).

Next, we show that∫
Ω

|un|p−2unϕdµn →
∫

Ω

|u|p−2uϕdµ, for all ϕ ∈ C∞
0 (Ω).

Indeed, we have∣∣ ∫
Ω

|un|p−2unϕdµn −
∫

Ω

|u|p−2uϕdµ
∣∣

=
∣∣ ∫

Ω

|u|p−2uϕd(µ− µn)−
∫

Ω

(|un|p−2un − |u|p−2u)ϕdµn

∣∣
≤ ‖u‖p−1

Lp(Ω,µ−µn)‖ϕ‖Lp(Ω,µ−µn) + |
∫

Ω

(|un|p−2un − |u|p−2u|)ϕ|dµn|.

So, by (H3) the first integral converges to 0, as n → ∞; respectively by the weak
convergence in (3.3), the second integral converges to 0, as n → ∞. Therefore,
u is a solution of our problem in the sense of distributions. Moreover by density
argument and taking into account that u ∈ W 1,p

0 (Ω), we conclude that u is solution
in the sense of W 1,p

0 (Ω). �
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4. Proof of Theorem 1.7

Some recent papers [17, 21, 28, 30, 32, 29] considered a class of functionals
with the minimax method. We will use again the variational approach to study
the case of unbounded functionals, more precisely the existence of solution via the
mountain-pass theorem. For instance the following result holds. For 0 < λ < 1

C ,
let

J(u) =
1
p
〈Lµn

λ u, u〉 − 1
α
‖u‖α

Lα , u ∈ W 1,p
0 (Ω).

To obtain a nontrivial critical point of the functional J , we apply the following
version of the mountain-pass theorem from [24] with the usual Palais-Smale com-
pactness condition. So the critical points of the functional J are a weak solutions
for (1.5).

Theorem 4.1. Let E be a real Banach space and J ∈ C1(E, R) satisfying Palais-
Smale condition. Suppose that J(0) = 0 and for some σ, ρ > 0 and e ∈ E, with
‖e‖ > ρ, one has σ ≤ inf‖u‖=ρJ(u) and J(e) < 0. Then J has a critical value c ≥ σ
characterized by

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

where
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

The proof of the above theorem follows from the following lemma.

Lemma 4.2. The functional J satisfies the Palais-Smale condition.

Proof. Let (uk)k ∈ W 1,p
0 (Ω) be a Palais-Smale sequence. Set

c = lim
k→∞

J(uk), J ′(uk) = εk

such that (εk)k → 0. Thus

|J ′(uk)w| ≤ εk‖w‖, for all w ∈ W 1,p
0 (Ω).

For k large enough, we will have

c + 1 ≥ J(uk)− 1
α
〈J ′(uk), uk〉+

1
α
〈J ′(uk), uk〉,

≥ (
1
p
− 1

α
)(1− λC)‖uk‖p − 1

α
‖uk‖εk,

≥ (
1
p
− 1

α
)(1− λC)‖uk‖p − 1

α
‖uk‖.

Hence, the sequence (uk)k is bounded in W 1,p
0 (Ω). By compactness argument we

can assume that

uk ⇀ u in W 1,p
0 (Ω),

uk → u in Lα(Ω), for p < α < p?.

Using (H2), we obtain that (uk)k converges to u in Lp(Ω, µn). It follows that
|uk|p−2uk → |u|p−2u in Lp′(Ω, µn), hence in W−1,p′(Ω). Let us denote by Vk =
|uk|p−2ukµn − |uk|α−2uk and V = |u|p−2uµn − |u|α−2u. Since (−∆p)−1 is continu-
ous, we conclude that

uk = (−∆p)−1(Vk) converges to (−∆p)−1(V ) = u.

Therefore, |uk|p−2uk converges to |u|p−2u in W 1,p
0 (Ω). �
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Lemma 4.3. The functional J satisfies the conditions for the mountain-pass the-
orem.

Proof. Let δ1 = αδ. First, we show that there exist positive constants ρ and α1

such that
J(u) ≥ α, if ‖u‖ = ρ,

and there exists ϕ ∈ W 1,p
0 (Ω) such that J(tϕ) → −∞, as t → ∞. Indeed, for

u ∈ W 1,p
0 (Ω), we have

J(u) =
1
p
〈Lµn

λ u, u〉 − 1
α
‖u‖α

Lα ≥
1
p
(1− λC)‖u‖p − δ1

α
‖u‖α.

Since λ < 1/C and p < α, we can set

ρ =
( (1− λC)αSα/p

|Ω|1−
α
p?

)1/α−p)
, α1 =

( (1− λC)α

(δ1)p

)1/(α−p)(1
p
− 1

α

)
,

such that J(u) ≥ α1 if ‖u‖ = ρ.
Let us prove the second assertion. Let t > 0 large enough, and choose ϕ ∈

W 1,p
0 (Ω)\{0} satisfying

J(tϕ) =
1
p
tp〈Lµn

λ ϕ, ϕ〉 − 1
α

tα‖ϕ‖α
Lα → −∞ as t → +∞.

Thus, we have J(tϕ) < 0, for sufficiently large t.
So, we can conclude that J has a critical value c ≥ α1, which can be characterized

by
c = inf

γ∈Γ
max

t∈[0,1]
J(γ(t)),

where
Γ = {γ ∈ C([0, 1],W 1,p

0 (Ω)), γ(0) = 0, γ(1) = e}.
Next, we shall prove the positivity of the solution. Multiply the equation −∆pu−

λ|u|p−2uµn = |u|α−2u by u− and integrate over Ω, we find ‖u−‖ = 0 and so u is a
positive solution of (Pµn

α,λ) the proof is complete. �

For the proof of Theorem 1.7, we need the following results.

Lemma 4.4. Let (un)n be a sequence of weak solutions of (1.5) with µn instead of
µ. Then, (un)n is bounded in W 1,p

0 (Ω).

Proof. As un is a weak solution of (1.5) with µn instead of µ, then un is a critical
point of the functional J . Since J satisfies the Palais-Smale condition, then (un)n

is bounded in W 1,p
0 (Ω). �

Lemma 4.5. Let (un)n be a sequence of weak solutions of the problem (1.5) with
µn instead of µ. Then (un)n converges to a weak solutions u of (1.5).

Proof. By Lemma 3.8, since (un)n is bounded in W 1,p
0 (Ω), it follows that

un ⇀ u in W 1,p
0 (Ω),

un ⇀ u in Lp(Ω, µ),

un → u in Lα p < α < p?.

(4.1)

Hence ∫
Ω

|∇un|p−2∇un∇ϕdx → |∇u|p−2∇u∇ϕdx, for all ϕ ∈ W 1,p
0 (Ω).
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By the compactness of Sobolev embedding, we obtain∫
Ω

|un|α−2unϕdx →
∫

Ω

|u|α−2uϕdx, for all ϕ ∈ W 1,p
0 (Ω).

Next, we show that∫
Ω

|un|p−2unϕdµn →
∫

Ω

|u|p−2uϕdµ, for all ϕ ∈ C∞
0 (Ω).

Indeed, we have∣∣ ∫
Ω

|un|p−2unϕdµn −
∫

Ω

|u|p−2uϕdµ
∣∣

=
∣∣ ∫

Ω

|u|p−2uϕd(µ− µn)−
∫

Ω

(|un|p−2un − |u|p−2u)ϕdµn

∣∣
≤ ‖u‖p−1

Lp(Ω,µ−µn)‖ϕ‖Lp(Ω,µ−µn) + |
∫

Ω

(|un|p−2un − |u|p−2u|)ϕ|dµn|.

So, using (H3) the first integral converges to 0, as n →∞ respectively by the weak
convergence in (4.1), the second integral converges to 0, as n → ∞. Therefore,
u is a solution of our problem in the sense of distribution. Moreover by density
argument and taking into account that u ∈ W 1,p

0 (Ω), we conclude that u is solution
in the sense of W 1,p

0 (Ω). �
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[21] A. Kristàly, V. Rădulescu, C. Varga; Variational Principles in Mathematical Physics, Geom-
etry and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems,
Encyclopedia of Mathematics and its Applications, No. 136, Cambridge University Press,
Cambridge, 2010.

[22] A. Le; Eigenvalue problems for the p-Laplacian, Nonlinear Analysis 64 (2006), 1057-1099.
[23] J. Maly, W. P. Ziemer; Fine Regularity of Solution of Elliptic Partial Differential Equations,

Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence,
RI, 1997.

[24] J. Marcos, B. do O’; Solutions to perturbed eigenvalue problems of the p-Laplacian in RN ,
Electr. J. Diff. Equations, Vol. 1997 (1997), No. 11, pp. 1-15.

[25] E. Montefusco; Lower semicontinuity of functionals via the concentration-compactness prin-
ciple, J. Math. Anal. 263 (2001), 264-276.
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sidad Autónoma de Madrid. Madrid, Spain. Miramare-Trieste Italy. Work partially supported
by DGICYT projet PB94-0187 MEC Spain.
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