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WEAK SOLUTIONS FOR DEGENERATE SEMILINEAR
ELLIPTIC BVPS IN UNBOUNDED DOMAINS

RASMITA KAR

Abstract. In this article, we prove the existence of a weak solution for the
degenerate semilinear elliptic Dirichlet boundary-value problem

Lu(x) +
nX

i=1

g(x)h(u(x))Diu(x) = f(x) in Ω,

u = 0 on ∂Ω,

in a suitable weighted Sobolev space. Here Ω ⊂ Rn, 1 ≤ n ≤ 3, is not
necessarily bounded.

1. Introduction

For 1 ≤ n ≤ 3, let Ω ⊂ Rn, be a domain (not necessarily bounded) with boundary
∂Ω. We assume Ω = ∪∞i=1Ωi, Ωi ⊆ Ωi+1 ⊆ Ωi+1 ⊂ Ω, each Ωi ⊂ Rn is a bounded
domain with boundary ∂Ωi. Let L be an elliptic operator in divergence form

Lu(x) = −
n∑

i,j=1

Dj(aij(x)Diu(x)), Dj =
∂

∂xj
,

where the coefficients aij are measurable, real valued functions, the matrix A =
(aij) is symmetric and satisfy the degenerate ellipticity condition

λ|ξ|2ω(x) ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2ω(x), a.e. x ∈ Ω, (1.1)

for all ξ ∈ Rn and ω is an weight function (λ > 0,Λ > 0). When ω = 1 in
(1.1), the condition (1.1) reduces to the usual ellipticity condition. However, such
an ellipticity condition may not hold if aij are functions vanishing at some point
x ∈ Ω leading to the degeneracy of the ellipticity condition. Let f ∈ L2(Ω). In
this paper, we study the existence of weak solutions to the degenerate semilinear
elliptic BVP

Lu(x) +
n∑

i=1

g(x)h(u(x))Diu(x) = f(x) in Ω,

u = 0 on ∂Ω,

(1.2)
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where g/
√

ω ∈ L∞(Ω) and h is bounded and Lipschitz continuous. The tools used
are pseudomonotone operators as introduced by of Brézis [6], the compact embed-
ding theorem in weighted Sobolev spaces in a domain of Rn, n ≤ 3 and a well-known
technique used for unbounded domain as in Noussair and Swanson[23]. Where as
the restriction on dimension of the domain has yields us a required compactness
condition. The study is inspired by a non-degenerate problem in bounded domain
given in the book by Zeidler [27].

In general, the Sobolev spaces W k,p(Ω)(without weights) occurs as spaces of solu-
tions for elliptic and parabolic PDEs. For degenerate problems with various types of
singularities in the coefficients it is natural to look for solutions in weighted Sobolev
spaces; see [9, 10, 11, 15, 16, 17]. Elliptic BVPs in unbounded domains present spe-
cific difficulties, primarily due to lack of compactness. Another difficulty in the
study of the elliptic BVPs is due to the non-availability of the Poincare-inequality
in the Sobolev spaces W 1,p

0 (Ω) for a general unbounded domain say Ω. One of the
classical technique employed is extracting a solution on unbounded domain Ω by so-
lutions on bounded subdomains of Ω under the assumption the suitable upper and
lower solutions exist. The related literature are found in Noussair and Swanson[23]
and Cac [8]. Secondly, the use of Sobolev spaces of highly symmetric functions,
which admit compact embeddings, as in Berestycki and Lions [2, 3]. Thirdly, the
use of weighted-norm Sobolev spaces which admit compact embeddings, as in Benci
[1], Bongers, Heinz and Kiipper [5].

In [4], Berger and Schechter have shown that a substitute for such embedding
results can be obtained when Ω is unbounded, by introducing appropriate weighted
Lp norms. These results are then applied by them to establish an existence theorem
for the Dirichlet problem for quasilinear elliptic equations in an unbounded domain.
A few references for nonlinear boundary value problems in unbounded domains with
aid of pseudomonotone operators are found in [7, 12, 14, 22]. The equation (1.2)
considered in the present study is not a subclass of the equations studied in [7, 12,
14, 22]. The compactness condition for weighted Sobolev spaces has been assumed
in [12], and it is shown how the assumption of monotonicity can be weakened still
guaranteeing the pseudo-monotonicity of certain nonlinear degenerated or singular
elliptic differential operators.

Section 2 deals with preliminaries. Section 3 deals with the existence of a solution
(1.2) in an arbitrary bounded domain say G. In section 4, we obtain a uniform
bound for the solutions {ui} of (1.2) in each bounded subdomains Ωi and finally,
extraction of a solution for (1.2) from the sequence {ui} has been shown.

2. Preliminaries

Let Ω ⊂ Rn, 1 ≤ n ≤ 3 be an open connected set. Let ω : Rn → R+ be a weight
function(i.e. locally integrable non negative function with 0 < ω < ∞ a.e) in Ω
satisfying the conditions

ω ∈ L1
loc(Ω), ω−1/(p−1) ∈ L1

loc(Ω), 1 < p < ∞. (2.1)

We denote by Lp(Ω) (1 ≤ p < ∞) the usual Banach space of measurable real valued
functions, u, defined in Ω for which

‖u‖p,Ω =
( ∫

Ω

|u|pdx
)1/p

< ∞. (2.2)



EJDE-2012/43 WEAK SOLUTIONS 3

For p ≥ 1, the weighted Sobolev space W 1,p(Ω, ω) is defined by

W 1,p(Ω, ω) := {u ∈ Lp(Ω) : Dju ∈ Lp(Ω, ω), j = 1, 2 . . . , n}

with the associated norm

‖u‖1,p,Ω =
( ∫

Ω

|u|pdx +
∫

Ω

|Du|pω dx
)1/p

, (2.3)

where Du = (D1u, . . . , Dnu). The space W 1,p
0 (Ω, ω) is defined as the closure

of C∞0 (Ω) with respect to the norm (2.3). We also note that W 1,2(Ω, ω) and
W 1,2

0 (Ω, ω), are Hilbert spaces.

Proposition 2.1. For abounded domain Ω ⊂ Rn, we have the compact embedding

W 1,p
0 (Ω, ω) ↪→↪→ Lp+η(Ω) for 0 ≤ η < p∗s − p (2.4)

provided

ω−s ∈ L1(Ω) and s ∈
(n

p
,∞) ∩

[ 1
p− 1

,∞), (2.5)

where
ps =

ps

s + 1
and p∗s =

nps

n− ps
. (2.6)

For more details, we refer [13]. It follows from the weighted Friedrichs inequality
[13, p.27] the norm

‖u‖0,1,p,Ω =
( ∫

Ω

|Du|pωdx
)1/p

. (2.7)

on the space W 1,p
0 (Ω, ω)(Ω bounded) is equivalent to the norm ‖u‖1,p,Ω defined by

(2.3) provided (2.5) holds. Hereafter, we assume the weight function ω satisfies
conditions (2.1) and (2.5). We note in the following remark that the Proposition
2.1 restricts the dimension n given the weight ω and the exponent p.

Remark 2.2. Let Ω ⊂ Rn be a bounded domain. From (2.6), we note that

2∗s =
2ns

n(s + 1)− 2s
.

Let

ω−s ∈ L1(Ω) and s ∈
(n

p
,∞

)
∩

[ 1
p− 1

,∞
)
.

For η = 2, from (2.4), we have

W 1,2
0 (Ω, ω) ↪→↪→ L4(Ω) for 0 ≤ 2 < 2∗s − 2.

Then

2∗s − 2 > 2 ⇒ 2ns

n(s + 1)− 2s
> 4. (2.8)

Now, the inequality (2.8) holds, when n ≤ 3.

Example 2.3. Let Ω = {x ∈ Rn, n ≤ 3 : |x| < 1} and p = 2. Then ω(x) = |x|η,
0 < η < 1 is an admissible weight function.

For more details on weighted Sobolev spaces, we refer [13, 18, 20, 25]. At each
step, a generic constant is denoted by c or β0 in order to avoid too many suffices.
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Definition 2.4. Let Ω ⊂ Rn be an open connected set. We say that u ∈ W 1,2
0 (Ω, ω)

is a weak solution of (1.2) if∫
Ω

n∑
i,j=1

aijDiu(x)Djφ(x)dx +
∫

Ω

n∑
i=1

g(x)h(u(x))Diuφ(x)dx =
∫

Ω

f(x)φ(x)dx

for every φ ∈ W 1,2
0 (Ω, ω).

Definition 2.5 (Pseudomonotone operators). Let A : X → X∗ be an operator
on the real reflexive Banach space X. The operator A is called pseudomonotone if
un ⇀ u as n →∞ and

lim sup
n→∞

〈Aun, un − u〉 ≤ 0

implies
〈Au, u− w〉 ≤ lim inf

n→∞
〈Aun, un − w〉 for all w ∈ X.

We consider the operator equation

Au = b, u ∈ X. (2.9)

In section 3, we use the following result.

Proposition 2.6 (Brézis(1968)). Assume that the operator A : X → X∗ is pseu-
domonotone, bounded and coercive on the real,separable reflexive Banach space X.
Then, for each b ∈ X∗, the equation (2.9) has a solution.

For a proof of the above Theorem, we refer the reader to [26, Theorem 27.A].

3. Bounded domain

Let G be a bounded domain in Rn with 1 ≤ n ≤ 3. We consider the degenerate
semilinear elliptic BVP

Lu(x) +
n∑

i=1

g(x)h(u(x))Diu(x) = f(x) in G,

u(x) = 0 on ∂G.

(3.1)

We need the following hypotheses for further study.
(H1) Assume g/

√
ω ∈ L∞(G) and f ∈ L2(G).

(H2) Let h : R → R is a bounded (|h(t)| ≤ µ,∀t ∈ R, µ > 0), and Lipschitz
continuous with Lipschitz constant A > 0 (e.g., h(t) = sin(t), ∀t ∈ R).

We define the functionals B1, B2 : W 1,2
0 (G, ω)×W 1,2

0 (G, ω) → R by

B1(u, φ) =
∫

G

n∑
i,j=1

aij(x)Diu(x)Djφ(x)dx

B2(u, φ) = r(u, u, φ), r(u, v, φ) :=
∫

G

n∑
i=1

g(x)h(u(x))Div(x)φ(x)dx.

Also, define the functional T : W 1,2
0 (G, ω) → R by

T (φ) =
∫

G

f(x)φ(x)dx.
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A function u ∈ W 1,2
0 (G, ω) is a weak solution of (3.1) if

B1(u, φ) + B2(u, φ) = T (φ), for all φ ∈ W 1,2
0 (G, ω). (3.2)

Theorem 3.1. Assume (H1) and (H2). In addition, let the condition

µCG‖g/
√

ω‖∞,G < λ,

where CG is a constant (depending on G) arising out of weighted Fredrichs inequal-
ity. Then the BVP (3.1) has a weak solution.

Proof. First we write the BVP (3.1) as operator equation

u ∈ W 1,2
0 (Ω, ω) : Bu + Nu = T in [W 1,2

0 (Ω, ω)]∗, (3.3)

where T ∈ [W 1,2
0 (Ω, ω)]∗, B : W 1,2

0 (Ω, ω) → [W 1,2
0 (Ω, ω)]∗ is linear, uniformly mono-

tone and continuous, N : W 1,2
0 (Ω, ω) → [W 1,2

0 (Ω, ω)]∗ is strongly continuous and
B + N is coercive. Further we put Propositions 2.6 to this operator equation. The
realization of this idea is split into 5 steps for convenience.

Step 1: Since |aij(x)| ≤ cω(x), we have by Hölder’s inequality

B1(u, v) =
∫

G

n∑
i,j=1

aij(x)Diu(x)Djv(x)dx

≤ c

∫
G

n∑
i,j=1

|Diu(x)||Djv(x)|ωdx

≤ c‖u‖0,1,2,G‖v‖0,1,2,G, for all u, v ∈ W 1,2
0 (G, ω).

We define the operator B : W 1,2
0 (G, ω) → [W 1,2

0 (G, ω)]∗ as

(Bu|φ) = B1(u, φ), for u, φ ∈ W 1,2
0 (G, ω).

Hence, the operator B is well defined, linear, and continuous. It follows from (1.1)
that (

Bu−Bv|u− v
)

= B1(u− v, u− v)

=
∫

G

n∑
i,j=1

aijDi(u− v)Dj(u− v)dx

≥ λ

∫
G

|D(u− v)|2wdx

= λ‖u− v‖20,1,2,G for all u, v ∈ X.

Consequently, B is uniformly monotone(and hence coercive). For more details on
monotone operators, we refer[27].

Step 2: By (H1) and (H2), it follows from Hölder’s inequality,∣∣ ∫
G

g(x) h(u(x))Diu(x)v(x)dx
∣∣

≤
∫

G

|g/
√

ω||h(u(x))||Diu(x)
√

ω||v(x)|dx

≤ µ ‖g/
√

ω‖∞,G

∫
G

|Diu ω1/2||v|dx

≤ µ ‖g/
√

ω‖∞,G

( ∫
G

|Diu|2wdx
)1/2( ∫

G

|v|2dx
)1/2
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and hence, by the weighted Friedrichs inequality [13, p.27],

|B2(u, v)| ≤ CG‖u‖0,1,2,G‖v‖0,1,2,G for all u, v ∈ W 1,2
0 (G, ω).

where CG > 0 is a constant(depending on domain G). Since B2(u, .) is linear and
bounded, there exists an operator N : W 1,2

0 (G, ω) → [W 1,2
0 (G, ω)]∗ such that

(Nu|v) = B2(u, v) for all u, v ∈ W 1,2
0 (G, ω).

Then, problem (3.1) is equivalent to operator equation

Bu + Nu = T, u ∈ W 1,2
0 (G, ω).

Step 3: (I) By (2.4), the embedding W 1,2
0 (G, ω) ↪→↪→ L4(G) is compact. (II)

Let un ⇀ u in W 1,2
0 (G, ω) as n → ∞. Then, the sequence {un} is bounded in

W 1,2
0 (G, ω). By (I), un → u in L4(G) as n →∞. We claim that

Nun → Nu in [W 1,2
0 (G, ω)]∗ as n →∞.

or

‖Nun −Nu‖[W 1,2
0 (G,ω)]∗ = sup

‖v‖0,1,2,G≤1

|(Nun −Nu|v)| → 0 as n →∞.

Otherwise, there exists an ε0 > 0 and a sequence {v′n}, which we denote briefly by
{vn}, such that ‖vn‖0,1,2,G ≤ 1 for all n, with

(Nun −Nu|vn) ≥ ε0 for all n.

Passing to a subsequence, if necessary, we assume that vn ⇀ v in W 1,2
0 (G, ω) and

it follows that vn → v in L4(G) as n →∞. We note that

h(un)(Diun)vn − h(u)(Diu)vn

= (h(un)− h(u))(Diun)vn + h(u)(Diun)(vn − v)

+ h(u)(Diun −Diu)v + h(u)(Diu)(v − vn).
(3.4)

Since h is Lipschitz, we have

|h(un)− h(u)| ≤ A|un − u|,
by (I) and by the generalized Hölder’s inequality, we obtain∣∣ ∫

G

g(x)(h(un)− h(u))(Diun)vndx
∣∣

≤ ‖g/
√

ω‖∞,G

∫
G

|h(un)− h(u)||Diunω1/2||vn|dx

≤ A‖g/
√

ω‖∞,G

( ∫
G

|un − u|4dx
)1/4( ∫

G

|Diun|2ωdx
)1/2( ∫

G

|vn|4dx
)1/4

≤ CG‖un − u‖4,G‖un‖0,1,2,G‖vn‖0,1,2,G,

(3.5)

where CG is a constant (depending on G) arising out of weighted Fredrichs inequal-
ity. We have un → u and vn → v in L4(G) as n → ∞; i.e., ‖un − u‖4,G → 0
and ‖vn − v‖4,G → 0. Moreover, the sequences {un} and {vn} are bounded in
W 1,2

0 (G, ω). Again, we have un ⇀ u in W 1,2
0 (G, ω) and

|r(u, w, v)| =
∣∣ ∫

G

n∑
i=1

g(x)h(u(x))Diw(x)v(x)dx
∣∣

≤ CG‖w‖0,1,2,G‖v‖0,1,2,G for all u, v, w ∈ W 1,2
0 (G, ω),
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due to the Hölder’s inequality, and hence, the linear functional w 7→ r(u, w, v) is
continuous on W 1,2

0 (G, ω). Finally, we have

r(u, un − u, v) → 0 as n →∞. (3.6)

By (3.4),(3.6) and by similar arguments as in(3.5), we have

|(Nun −Nu|vn)| =
n∑

i=1

∣∣ ∫
G

g(x){h(un)(Diun)vn − h(u)(Diu)vn}dx
∣∣

≤
n∑

i=1

∫
G

|g/
√

ω||h(un)(Diun)vn − h(u)(Diu)vn|ω
1
2 dx

≤ ‖g/
√

ω‖∞,GCG{A‖un − u‖4‖un‖0,1,2,G‖vn‖0,1,2,G

+ µ‖vn − v‖4,G‖un‖0,1,2,G + µ‖vn − v‖4,G‖u‖0,1,2,G}
+ |r(u, un − u, v)| → 0 as n →∞.

(3.7)

Relation (3.7) contradicts (3) and hence, N is strongly continuous.
Step 4: For all u ∈ W 1,2

0 (G, ω),

|B2(u, u)| ≤
∣∣ ∫

G

n∑
i=1

g h(u)(Diu)udx
∣∣

≤ µ‖g/
√

ω‖∞,G

∫
G

n∑
i=1

|Diu ω1/2||u|dx

≤ µ‖g/
√

ω‖∞,G

n∑
i=1

( ∫
G

|Diu|2ωdx
)1/2( ∫

G

|u|2dx
)1/2

≤ µCG‖g/
√

ω‖∞,G‖u‖20,1,2,G,

where CG is a constant(depending on G) arising out of weighted Fredrichs inequal-
ity. By (1.1), there exists a constant λ > 0 such that

B1(u, u) ≥ λ‖u‖20,1,2,G for all u ∈ W 1,2
0 (G, ω).

This implies(
Bu + Nu|u

)
= B1(u, u) + B2(u, u)

≥ (λ− µCG‖g/
√

ω‖∞)‖u‖20,1,2,G for all u ∈ W 1,2
0 (G, ω);

i.e., B + N is coercive if µCG‖g/
√

ω‖∞ < λ.
Step 5: Since B is uniformly monotone and continuous, N is strongly contin-

uous and B + N is coercive, by [27, Proposition 26.16, p.576], we note that the
operator B + N is pseudomonotone. Also, we have B + N is continuous, and
bounded. Now, for µCG‖g/

√
ω‖∞ < λ, by Proposition 2.6, problem (3.1) has a

weak solution in W 1,2
0 (G, ω). �
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4. Unbounded domain

Let Ω be a domain (not necessarily bounded) in Rn with 1 ≤ n ≤ 3. We consider
the degenerate semilinear elliptic BVP

Lu(x) +
n∑

i=1

g(x)h(u(x))Diu(x) = f(x) in Ω,

u(x) = 0 on ∂Ω,

(4.1)

(H1’) Assume g/
√

ω ∈ L∞(Ω) and f ∈ L2(Ω).

Lemma 4.1. Assume (H1’) and (H2). If µCΩl
‖g/

√
ω‖∞,Ω < λ, then the BVP

Lu +
n∑

i=1

g h(u)Diu = f in Ωl,

u = 0 on ∂Ωl

(4.2)

has a weak solution u = ul ∈ W 1,2
0 (Ωl, ω) for l = 1, 2, 3, . . . . In addition, for k ≥ l,

‖uk‖0,1,2,Ωl
≤ β0, where β0 is independent of k.

Proof. We use arguments similar to those in Theorem 3.1, Let uk ∈ W 1,2
0 (Ωk, ω)

be the solutions of (4.2) in each bounded subdomains Ωk. Also B1, B2 and T are
defined in a similar way as in section-3. Then, from the hypotheses and relation
(2.4), we note that for k ≥ l,

|B1(uk, uk)| ≤ c‖uk‖20,1,2,Ωl

|B2(uk, uk)| ≤ µCΩl
‖ g√

ω
‖∞,Ωl

‖uk‖20,1,2,Ωl

|T (uk)| ≤ CΩl
‖f‖2,Ωl

‖uk‖0,1,2,Ωl
,

where CΩl
(is the constant depending on the domain Ωl) independent of k. Also,

we have for k ≥ l

B1(uk, uk) ≥ λ

∫
Ωl

|Duk|2ωdx = λ‖uk‖20,1,2,Ωl
.

We obtain
‖uk‖20,1,2,Ωl

≤ 1
λ

B1(uk, uk) (4.3)

Also, we note that

(Buk + Nuk|uk) = B1(uk, uk) + B2(uk, uk)

≥ (λ− µCΩl
‖ g√

ω
‖∞,Ωl

)‖uk‖20,1,2,Ωl

As, T (uk) = B1(uk, uk) + B2(uk, uk), we have

(λ− µCΩl
‖ g√

ω
‖∞,Ωl

)‖uk‖20,1,2,Ωl
≤ CΩl

‖f‖2,Ωl
‖uk‖0,1,2,Ωl

. (4.4)

Since λ > µCΩl
‖ g√

ω
‖∞,Ωl

, By (4.3) and (4.4), we have

‖uk‖0,1,2,Ωl
≤ CΩl

‖f‖2,Ωl

(λ− µCΩl
‖ g√

ω
‖∞,Ωl

)

≤ CΩl
‖f‖2,Ω

(λ− µCΩl
‖ g√

ω
‖∞,Ω)

= β0,
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where β0 is independent of k. Hence,

‖uk‖0,1,2,Ωl
≤ β0, for all k ≥ l (4.5)

�

Theorem 4.2. Let Ω = ∪∞l=1Ωl, Ωl ⊆ Ωl ⊆ Ωl+1 ⊆ Ωl+1 be bounded domains in Ω,
for l ≥ 1 and let the condition µCΩl

‖ g√
ω
‖∞,Ω < λ be fulfilled. Under the hypotheses

(H1’) and (H2), (4.1) has a weak solution u ∈ W 1,2
0 (Ω, ω).

Proof. A part of this proof follows from [19, 23, 24]. Let {uk} be the sequence of
solutions of (4.2) in W 1,2

0 (Ωk, ω), (k ≥ 1). Let ũk, for k ≥ 1, denote the extension
of uk by zero outside Ωk, which we continue to denote it by uk. From (4.5), we
have

‖uk‖0,1,2,Ωl
≤ β0, for k ≥ l.

Then, {uk} has a subsequence {uk1
m
} which converges weakly to u1, as m → ∞,

in W 1,2
0 (Ω1, ω). Since {uk1

m
} is bounded in W 1,2

0 (Ω2, ω), it has a convergent sub-
sequence {uk2

m
} converging weakly to u2 in W 1,2

0 (Ω2, ω). By induction, we have
{ukl−1

m
} has a subsequence {ukl

m
} which weakly converges to ul in W 1,2

0 (Ωl, ω); i.e.,
in short, we have ukl

m
⇀ ul in W 1,2

0 (Ωl, ω), l ≥ 1. Define u : Ω → R by

u(x) := ul(x), for x ∈ Ωl.

(Here, there is no confusion since ul(x) = um(x), x ∈ Ω, for any m ≥ l).
Let M be any fixed (but arbitrary) bounded domain such that M ⊆ Ω. Then,

there exists an integer l such that M ⊆ Ωl. We note that, the diagonal sequence
{ukm

m
;m ≥ l} converges weakly to u = ul in W 1,2

0 (M,ω), as m →∞.
We still need to show that u is the required weak solution. It is sufficient to

show that u is a weak solution of (4.1) for an arbitrary bounded domain M in Ω.
Since ukm

m
⇀ ul in W 1,2

0 (M,ω), we have

∫
M

D(ukm
m
− u).Dφ ωdx → 0, as m →∞,

implies ∫
M

Di(ukm
m
− u)Djφωdx → 0, as m →∞.

From (1.1), for a constant c, we have |aij | ≤ cω. We observe that

∫
M

n∑
i,j=1

aijDi(ukm
m
− u)Djφ dx ≤ c

n∑
i,j=1

∫
M

Di(ukm
m
− u)Djφw dx → 0, (4.6)
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as m → ∞. Also, by (2.4), ukm
m
→ u in L4(M). We have, by the generalized

Hölder’s inequality∣∣ ∫
M

g(h(ukm
m

)− h(u))Di(ukm
m
− u)φdx

∣∣
≤ A

∫
M

|g/
√

ω||(ukm
m
− u)||Di(ukm

m
− u)

√
ω||φ|dx

≤ A‖ g√
ω
‖∞,M

∫
M

|(ukm
m
− u)||Di(ukm

m
− u)

√
ω||φ|dx

≤ A‖ g√
ω
‖∞,M

( ∫
M

|(ukm
m
− u)|4dx

)1/4( ∫
M

|Di(ukm
m
− u)|2ωdx

)1/2

×
( ∫

M

|φ|4dx
)1/4

≤ ACM‖
g√
ω
‖∞,M‖ukm

m
− u‖4,M‖ukm

m
− u‖0,1,2,M‖φ‖2,M → 0,

(4.7)

as m → ∞. Since M is an arbitrary bounded domain in Ω, it follows from (4.6)
and (4.7),∫

Ω

n∑
i,j=1

aij(x)Diu(x)Djφ(x)dx +
∫

Ω

n∑
i=1

g(x)h(u(x))Diu(x)φ(x)dx

=
∫

Ω

f(x)φ(x)dx

for every φ ∈ W 1,2
0 (Ω, ω), which completes the proof. �

Remark 4.3. The above results still hold if h is a bounded and continuous (not
necessarily Lipschitz). We have to slightly modify the argument used in the in-
equalities (3.5) and (4.7) and the rest of the proof remains same. For a bounded
domain G and bounded function h, if u ∈ L2(G), we have h(u) ∈ L4(G). Define
the Nemytskii operator hu : L2(G) → L4(G) by hu(x) = h(u(x)); we have hu is
continuous [21, Theorem 2.1]. Let un ⇀ u in W 1,2

0 (G, ω), then∣∣ ∫
G

g(x)(h(un)− h(u))(Diun)vndx
∣∣

≤ ‖g/
√

ω‖∞,G

∫
G

|h(un)− h(u)||Diunω1/2||vn|dx

≤ CG‖g/
√

ω‖∞,G‖h(un)− h(u)‖4,G‖un‖0,1,2,G‖vn‖0,1,2,G → 0, as m →∞.

Similar argument can be use to prove the inequality (4.7) in section 4.
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