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SOLVABILITY OF SECOND-ORDER BOUNDARY-VALUE
PROBLEMS AT RESONANCE INVOLVING INTEGRAL

CONDITIONS

YUJUN CUI

Abstract. This article concerns the second-order differential equation with
integral boundary conditions

x′′(t) = f(t, x(t), x′(t)), t ∈ (0, 1),

x(0) =

Z 1

0
x(s)dα(s), x(1) =

Z 1

0
x(s)dβ(s).

Under the resonance conditions, we construct a projector and then applying
coincidence degree theory to establish the existence of solutions.

1. Introduction

We consider the nonlinear second-order differential equation with integral bound-
ary conditions

x′′(t) = f(t, x(t), x′(t)), t ∈ (0, 1),

x(0) =
∫ 1

0

x(s)dα(s), x(1) =
∫ 1

0

x(s)dβ(s),
(1.1)

where f ∈ C([0, 1]× R2, R); α and β are right continuous on [0, 1), left continuous
at t = 1;

∫ 1

0
u(s)dα(s) and

∫ 1

0
u(s)dβ(s) denote the Riemann-Stieltjes integrals of

u with respect to α and β, respectively.
The boundary-value problem (1.1) is at resonance in the sense that the associated

linear homogeneous boundary-value problem
x′′(t) = 0, t ∈ (0, 1),

x(0) =
∫ 1

0

x(s)dα(s), x(1) =
∫ 1

0

x(s)dβ(s)
(1.2)

has nontrivial solutions. The resonance condition is κ1κ4 − κ2κ3 = 0, where

κ1 = 1−
∫ 1

0

(1− t)dα(t), κ2 =
∫ 1

0

tdα(t),

κ3 =
∫ 1

0

(1− t)dβ(t), κ4 = 1−
∫ 1

0

tdβ(t).
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Boundary value problems with integral boundary conditions for ordinary differ-
ential equations arise in different fields of applied mathematics and physics such as
heat conduction, chemical engineering, underground water flow, thermo-elasticity,
and plasma physics. Moreover, boundary-value problems with Riemann-Stieltjes
integral conditions constitute a very interesting and important class of problems.
They include two, three, multi-point and integral boundary-value problems as spe-
cial cases, see [2, 3, 8, 9]. The existence and multiplicity of solutions for such prob-
lems have received a great deal of attention in the literature. We refer the reader
to [10, 11, 12, 14] for some recent results at non-resonance and to [1, 4, 5, 13, 15]
at resonance. Zhang, Feng and Ge [13] obtained some excellent results for certain
integral boundary conditions at resonance with dim kerL = 2. Zhao and Liang [15]
studied the following second-order functional boundary-value problem

x′′(t) = f(t, x(t), x′(t)), t ∈ (0, 1),

Γ1(x) = 0, Γ2(x) = 0,

where Γ1,Γ2 : C1[0, 1] → R are continuous linear functionals. We should note
that all boundary-value conditions in the work of Zhao and Liang are relied on
both x and x′. By using the Mawhin’s continuation theorem [6, 7], some existence
results were obtained when certain resonance conditions hold. However, integral
boundary-value problem is so complex that many problem still remain open. One
problem is that all known results about resonance problem were done under special
resonance conditions. For example, the known works referred to (1.1), concentrate
on the resonance condition that at least three constants of {κi}4i=1 is equals to 0,
see [15].

Motivated by all the above works, we give some sufficient conditions for the exis-
tence of solutions to (1.1) at resonance. Our method is based upon the coincidence
degree theory of Mawhin [6, 7].

Throughout this paper, we suppose that κ1, κ2, κ3, κ4 satisfy
(H0) κ1κ2κ3κ4 6= 0; κ1κ4 − κ2κ3 = 0.

2. Preliminaries

In this section, we provide some definitions and lemmas used for establishing the
existence of solutions in C1[0, 1].

Definition 2.1. Let Y, Z be real Banach spaces, L : Y ⊃ dom L → Z be a linear
operator. L is said to be the Fredholm operator of index zero provided that

(i) Im L is a closed subset of Z,
(ii) dim kerL = codim Im L < +∞.

Let Y, Z be real Banach spaces and L : Y ⊃ dom L → Z be a Fredholm operator
of index zero. P : Y → Y , Q : Z → Z are continuous projectors such that
Im P = kerL, kerQ = Im L, Y = kerL ⊕ ker P and Z = Im L ⊕ Im Q. It follows
that L|dom L∩ker P : dom L ∩ ker P → Im L is reversible. We denote the inverse of
the mapping by KP (generalized inverse operator of L). If Ω is an open bounded
subset of Y such that dom L ∩ Ω 6= ∅, the mapping N : Y → Z will be called
L-compact on Ω, if QN(Ω) is bounded and KP (I −Q)N : Ω → Y is compact.

Our main tools are [6, Theorem 2.4] and [7, Theorem IV.13].

Theorem 2.2. Let L be a Fredholm operator of index zero and let N be L-compact
on Ω. Assume the following conditions are satisfied:
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(i) Lx 6= λNx for every (x, λ) ∈ [(dom L\ ker L) ∩ ∂Ω]× (0, 1).
(ii) Nx 6∈ ImL for every x ∈ ker L ∩ ∂Ω.
(iii) deg(QN |ker L, ker L ∩ Ω, 0) 6= 0, where Q : Z → Z is a projector as above

with Im L = kerQ.
Then the equation Lx = Nx has at least one solution in dom L ∩ Ω.

We use the classical spaces C[0, 1], C1[0, 1] and L1[0, 1]. For x ∈ C1[0, 1], we use
the norm ‖x‖ = max{‖x‖∞, ‖x′‖∞}, where ‖x‖∞ = maxt∈[0,1] |x(t)|. And denote
the norm in L1[0, 1] by ‖ · ‖1. We also use the Sobolev space W 2,1(0, 1) defined by

W 2,1(0, 1) = {x : [0, 1] → R | x, x′ are absolutely cont.on [0, 1], x′′ ∈ L1[0, 1]}
with its usual norm.

Let Y = C1[0, 1], Z = L1[0, 1]. Let the linear operator L : Y ⊃ dom L → Z with

dom L = {x ∈ W 2,1(0, 1) : u(0) =
∫ 1

0

u(s)dα(s), u(1) =
∫ 1

0

u(s)dβ(s)}

be define by Lx = x′′. Let the nonlinear operator N : Y → Z be defined by

(Nx)(t) = f(t, x(t), x′(t)).

Then (1.1) can be written as
Lx = Nx.

Lemma 2.3. Let L be the linear operator defined as above. If (H0) holds then

ker L = {x ∈ dom L : c(1 + (ρ− 1)t), c ∈ R, t ∈ [0, 1]}
and

Im L = {y ∈ Z : κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0},

where ρ = κ3/κ4 = κ1/κ2, and

k(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.

Proof. Let x(t) = 1 + (ρ − 1)t. Considering ρ = κ3/κ4 = κ1/κ2,
∫ 1

0
x(t)dα(t) =∫ 1

0
((1 − t) + ρt)dα(t) = 1 − κ1 + ρκ2 = 1 = x(0) and

∫ 1

0
x(t)dβ(t) =

∫ 1

0
((1 − t) +

ρt)dβ(t) = κ3 + ρ(1− κ4) = ρ = x(1). So

{x ∈ dom L : c(1 + (ρ− 1)t), c ∈ R, ; t ∈ [0, 1]} ⊂ ker L.

If Lx = x′′ = 0, then x(t) = a(1 − t) + bt. Considering x(0) =
∫ 1

0
u(t)dα(t) and

x(1) =
∫ 1

0
x(t)dβ(t), we can obtain that a =

∫ 1

0
x(t)dα(t) =

∫ 1

0
(a(1−t)+bt)dα(t) =

a(1− κ1) + bκ2. It yields aκ1 = bκ2 and kerL ⊂ {x ∈ domL : c(1 + (ρ− 1)t), c ∈
R, t ∈ [0, 1]}.

We now show that

Im L = {y ∈ Z : κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0}.

If y ∈ Im L, then there exists x ∈ dom L such that x′′(t) = y(t). Hence

x(t) = −
∫ 1

0

k(t, s)y(s)ds + x(0)(1− t) + x(1)t.
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Integrating with respect to dα(t) and dβ(t) respectively on [0, 1] gives∫ 1

0

x(t)dα(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + x(0)(1− κ1) + x(1)κ2

and ∫ 1

0

x(t)dβ(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) + x(0)κ3 + x(1)(1− κ4).

Therefore, (
κ1 −κ2

−κ3 κ4

)(
x(0)
x(1)

)
=

(
−
∫ 1

0

∫ 1

0
k(t, s)y(s) ds dα(t)

−
∫ 1

0

∫ 1

0
k(t, s)y(s) ds dβ(t)

)
and so

κ1 : (−κ3) = (−κ2) : κ4 =
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) :
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t).

It yields

Im L ⊂ {y ∈ Z : κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0}.

On the other hand, y ∈ Z satisfies

κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0.

Let

x(t) = −
∫ 1

0

k(t, s)y(s)ds +
t

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t),

then Lx = x′′ = y(t), x(0) = 0 and x(1) = 1
κ2

∫ 1

0

∫ 1

0
k(t, s)y(s) ds dα(t). Simple

computations yield∫ 1

0

x(t)dα(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s)dsα(t) +
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) = 0

and∫ 1

0

x(t)dβ(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s)dsβ(t) +
1− κ4

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t)

=
κ3

κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) +
1− κ4

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t)

=
κ4

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) +
1− κ4

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t)

=
1
κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) = x(1).

Therefore,

{y ∈ Z : κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0} ⊂ Im L.

�
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Lemma 2.4. If (H0) holds and

κ =
κ3

2

∫ 1

0

t(1− t)dα(t) +
κ1

2

∫ 1

0

t(1− t)dβ(t) 6= 0,

then L is a Fredholm operator of index zero and dim kerL = codim Im L = 1.
Furthermore, the linear operator Kp : Im L → dom L ∩ ker P can be defined by

(Kpy)(t) = −
∫ 1

0

k(t, s)y(s)ds− t

κ4

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t).

Also
‖Kpy‖ ≤ 4‖y‖1, for all y ∈ Im L,

where

4 = 1 +

∣∣ ∫ 1

0
td|β(t)|

∣∣
|κ4|

.

Proof. Firstly, we construct the mapping Q : Z → Z defined by

Qy =
1
κ

(
κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)
)
.

Note that
∫ 1

0
k(t, s)ds = 1

2 t(1− t) and

Q2y = Qy.

Thus Q : Z → Z is a well-defined projector.
Now, it is obvious that Im L = ker Q. Noting that Q is a linear projector, we

have Z = Im Q ⊕ ker Q. Hence Z = Im Q ⊕ Im L and dim kerL = codim Im L =1.
This means L is a Fredholm mapping of index zero. Taking P : Y → Y as

(Px)(t) = x(0)(1 + (ρ− 1)t),

then the generalized inverse Kp : Im L → dom L ∩ ker P of L can be rewritten

(Kpy)(t) = −
∫ 1

0

k(t, s)y(s)ds− t

κ4

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t).

In fact, for y ∈ Im L, we have

(LKp)y(t) = ((Kp)y(t))′′ = y(t)

and for x ∈ dom L ∩ ker P , we know

(KpL)x(t) = −
∫ 1

0

k(t, s)x′′(s)ds− t

κ4

∫ 1

0

∫ 1

0

k(t, s)x′′(s) ds dβ(t)

= x(t)− x(0)(1− t)− x(1)t

+
t

κ4

∫ 1

0

(x(t)− x(0)(1− t)− x(1)t)dβ(t).

In view of x ∈ dom L ∩ ker P , x(0) = 0, x(1) =
∫ 1

0
x(t)dβ(t), thus

(KpL)x(t) = x(t).

This shows that KP = (L|dom L∩ker P )−1. Since

‖Kpy‖∞ ≤
∫ 1

0

|y(s)|ds +
1
|κ4|

∣∣ ∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)
∣∣ ≤ 4‖y‖1



6 Y. CUI EJDE-2012/45

and

‖(Kpy)′‖ ≤
∫ 1

0

|y(s)|ds +
1
|κ4|

∣∣ ∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)
∣∣ ≤ 4‖y‖1,

it follows that ‖(Kpy)′‖∞ ≤ 4‖y‖1. �

3. Main results

In this section, we will use Theorem 2.2 to prove the existence of solutions to
(1.1). For the next theorem we use the assumptions:

(H1) There exist functions p, q, γ ∈ L1[0, 1], such that for all (x, y) ∈ R2 and
t ∈ [0, 1],

|f(t, x, y)| ≤ p(t)|x|+ q(t)|y|+ γ(t);
(H2) There exists a constant A > 0 such that for x ∈ dom L, if |x(t)| > A or

|x′(t)| > A for all t ∈ [0, 1], then

QN(x(t)) 6= 0;

(H3) There exists a constant B > 0 such that for a ∈ R, if |a| > B, then either

aQN(a(1 + (ρ− 1)t)) > 0, or aQN(a(1 + (ρ− 1)t)) < 0.

Theorem 3.1. Let (H0)–(H3) hold and κ 6= 0. Then (1.1) has at least one solution
in C1[0, 1], provided

‖p‖1 + ‖q‖1 <
1

1 + |ρ− 1|+4
,

where 4 is the same as Lemma 2.4.

Proof. Set

Ω1 = {x ∈ dom L\ ker L : Lx = λNx for some λ ∈ [0, 1]}.
For x ∈ Ω1, since Lx = λNx, so λ 6= 0, Nx ∈ Im L, hence

QN(x(t)) = 0.

Thus, from (H2), there exist t0, t1 ∈ [0, 1] such that |x(t0)| ≤ A, |x′(t1)| ≤ A. Since
x, x′ are absolutely continuous for all t ∈ [0, 1],

|x′(t)| = |x′(t1)−
∫ t1

t

x′′(s)ds ≤ |x′(t1)|+ ‖x′′‖1 ≤ A + ‖Nx‖1,

|x(0)| = |x(t0)−
∫ t0

0

x′(s)ds| ≤ |x(t0)|+ t0(A + ‖Nx‖1) ≤ 2A + ‖Nx‖1.

Thus
‖Px‖ ≤ |x(0)|(1 + |ρ− 1|) ≤ (1 + |ρ− 1|)(2A + ‖Nx‖1). (3.1)

Also for x ∈ Ω1, x ∈ dom L\ ker L, then (I − P )x ∈ dom L ∩ ker L, LPx = 0, thus
from Lemma 2.4, we have

‖(I − P )x‖ = ‖KP L(I − P )x‖ ≤ 4‖L(I − P )x‖1 = 4‖Lx‖1 ≤ 4‖Nx‖1. (3.2)

By using (3.1) and (3.2), we obtain

‖x‖ = ‖Px+(I−P )x‖ ≤ ‖Px‖+‖(I−P )x‖ ≤ 2A(1+|ρ−1|)+(1+|ρ−1|+4)‖Nx‖1
By this and (H1), we have

‖x‖ ≤ 2A(1 + |ρ− 1|) + (1 + |ρ− 1|+4)(‖α‖1‖x‖∞ + ‖β‖1‖x′‖∞ + ‖γ‖1)
≤ 2A(1 + |ρ− 1|) + (1 + |ρ− 1|+4)(‖α‖1‖x‖+ ‖β‖1‖x‖+ ‖γ‖1),
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and

‖x‖ ≤ 2A(1 + |ρ− 1|) + ‖γ‖1(1 + |ρ− 1|+4)
1− (1 + |ρ− 1|+4)(‖α‖1 + ‖β‖1)

.

Therefore, Ω1 is bounded. Let

Ω2 = {x ∈ ker L : Nx ∈ Im L}.
For x ∈ Ω2, x ∈ ker L implies that x can be defined by x = a(1+(ρ−1)t), t ∈ [0, 1],
a ∈ R. By (H2), there exist t0, t1 ∈ [0, 1] such that |x(t0)| ≤ A, |x′(t1)| ≤ A, then

‖x′‖∞ = |a(ρ− 1)| ≤ A.

Moreover,
‖x‖∞ ≤ ‖x′‖∞ + A.

So ‖x‖ ≤ 2A. Thus, Ω2 is bounded.
Next, according to the condition (H3), for any a ∈ R, if |a| > B, then either

aQN(a(1 + (ρ− 1)t) > 0, (3.3)

or
aQN(a(1 + (ρ− 1)t) < 0. (3.4)

When (3.3) holds, set

Ω3 = {x ∈ ker L : λJx + (1− λ)QNx = 0, λ ∈ [0, 1]},
where J : kerL → Im Q is the linear isomorphism given by J(a(1 + (ρ− 1)t)) = a,
for all a ∈ R. Since for any x = a(1 + (ρ− 1)t), we have

λa = −(1− λ)QN(a(1 + (ρ− 1)t),

if λ = 1, then a = 0. Otherwise, if |a| > B, in view of (3.3), we have

−(1− λ)aQN(a(1 + (ρ− 1)t) < 0,

which contradict λa ≥ 0. Thus Ω3 is bounded. If (3.4) holds, then let

Ω3 = {x ∈ ker L : −λJx + (1− λ)QNx = 0, λ ∈ [0, 1]}.
By the same method as above, we obtain that Ω3 is bounded.

In the following, we shall prove that the all conditions of Theorem 2.2 are sat-
isfied. Set Ω be a bound open subset of Y such that ∪3

i=1Ωi ⊂ Ω. By using the
Ascoli-Arzela theorem, we can prove that KP (I − Q)N : Ω → Y is compact, thus
N is L-compact on Ω. Then by the above argument we have

(i) Lx 6= λNx, for every (x, λ) ∈ [(dom L\ ker L) ∩ ∂Ω]× (0, 1),
(ii) Nx 6∈ Im L for x ∈ ker L ∩ ∂Ω.

At last we will prove that (iii) of Theorem 2.2 is satisfied. Let H(t, λ) = ±λJx +
(1− λ)QNx. According to above argument, we know

H(t, λ) 6= 0 for x ∈ ker L ∩ ∂Ω,

thus, by the homotopy property of degree

deg(QN |ker L, ker L ∩ Ω, 0) = deg(H(·, 0), ker L ∩ Ω, 0)

= deg(H(·, 1), ker L ∩ Ω, 0)

= deg(±J, ker L ∩ Ω, 0) 6= 0.

Then by Theorem 2.2, Lx = Nx has at least one solution in dom L ∩ Ω, so that
(1.1) has solution in C1[0, 1]. �
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To illustrate our main results we present an example. Consider the boundary-
value problem

x′′ = cos t− 1 +
1
7

sinx +
1
12

(|x|+ |x′|), t ∈ (0, 1),

x(0) = −1
2
x(

1
6
) + 2x(

1
2
), x(1) =

5
8

∫ 1

0

x(s)ds.

Let

f(t, x, y) = cos t− 1 +
1
7

sinx +
1
12

(|x|+ |y|), β(t) =
5
8
t,

α(t) =


0 t ∈ [0, 1

6 ),
− 1

2 t ∈ [ 16 , 1
2 ),

3
2 t ∈ [ 12 , 1].

then

|f(t, x, y)| ≤ 19
84
|x|+ 1

12
|y|+ 2, κ1 =

5
12

, κ2 =
11
12

, κ3 =
5
16

,

κ4 =
11
16

, κ =
205
2304

, ρ =
5
11

, 4 =
16
11

.

Again taking p = 19
84 and q = 1

12 , we have

‖p‖1 + ‖q‖1 =
19
84

+
1
12

=
13
42

<
1
3

=
1

1 + |ρ− 1|+4
.

Finally taking A = 36. So, as |x(t)| ≥ 36 or |x′(t)| ≥ 36, we have f(t, x(t), x′(t)) >
0. Therefore,

QN(x(t))

=
κ3

κ

∫ 1

0

∫ 1

0

k(t, s)f(s, x(s), x′(s)) ds dα(t)

+
κ1

κ

∫ 1

0

∫ 1

0

k(t, s)f(s, x(s), x′(s)) ds dβ(t)

>
κ3

κ

∫ 1

0

∫ 1

0

k(t, s)f(s, x(s), x′(s)) ds dα(t)

=
κ3

κ

(
− 1

2

∫ 1

0

k(
1
6
, s)f(s, x(s), x′(s))ds + 2

∫ 1

0

k(
1
2
, s)f(s, x(s), x′(s))ds

)
≥ κ3

κ

(
2
∫ 1

0

1
2
(1− 1

2
)s(1− s)f(s, x(s), x′(s))ds

− 1
2

∫ 1

0

s(1− s)f(s, x(s), x′(s))ds
)

= 0.

Thus condition (H2) holds. Again taking B = 50, for any a ∈ R, when |a| > 50, we
have N(a(1 + (ρ − 1)t)) > 0. So condition (H3) holds. Hence from Theorem 3.1,
BVP (1.1) has at least one solution x ∈ C1[0, 1].
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Addendum posted on March 30, 2012

In response to the comments from a reader, the author wanted to make several
corrections and add references [16]–[22] to the original article. However, due to the
large number of corrections, the editors decided to attached a revised version of all
the sections at the end of the article, and to keep original sections for historical
purposes.

4. Introduction

We consider the nonlinear second-order differential equation with integral bound-
ary conditions

x′′(t) = f(t, x(t), x′(t)), t ∈ (0, 1),

x(0) =
∫ 1

0

x(s)dα(s), x(1) =
∫ 1

0

x(s)dβ(s),
(4.1)

where f ∈ C([0, 1]×R2, R); α and β are functions of bounded variation;
∫ 1

0
u(s)dα(s)

and
∫ 1

0
u(s)dβ(s) denote the Riemann-Stieltjes integrals of u with respect to α and

β, respectively.
The boundary-value problem (4.1) is at resonance in the sense that the associated

linear homogeneous boundary-value problem

x′′(t) = 0, t ∈ (0, 1),

x(0) =
∫ 1

0

x(s)dα(s), x(1) =
∫ 1

0

x(s)dβ(s)
(4.2)

has nontrivial solutions. The resonance condition is κ1κ4 − κ2κ3 = 0, where

κ1 = 1−
∫ 1

0

(1− t)dα(t), κ2 =
∫ 1

0

tdα(t),

κ3 =
∫ 1

0

(1− t)dβ(t), κ4 = 1−
∫ 1

0

tdβ(t).

Boundary value problems with integral boundary conditions for ordinary differ-
ential equations arise in different fields of applied mathematics and physics such as
heat conduction, chemical engineering, underground water flow, thermo-elasticity,
and plasma physics. Moreover, boundary-value problems with Riemann-Stieltjes
integral conditions constitute a very interesting and important class of problems.
They include two, three, multi-point and integral boundary-value problems as spe-
cial cases, see [2, 3, 8, 9]. The existence and multiplicity of solutions for such
problems have received a great deal of attention in the literature.

We refer the reader to [8, 9, 10, 11, 12, 14, 19] for some recent results at non-
resonance and to [1, 4, 5, 13, 15, 16, 17, 18, 19, 20, 21, 22] at resonance. Zhang, Feng
and Ge [13] obtained some excellent results for certain integral boundary conditions
at resonance with dim kerL = 2. Zhao and Liang [15] studied the following second-
order functional boundary-value problem

x′′(t) = f(t, x(t), x′(t)), t ∈ (0, 1),
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Γ1(x) = 0, Γ2(x) = 0,

where Γ1,Γ2 : C1[0, 1] → R are continuous linear functionals.
We should note that all boundary-value conditions in the work of Zhao and

Liang are relied on both x and x′. By using the Mawhin’s continuation theorem
[6, 7], some existence results were obtained when certain resonance conditions hold.
However, the work of Zhao and Liang concentrate on the resonance condition that
at least two constants of {κi}4i=1 is equals to 0. In particular, there has been no
work done for (4.1) under the resonance condition

κ1κ2κ3κ4 6= 0; κ1κ4 − κ2κ3 = 0.

Motivated by all the above works, we give some sufficient conditions for the exis-
tence of solutions to (4.1) at resonance. Our method is based upon the coincidence
degree theory of Mawhin [6, 7].

Throughout this paper, we suppose that κ1, κ2, κ3, κ4 satisfy
(H0) κ1κ2κ3κ4 6= 0; κ1κ4 − κ2κ3 = 0.

5. Preliminaries

In this section, we provide some definitions and lemmas used for establishing the
existence of solutions in C1[0, 1].

Definition 5.1. Let Y, Z be real Banach spaces, L : dom L ⊂ Y →Z be a linear
operator. L is said to be the Fredholm operator of index zero provided that

(i) Im L is a closed subset of Z,
(ii) dim kerL = codim Im L < +∞.

Let Y, Z be real Banach spaces and L : dom L ⊂ Y →Z be a Fredholm operator
of index zero. P : Y → Y , Q : Z → Z are continuous projectors such that
Im P = kerL, kerQ = Im L, Y = kerL ⊕ ker P and Z = Im L ⊕ Im Q. It follows
that L|dom L∩ker P : dom L ∩ ker P → Im L is invertible. We denote the inverse of
the mapping by KP (generalized inverse operator of L). If Ω is an open bounded
subset of Y such that dom L ∩ Ω 6= ∅, the mapping N : Y → Z will be called
L-compact on Ω, if QN(Ω) is bounded and KP (I −Q)N : Ω → Y is compact.

Our main tools are [6, Theorem 2.4] and [7, Theorem IV.13].

Theorem 5.2. Let L be a Fredholm operator of index zero and let N be L-compact
on Ω. Assume the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(dom L\ ker L) ∩ ∂Ω]× (0, 1).
(ii) Nx 6∈ ImL for every x ∈ ker L ∩ ∂Ω.
(iii) deg(QN |ker L, ker L ∩ Ω, 0) 6= 0, where Q : Z → Z is a projector as above

with Im L = kerQ.
Then the equation Lx = Nx has at least one solution in dom L ∩ Ω.

We use the classical spaces C[0, 1], C1[0, 1] and L1[0, 1]. For x ∈ C1[0, 1], we use
the norm ‖x‖ = max{‖x‖∞, ‖x′‖∞}, where ‖x‖∞ = maxt∈[0,1] |x(t)|. And denote
the norm in L1[0, 1] by ‖ · ‖1. We also use the Sobolev space W 2,1(0, 1) defined by

W 2,1(0, 1) = {x : [0, 1] → R | x, x′ are absolutely cont.on [0, 1], x′′ ∈ L1[0, 1]}

with its usual norm.
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Let Y = C1[0, 1], Z = L1[0, 1]. Let the linear operator L : dom L ⊂ Y → Z with

dom L = {x ∈ W 2,1(0, 1) : u(0) =
∫ 1

0

u(s)dα(s), u(1) =
∫ 1

0

u(s)dβ(s)}

be define by Lx = x′′. Let the nonlinear operator N : Y → Z be defined by

(Nx)(t) = f(t, x(t), x′(t)).

Then (4.1) can be written as
Lx = Nx.

Lemma 5.3. Let L be the linear operator defined as above. Then

ker L = {x ∈ dom L : c(1 + (ρ− 1)t), c ∈ R, t ∈ [0, 1]}

and

Im L = {y ∈ Z : κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0},

where ρ = κ3/κ4 = κ1/κ2, and

k(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.

Proof. Let x(t) = 1 + (ρ− 1)t. Considering ρ = κ3/κ4 = κ1/κ2,∫ 1

0

x(t)dα(t) =
∫ 1

0

((1− t) + ρt)dα(t) = 1− κ1 + ρκ2 = 1 = x(0)

and
∫ 1

0
x(t)dβ(t) =

∫ 1

0
((1− t) + ρt)dβ(t) = κ3 + ρ(1− κ4) = ρ = x(1). So

{x ∈ dom L : c(1 + (ρ− 1)t), c ∈ R, t ∈ [0, 1]} ⊂ ker L.

If Lx = x′′ = 0, then x(t) = a(1 − t) + bt. Considering x(0) =
∫ 1

0
u(t)dα(t) and

x(1) =
∫ 1

0
x(t)dβ(t), we can obtain that

a =
∫ 1

0

x(t)dα(t) =
∫ 1

0

(a(1− t) + bt)dα(t) = a(1− κ1) + bκ2.

It yields aκ1 = bκ2 and kerL ⊂ {x ∈ domL : c(1 + (ρ− 1)t), c ∈ R, t ∈ [0, 1]}.
We now show that

Im L = {y ∈ Z : κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0}.

If y ∈ Im L, then there exists x ∈ dom L such that x′′(t) = y(t). Hence

x(t) = −
∫ 1

0

k(t, s)y(s)ds + x(0)(1− t) + x(1)t.

Integrating with respect to dα(t) and dβ(t) respectively on [0, 1] gives∫ 1

0

x(t)dα(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + x(0)(1− κ1) + x(1)κ2

and ∫ 1

0

x(t)dβ(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) + x(0)κ3 + x(1)(1− κ4).
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Therefore, (
κ1 −κ2

−κ3 κ4

)(
x(0)
x(1)

)
=

(
−
∫ 1

0

∫ 1

0
k(t, s)y(s) ds dα(t)

−
∫ 1

0

∫ 1

0
k(t, s)y(s) ds dβ(t)

)
and so

−κ1

κ3
= −κ2

κ4
=

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t)∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)
.

It yields

Im L ⊂ {y ∈ Z : κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0}.

On the other hand, suppose y ∈ Z satisfies

κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0.

Let

x(t) = −
∫ 1

0

k(t, s)y(s)ds +
t

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t),

then Lx = x′′ = y(t), x(0) = 0 and x(1) = 1
κ2

∫ 1

0

∫ 1

0
k(t, s)y(s) ds dα(t). Simple

computations yield∫ 1

0

x(t)dα(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) +
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) = 0

and∫ 1

0

x(t)dβ(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) +
1− κ4

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t)

=
κ3

κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) +
1− κ4

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t)

=
κ4

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) +
1− κ4

κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t)

=
1
κ2

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) = x(1).

Therefore,

{y ∈ Z : κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = 0} ⊂ Im L.

�

Lemma 5.4. If

κ =
κ3

2

∫ 1

0

t(1− t)dα(t) +
κ1

2

∫ 1

0

t(1− t)dβ(t) 6= 0,

then L is a Fredholm operator of index zero and dim kerL = codim Im L = 1.
Furthermore, the linear operator Kp : Im L → dom L ∩ ker P can be defined by

(Kpy)(t) = −
∫ 1

0

k(t, s)y(s)ds− t

κ4

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t).
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Also
‖Kpy‖ ≤ 4‖y‖1, for all y ∈ Im L,

where

4 = 1 +

∣∣ ∫ 1

0
td|β(t)|

∣∣
|κ4|

.

Proof. Firstly, we construct the mapping Q : Z → Z defined by

Qy =
1
κ

(
κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t) + κ1

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)
)
.

Note that
∫ 1

0
k(t, s)ds = 1

2 t(1− t) and

Q2y = Qy.

Thus Q : Z → Z is a well-defined projector.
Now, it is obvious that Im L = ker Q. Noting that Q is a linear projector, we

have Z = Im Q ⊕ ker Q. Hence Z = Im Q ⊕ Im L and dim kerL = codim Im L =1.
This means L is a Fredholm mapping of index zero. Taking P : Y → Y as

(Px)(t) = x(0)(1 + (ρ− 1)t),

then the generalized inverse Kp : Im L → dom L ∩ ker P of L can be rewritten

(Kpy)(t) = −
∫ 1

0

k(t, s)y(s)ds− t

κ4

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t).

In fact, for y ∈ Im L, we have∫ 1

0

(Kpy)(t)dα(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t)− κ2

κ4

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)

= −
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dα(t)− κ1

κ3

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)

= 0 = (Kpy)(0)

and∫ 1

0

(Kpy)(t)dβ(t) = −
∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)− 1− κ4

κ4

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)

= − 1
κ4

∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t) = (Kpy)(1)

which implies that Kp is well defined on Im L. Moreover, for y ∈ Im L, we have

(LKp)y(t) = ((Kpy)(t))′′ = y(t)

and for x ∈ dom L ∩ ker P , we know

(KpL)x(t) = −
∫ 1

0

k(t, s)x′′(s)ds− t

κ4

∫ 1

0

∫ 1

0

k(t, s)x′′(s) ds dβ(t)

= x(t)− x(0)(1− t)− x(1)t

+
t

κ4

∫ 1

0

(x(t)− x(0)(1− t)− x(1)t)dβ(t).

In view of x ∈ dom L ∩ ker P , x(0) = 0, x(1) =
∫ 1

0
x(t)dβ(t), thus

(KpL)x(t) = x(t).
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This shows that KP = (L|dom L∩ker P )−1. Since

‖Kpy‖∞ ≤
∫ 1

0

|y(s)|ds +
1
|κ4|

∣∣ ∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)
∣∣ ≤ 4‖y‖1

and

‖(Kpy)′‖∞ ≤
∫ 1

0

|y(s)|ds +
1
|κ4|

∣∣ ∫ 1

0

∫ 1

0

k(t, s)y(s) ds dβ(t)
∣∣ ≤ 4‖y‖1,

it follows that ‖Kpy‖ ≤ 4‖y‖1. �

6. Main results

In this section, we will use Theorem 5.2 to prove the existence of solutions to
(4.1). For the next theorem we use the assumptions:

(H1) There exist functions p, q, γ ∈ L1[0, 1], such that for all (x, y) ∈ R2 and
t ∈ [0, 1],

|f(t, x, y)| ≤ p(t)|x|+ q(t)|y|+ γ(t);
(H2) There exists a constant A > 0 such that for x ∈ dom L, if |x(t)| > A or

|x′(t)| > A for all t ∈ [0, 1], then

QN(x(t)) 6= 0;

(H3) There exists a constant B > 0 such that for a ∈ R, if |a| > B, then either

aQN(a(1 + (ρ− 1)t)) > 0, or aQN(a(1 + (ρ− 1)t)) < 0.

Theorem 6.1. Let (H1)–(H3) hold and κ 6= 0. Then (4.1) has at least one solution
in C1[0, 1], provided

‖p‖1 + ‖q‖1 <
1

δ +4
,

where δ = max{1, |ρ|, |ρ− 1|} and 4 is the same as Lemma 5.4.

Proof. Set

Ω1 = {x ∈ dom L\ ker L : Lx = λNx for some λ ∈ [0, 1]}.
For x ∈ Ω1, since Lx = λNx, so λ 6= 0, Nx ∈ Im L, hence

QN(x(t)) = 0.

Thus, from (H2), there exist t0, t1 ∈ [0, 1] such that |x(t0)| ≤ A, |x′(t1)| ≤ A. Since
x, x′ are absolutely continuous for all t ∈ [0, 1],

|x′(t)| = |x′(t1)−
∫ t1

t

x′′(s)ds| ≤ |x′(t1)|+ ‖x′′‖1 ≤ A + ‖Nx‖1,

|x(0)| = |x(t0)−
∫ t0

0

x′(s)ds| ≤ |x(t0)|+ t0(A + ‖Nx‖1) ≤ 2A + ‖Nx‖1.

Thus
‖Px‖ = max{‖Px‖∞, ‖(Px)′‖∞} ≤ δ|x(0)| ≤ δ(2A + ‖Nx‖1). (6.1)

Also for x ∈ Ω1, x ∈ dom L\ ker L, then (I − P )x ∈ dom L ∩ ker L, LPx = 0, thus
from Lemma 5.4, we have

‖(I − P )x‖ = ‖KP L(I − P )x‖ ≤ 4‖L(I − P )x‖1 = 4‖Lx‖1 ≤ 4‖Nx‖1. (6.2)

By using (6.1) and (6.2), we obtain

‖x‖ = ‖Px + (I − P )x‖ ≤ ‖Px‖+ ‖(I − P )x‖ ≤ 2Aδ + (δ +4)‖Nx‖1
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By this and (H1), we have

‖x‖ ≤ 2Aδ + (δ +4)(‖p‖1‖x‖∞ + ‖q‖1‖x′‖∞ + ‖γ‖1)
≤ 2Aδ + (δ +4)(‖p‖1‖x‖+ ‖q‖1‖x‖+ ‖γ‖1),

and

‖x‖ ≤ 2Aδ + ‖γ‖1(δ +4)
1− (δ +4)(‖p‖1 + ‖q‖1)

.

Therefore, Ω1 is bounded. Let

Ω2 = {x ∈ ker L : Nx ∈ Im L}.
For x ∈ Ω2, x ∈ ker L implies that x can be defined by x = a(1+(ρ−1)t), t ∈ [0, 1],
a ∈ R. By (H2), there exist t0, t1 ∈ [0, 1] such that |x(t0)| ≤ A, |x′(t1)| ≤ A, then

‖x′‖∞ = |a(ρ− 1)| ≤ A.

Moreover,
‖x‖∞ ≤ ‖x′‖∞ + A.

So ‖x‖ ≤ 2A. Thus, Ω2 is bounded.
Next, according to the condition (H3), for any a ∈ R, if |a| > B, then either

aQN(a(1 + (ρ− 1)t) > 0, (6.3)

or
aQN(a(1 + (ρ− 1)t) < 0. (6.4)

When (6.3) holds, set

Ω3 = {x ∈ ker L : λJx + (1− λ)QNx = 0, λ ∈ [0, 1]},
where J : kerL → Im Q is the linear isomorphism given by J(a(1 + (ρ− 1)t)) = a,
for all a ∈ R. Since for any x = a(1 + (ρ− 1)t), we have

λa = −(1− λ)QN(a(1 + (ρ− 1)t),

if λ = 1, then a = 0. Otherwise, if |a| > B, in view of (6.3), we have

−(1− λ)aQN(a(1 + (ρ− 1)t) < 0,

which contradict λa2 ≥ 0. Thus Ω3 is bounded. If (6.4) holds, then let

Ω3 = {x ∈ ker L : −λJx + (1− λ)QNx = 0, λ ∈ [0, 1]}.
By the same method as above, we obtain that Ω3 is bounded.

In the following, we shall prove that the all conditions of Theorem 5.2 are sat-
isfied. Set Ω be a bound open subset of Y such that ∪3

i=1Ωi ⊂ Ω. By using the
Ascoli-Arzela theorem, we can prove that KP (I − Q)N : Ω → Y is compact, thus
N is L-compact on Ω. Then by the above argument we have

(i) Lx 6= λNx, for every (x, λ) ∈ [(dom L\ ker L) ∩ ∂Ω]× (0, 1),
(ii) Nx 6∈ Im L for x ∈ ker L ∩ ∂Ω.

At last we will prove that (iii) of Theorem 5.2 is satisfied. Let H(t, λ) = ±λJx +
(1− λ)QNx. According to above argument, we know

H(t, λ) 6= 0 for x ∈ ker L ∩ ∂Ω,

thus, by the homotopy property of degree

deg(QN |ker L, ker L ∩ Ω, 0) = deg(H(·, 0), ker L ∩ Ω, 0)

= deg(H(·, 1), ker L ∩ Ω, 0)
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= deg(J, ker L ∩ Ω, 0) 6= 0.

Then by Theorem 5.2, Lx = Nx has at least one solution in dom L ∩ Ω, so that
(4.1) has solution in C1[0, 1]. �

To illustrate our main results we present an example. Consider the boundary-
value problem

x′′ = cos t− 1 +
1
7

sinx +
1
12

(|x|+ |x′|), t ∈ (0, 1),

x(0) = −1
2
x(

1
6
) + 2x(

1
2
), x(1) =

5
8

∫ 1

0

x(s)ds.

Let

f(t, x, y) = cos t− 1 +
1
7

sinx +
1
12

(|x|+ |y|), β(t) =
5
8
t,

α(t) =


0 t ∈ [0, 1

6 ),
− 1

2 t ∈ [ 16 , 1
2 ),

3
2 t ∈ [ 12 , 1].

then

|f(t, x, y)| ≤ 19
84
|x|+ 1

12
|y|+ 2, κ1 =

5
12

, κ2 =
11
12

, κ3 =
5
16

,

κ4 =
11
16

, κ =
205
2304

, ρ =
5
11

, δ = 1, 4 =
16
11

.

Again taking p = 19
84 and q = 1

12 , we have

‖p‖1 + ‖q‖1 =
19
84

+
1
12

=
13
42

<
11
27

=
1

δ +4
.

Finally taking A = 36. So, as |x(t)| ≥ 36 or |x′(t)| ≥ 36, we have f(t, x(t), x′(t)) >
0. Therefore,

QN(x(t))

=
κ3

κ

∫ 1

0

∫ 1

0

k(t, s)f(s, x(s), x′(s)) ds dα(t)

+
κ1

κ

∫ 1

0

∫ 1

0

k(t, s)f(s, x(s), x′(s)) ds dβ(t)

>
κ3

κ

∫ 1

0

∫ 1

0

k(t, s)f(s, x(s), x′(s)) ds dα(t)

=
κ3

κ

(
− 1

2

∫ 1

0

k(
1
6
, s)f(s, x(s), x′(s))ds + 2

∫ 1

0

k(
1
2
, s)f(s, x(s), x′(s))ds

)
≥ κ3

κ

(
2
∫ 1

0

1
2
(1− 1

2
)s(1− s)f(s, x(s), x′(s))ds

− 1
2

∫ 1

0

s(1− s)f(s, x(s), x′(s))ds
)

= 0.

Thus condition (H2) holds. Again taking B = 50, for any a ∈ R, when |a| > 50, we
have N(a(1 + (ρ − 1)t)) > 0. So condition (H3) holds. Hence from Theorem 6.1,
BVP (4.1) has at least one solution x ∈ C1[0, 1].
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