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EVOLUTION EQUATIONS IN GENERALIZED STEPANOV-LIKE
PSEUDO ALMOST AUTOMORPHIC SPACES

TOKA DIAGANA

Abstract. In this article, first we introduce and study the concept of Sp
γ -

pseudo almost automorphy (or generalized Stepanov-like pseudo almost auto-
morphy), which is more general than the notion of Stepanov-like pseudo almost
automorphy due to Diagana. We next study the existence of solutions to some
classes of nonautonomous differential equations of Sobolev type in Sp

γ -pseudo
almost automorphic spaces. To illustrate our abstract result, we will study the
existence and uniqueness of a pseudo almost automorphic solution to the heat
equation with a negative time-dependent diffusion coefficient.

1. Introduction

Let p ∈ [1,∞) and let γ : (0,∞) → (0,∞) be a measurable function satisfying
the following condition:

γ0 := lim
ε→0

∫ 1

ε

γ(σ)dσ =
∫ 1

0

γ(σ)dσ < ∞. (1.1)

The impetus of this paper essentially comes from three papers. The first one is
a paper by Liang et al. [23], in which, the powerful concept of pseudo almost
automorphy was introduced and studied. Since its introduction in the literature,
the concept of pseudo almost automorphy was utilized to investigate various types
of differential, functional differential, and partial differential equations; see, e.g.,
[4, 14, 13, 17, 23, 27, 24] and the references therein.

The second source is a paper by Diagana [10], in which the concept of Sp-pseudo
almost automorphy (or Stepanov-like pseudo almost automorphy) was introduced
and studied, which, in turn generalizes the notion of Stepanov-like almost auto-
morphy which was introduced and studied by N’Guérékata and Pankov [30]. It
should also be mentioned that some work on the notion of Stepanov-like almost
automorphy has also been done notably in [3, 7, 17, 22].

The third and last source is a paper by Kostin and Pisareva [21], in which the
concept of generalized Stepanov spaces was introduced and studied. In particular,
in [21], the existence of generalized Stepanov almost periodic solutions to some
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differential differential equations with singularities was investigated. Other contri-
butions on the concept of generalized Stepanov spaces include for instance the work
of Kostin [20].

In this paper, we introduce and study the notion of Sp
γ-pseudo almost auto-

morphy (or generalized Stepanov-like pseudo almost automorphy), which, in turn
generalizes all the above-mentioned concepts including the notion of Sp-pseudo al-
most automorphy. As an illustration, we study and obtain the existence of pseudo
almost automorphic solutions to the class of Sobolev type evolution equations given
by

d

dt

[
u(t) + f(t, u(t))

]
= A(t)u(t) + g(t, u(t)), t ∈ R, (1.2)

where A(t) : D ⊂ X → X for t ∈ R is a family of densely defined closed linear
operator on a domain D, independent of t, and f, g : R×X → X belong to PAAp

γ(R×
X, X) ∩ C(R× X, X) for p > 1. Such a result generalizes most of known results on
the existence of pseudo almost automorphic (respectively, pseudo almost periodic)
solutions to differential equations of type (1.2), in particular those in [6]. Let us
also mention that Sobolev-type differential equations have various applications in
particular in wave propagations or in dynamic of fluids [12]. Various formulations
of these types of equations can be found in literature, in particular, we refer the
reader to [2, 25].

This work will be heavily based upon the recent progress made by Xiao et al.
[15, 16] notably on the composition of Sp-pseudo almost automorphic spaces as well
as the existence of pseudo almost automorphic solutions to differential equations
with Sp-pseudo almost automorphic coefficients. To illustrate our abstract results,
the existence and uniqueness of a pseudo almost automorphic solution to the heat
equation with a negative time-dependent diffusion coefficient will be investigated.

2. Preliminaries

Let (X, ‖ · ‖), (Y, ‖ · ‖Y) be two Banach spaces. Let BC(R, X) (respectively,
BC(R×Y, X)) denote the collection of all X-valued bounded continuous functions
(respectively, the class of jointly bounded continuous functions F : R×Y → X). The
space BC(R, X) equipped with the sup norm ‖·‖∞ is a Banach space. Furthermore,
C(R, Y) (respectively, C(R×Y, X)) denotes the class of continuous functions from
R into Y (respectively, the class of jointly continuous functions F : R× Y → X).

Let B(X, Y) stand for the Banach space of bounded linear operators from X into
Y equipped with its natural operator topology; in particular, this is simply denoted
B(X) whenever X = Y.

2.1. Sp
γ-pseudo almost automorphy.

Definition 2.1 ([31]). The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1] of a function
f : R → X is defined by f b(t, s) := f(t + s).

Remark 2.2. (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of
a certain function f , ϕ(t, s) = f b(t, s) , if and only if ϕ(t + τ, s− τ) = ϕ(s, t) for all
t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

(ii) Note that if f = h + ϕ, then f b = hb + ϕb. Moreover, (λf)b = λf b for each
scalar λ.
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Definition 2.3 ([6]). The Bochner transform F b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of
a function F (t, u) on R×X, with values in X, is defined by F b(t, s, u) := F (t+ s, u)
for each u ∈ X.

Definition 2.4 ([31]). Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f on R with
values in X such that f b ∈ L∞

(
R, Lp((0, 1), dτ)

)
. This is a Banach space when it

is equipped with the norm defined by

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

( ∫ t+1

t

‖f(τ)‖p dτ
)1/p

.

Let U denote the collection of all measurable (weights) functions γ : (0,∞) →
(0,∞) satisfying (1.1). Let U∞ be the collection of all functions γ ∈ U, which are
differentiable.

Define the set of weights

U+
∞ :=

{
γ ∈ U∞ :

dγ

dt
> 0 for all t ∈ (0,∞)

}
,

U−∞ :=
{
γ ∈ U∞ :

dγ

dt
< 0 for all t ∈ (0,∞)

}
In addition to the above, we define the set of weights

UB :=
{
γ ∈ U : sup

t∈(0,∞)

γ(t) < ∞
}
.

Definition 2.5 ([5]). Let µ, ν ∈ U∞. One says that µ is equivalent to ν and denote
it µ ≺ ν, if µ

ν ∈ UB .

Remark 2.6 ([5]). Let µ, ν, γ ∈ U∞. Note that µ ≺ µ (reflexivity). If µ ≺ ν, then
ν ≺ µ (symmetry). If µ ≺ ν and ν ≺ γ, then µ ≺ γ (transitivity). Therefore, ≺ is
a binary equivalence relation on U∞.

Theorem 2.7 ([21]). If γ ∈ U+
∞, then the norms ‖ · ‖Sp and ‖ · ‖Sp

γ
are equivalent.

Theorem 2.8 ([21]). If γ ∈ U−∞ and if there exists ε > 0 such that γ1+ε 6∈ L1[0, 1],
then the norms ‖ · ‖Sp and ‖ · ‖Sp

γ
are in general not equivalent.

We now introduce the space BSp
γ(X) of all generalized Stepanov spaces as follows.

Definition 2.9. Let p ∈ [1,∞) and let γ ∈ U. The space BSp
γ(X) of all generalized

Stepanov spaces, with the exponent p and weight γ, consists of all γdτ -measurable
functions f : R → X such that f b ∈ L∞

(
R, Lp((0, 1), γdτ)

)
. This is a Banach space

when it is equipped with the norm

‖f‖Sp
γ

:= sup
t∈R

( ∫ t+1

t

γ(τ − t)‖f(τ)‖p dτ
)1/p

= sup
t∈R

( ∫ 1

0

γ(τ)‖f(τ + t)‖p dτ
)1/p

.

Remark 2.10. The assumption (1.1) on the weight γ does guarantee that identi-
cally constant functions belong to BSp

γ(X). Of course, if γ(t) = 1 for all t ∈ (0,∞),
then BSp

1 (X) = BSp(X).

Define the classes of functions:

PAP0(X) :=
{
u ∈ BC(R, X) : lim

T→∞

1
2T

∫ T

−T

‖u(s)‖ds = 0
}
,



4 T. DIAGANA EJDE-2012/49

and PAP0(R×Y, X) is the collection of all functions F ∈ BC(R×Y, X) such that

lim
T→∞

1
2T

∫ T

−T

‖F (s, u)‖ds = 0

uniformly in u ∈ K where K ⊂ Y is an arbitrary bounded subset.

Definition 2.11 (Bochner). A function f ∈ C(R, X) is said to be almost auto-
morphic if for every sequence of real numbers (s′n)n∈N, there exists a subsequence
(sn)n∈N such that

g(t) := lim
n→∞

f(t + sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R.

Remark 2.12. The function g in Definition 2.11 is measurable, but not necessarily
continuous. Moreover, if g is continuous, then f is uniformly continuous. If the
convergence above is uniform in t ∈ R, then f is almost periodic. Denote by
AA(X) the collection of all almost automorphic functions R → X. Note that AA(X)
equipped with the sup norm, ‖ · ‖∞, turns out to be a Banach space.

We will denote by AAu(X) the closed subspace of all functions f ∈ AA(X) with
g ∈ C(R, X). Equivalently, f ∈ AAu(X) if and only if f is almost automorphic
and the convergence in Definition 2.11 are uniform on compact intervals, i.e. in
the Fréchet space C(R, X). Indeed, if f is almost automorphic, then, its range is
relatively compact. Obviously, the following inclusions hold:

AP (X) ⊂ AAu(X) ⊂ AA(X) ⊂ BC(X).

Definition 2.13 (Xiao et al. [32]). A continuous function L : R×R → X is called
bi-almost automorphic if for every sequence of real numbers (s′n)n∈N, we can extract
a subsequence (sn)n∈N such that

H(t, s) := lim
n→∞

L(t + sn, s + sn)

is well defined in t, s ∈ R, and

lim
n→∞

H(t− sn, s− sn) = L(t, s)

for each t, s ∈ R. The collection of such functions will be denoted bAA(R× R, X).

We now introduce positively bi-almost automorphic functions. For that, let T
be the set defined by:

T :=
{
(t, s) ∈ R× R : t ≥ s

}
.

Definition 2.14. A continuous function L : T → X is called positively bi-almost
automorphic if for every sequence of real numbers (s′n)n∈N, we can extract a sub-
sequence (sn)n∈N such that

H(t, s) := lim
n→∞

L(t + sn, s + sn)

is well defined in t, s ∈ T, and

lim
n→∞

H(t− sn, s− sn) = L(t, s)

for each (t, s) ∈ T. The collection of such functions will be denoted bAA(T, X).
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Obviously, every bi-almost automorphic function is positively bi-almost auto-
morphic with the converse being false.

Definition 2.15 ([30]). The space ASp(X) of Stepanov-like almost automorphic
functions (or Sp-almost automorphic) consists of all f ∈ BSp(X) such that f b ∈
AA

(
Lp((0, 1), ds)

)
.

In other words, a function f ∈ Lp
loc(R, ds) is said to be Sp-almost automorphic

if its Bochner transform f b : R → Lp((0, 1), ds) is almost automorphic in the sense
that for every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N
and a function g ∈ Lp

loc(R; X) such that[ ∫ t+1

t

‖f(sn + s)− g(s)‖pds
]1/p

→ 0,[ ∫ t+1

t

‖g(s− sn)− f(s)‖pds
]1/p

→ 0

as n →∞ pointwise on R.

Remark 2.16. It is clear that if 1 ≤ p < q < ∞ and f ∈ Lq
loc(R, ds) is Sq-almost

automorphic, then f is Sp-almost automorphic. Also if f ∈ AA(X), then f is
Sp-almost automorphic for any 1 ≤ p < ∞.

It is also clear that f ∈ AAu(X) if and only if f b ∈ AA(L∞((0, 1), ds)). Thus,
AAu(X) can be considered as AS∞(X).

We now introduce the notion of Sp
γ-almost automorphy, which generalizes that

of Sp-almost automorphy due to N’Guérékata and Pankov [30].

Definition 2.17. Let p ≥ 1 and let γ ∈ U. The space ASp
γ(X) of generalized

Stepanov-like almost automorphic functions (or Sp
γ-almost automorphic) consists

of all f ∈ BSp
γ(X) such that for every sequence of real numbers (s′n)n∈N, there

exists a subsequence (sn)n∈N and a function g ∈ Lp
loc(R, γds) such that[ ∫ t+1

t

γ(s− t)‖f(sn + s)− g(s)‖pds
]1/p

=
[ ∫ 1

0

γ(s)‖f(sn + s + t)− g(s + t)‖pds
]1/p

→ 0,

and [ ∫ t+1

t

γ(s− t)‖g(s− sn)− f(s)‖pds
]1/p

=
[ ∫ 1

0

γ(s)‖g(s + t− sn)− f(s + t)‖pds
]1/p

→ 0

as n →∞ for each t ∈ R.

Remark 2.18. Let γ ∈ U. As in the classical case (see Remark 2.16), if 1 ≤
p < q < ∞ and f ∈ Lq

loc(R, γds) is Sq
γ-almost automorphic, then f is Sp

γ-almost
automorphic. Also using (1.1), one can show that if f ∈ AA(X), then f is Sp

γ-almost
automorphic for any 1 ≤ p < ∞.

Definition 2.19. Let γ ∈ U. A function F : R × Y → X, (t, u) → F (t, u) with
F (·, u) ∈ Lp

loc(R, γds) for each u ∈ Y, is said to be Sp
γ-almost automorphic in t ∈ R

uniformly in u ∈ Y if t → F (t, u) is Sp
γ-almost automorphic for each u ∈ Y, that
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is, for every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N
and a function G(·, u) ∈ Lp

loc(R, γds) such that[ ∫ t+1

t

γ(s− t)‖F (sn + s, u)−G(s, u)‖pds
]1/p

→ 0,[ ∫ t+1

t

γ(s− t)‖G(s− sn, u)− F (s, u)‖pds
]1/p

→ 0

as n →∞ pointwise on R for each u ∈ Y.

The collection of those Sp
γ-almost automorphic functions F : R×Y → X will be

denoted by ASp
γ(R× Y, X).

Similarly, as in Ding et al [11], for each K ⊂ Y compact subset, we denote by
ASp

γ,K(R × Y, X) the collection of all functions f ∈ ASp
γ(R × Y, X) satisfying that

for every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N and
a function G : R× Y → X with G(·, u) ∈ Lp

loc(R, γds) such that[ ∫ 1

0

γ(s)
(

sup
u∈K

‖F (sn + s + t, u)−G(s + t, u)‖
)p

ds
]1/p

→ 0,[ ∫ 1

0

γ(s)
(

sup
u∈K

‖G(s + t− sn, u)− F (s + t, u)‖
)p

ds
]1/p

→ 0

as n →∞ for each t ∈ R.
Using similar arguments as in Ding et al [11], the following composition results

can be established.

Lemma 2.20. Let f ∈ ASp
γ(R × Y, X) and suppose f is Lipschitz; that is, there

exists L > 0 such that for all u, v ∈ Y and t ∈ R

‖f(t, u)− f(t, v)‖ ≤ ‖u− v‖Y. (2.1)

Then for every K ⊂ Y a compact subset, f ∈ ASp
γ,K(R× Y, X).

Theorem 2.21 (). Suppose ϕ ∈ ASp
γ(Y) such that K = {ϕ(t) : t ∈ R} ⊂ Y is a

compact subset. If F ∈ ASp
γ(R × Y, X) and satisfies the Lipschitz condition (2.1),

then t → F (t, ϕ(t)) belongs to ASp
γ(X).

2.2. Pseudo almost automorphy. The concept of pseudo almost automorphy is
a new notion due to Liang, Xiao and Zhang [23, 27, 24].

Definition 2.22 ([27]). A function f ∈ C(R, X) is called pseudo almost automor-
phic if it can be expressed as f = h + ϕ, where h ∈ AA(X) and ϕ ∈ PAP0(X). The
collection of such functions will be denoted by PAA(X).

Definition 2.23 ([27]). A function F ∈ C(R × Y, X) is said to pseudo almost
automorphic if it can be expressed as F = G + Φ, where G ∈ AA(R × Y, X)
and ϕ ∈ PAP0(R × Y, X). The collection of such functions will be denoted by
PAA(R× Y , X).

A significant result is the next theorem, which is due to Liang et al. [27].

Theorem 2.24 ([27]). The space PAA(X) equipped with the sup norm ‖ · ‖∞ is a
Banach space.

We also have the following composition result.
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Theorem 2.25 ([27]). If f : R×Y → X belongs to PAA(R×Y, X) and if x → f(t, x)
is uniformly continuous on any bounded subset K of Y for each t ∈ R, then the
function defined by h(t) = f(t, ϕ(t)) belongs to PAA(X) provided ϕ ∈ PAA(Y).

3. Sp
γ-pseudo almost automorphy

Let γ ∈ U. This section is devoted to the concept of Sp
γ-pseudo almost auto-

morphy. Such a concept is new and generalizes the notion of Sp-pseudo almost
automorphy due to Diagana [10].

Definition 3.1. A function f ∈ BSp
γ(X) is called Sp

γ-pseudo almost automorphic
(or generalized Stepanov-like pseudo almost automorphic) if it can be expressed as

f = h + ϕ,

where hb ∈ AA
(
Lp((0, 1), γds)

)
and ϕb ∈ PAP0

(
Lp((0, 1), γds)

)
. The collection of

such functions will be denoted by PAAp
γ(X).

Clearly, a function f ∈ Lp
loc(R, γds) is said to be Sp

γ-pseudo almost automorphic
if its Bochner transform f b : R → Lp((0, 1), γds) is pseudo almost automorphic in
the sense that there exist two functions h, ϕ : R → X such that f = h + ϕ, where
hb ∈ AA(Lp((0, 1), γds)) and ϕb ∈ PAP0(Lp((0, 1), γds)).

Remark 3.2. By definition, the decomposition of Sp
γ-pseudo almost automor-

phic functions is unique. Furthermore, Sp
γ-pseudo almost automorphic spaces are

translation-invariant.

Theorem 3.3. If f ∈ PAA(X), then f ∈ PAAp
γ(X) for each 1 ≤ p < ∞. In other

words, PAA(X) ⊂ PAAp
γ(X).

Proof. Let f ∈ PAA(X). Then, there exist two functions h, ϕ : R → X such f =
h + ϕ where h ∈ AA(X) and ϕ ∈ PAP0(X). Clearly, hb ∈ AA(X). Using Remark
2.16 it follows that hb ∈ AA(X) ⊂ ASp

γ(X), that is, hb ∈ AA
(
Lp((0, 1), γds)

)
. Let

q > 0 such that p−1 + q−1 = 1. Then for T > 0,∫ T

−T

( ∫ 1

0

γ(s)‖ϕ(t + s)‖pds
)1/p

dt

≤ (2T )1/q
[ ∫ T

−T

( ∫ 1

0

γ(s)‖ϕ(s + t)‖pds
)
dt

]1/p

≤ (2T )1/q
[ ∫ T

−T

( ∫ 1

0

γ(s)‖ϕ(s + t)‖ · ‖ϕ‖p−1
∞ ds

)
dt

]1/p

= (2T )1/q‖ϕ‖(p−1)/p
∞

[ ∫ T

−T

( ∫ 1

0

γ(s)‖ϕ(s + t)‖ds
)
dt

]1/p

= (2T )1/q‖ϕ‖(p−1)/p
∞

[ ∫ 1

0

γ(s)
( ∫ T

−T

‖ϕ(s + t)‖dt
)
ds

]1/p

= 2T‖ϕ‖(p−1)/p
∞

[ ∫ 1

0

γ(s)
( 1

2T

∫ T

−T

‖ϕ(s + t)‖dt
)
ds

]1/p

,

and hence
1

2T

∫ T

−T

( ∫ 1

0

γ(s)‖ϕ(t + s)‖pds
)1/p

dt
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≤ ‖ϕ‖(p−1)/p
∞

[ ∫ 1

0

γ(s)
( 1

2T

∫ T

−T

‖ϕ(s + t)‖dt
)
ds

]1/p

.

Since PAP0(X) is translation invariant, it follows that

1
2T

∫ T

−T

‖ϕ(t + s)‖dt → 0 as T →∞

for all s ∈ [0, 1]. Using the Lebesgue Dominated Convergence Theorem it follows
that

lim
T→∞

1
2T

∫ T

−T

( ∫ 1

0

γ(s)‖ϕ(t + s)‖pds
)1/p

dt = 0.

�

Theorem 3.4. Let γ ∈ U. The space PAAp
γ(X) equipped with the norm ‖ · ‖Sp

γ
is

a Banach space.

Proof. Let (fn)n∈N be a Cauchy sequence in PAAp
γ(X). Let (hn)n∈N, (ϕn)n∈N

be sequences such that fn = hn + ϕn where (hb
n)n∈N ⊂ AA

(
Lp((0, 1), γds)

)
and

(ϕb
n)n∈N ⊂ PAP0

(
Lp((0, 1), γds)

)
. Using similar ideas as in the proof of [27, The-

orem 2.2] it can be shown that the following holds

‖hn‖Sp
γ
≤ ‖fn‖Sp

γ
for all n ∈ N.

Thus there exists a function h ∈ ASp
γ(X) such that ‖hn − h‖Sp

γ
→ 0 as n → ∞.

Using the previous fact, it easily follows that there exists a function ϕ ∈ BSp
γ(X)

such that ‖ϕn − ϕ‖Sp
γ
→ 0 as n →∞. Now, for T > 0, we have

1
2T

∫ T

−T

( ∫ t+1

t

γ(s− t)‖ϕ(s)‖ds
)1/p

dt

≤ 1
2T

∫ T

−T

( ∫ t+1

t

γ(s− t)‖ϕn(s)− ϕ(s)‖pds
)1/p

dt

+
1

2T

∫ T

−T

( ∫ t+1

t

γ(s− t)‖ϕn(s)‖pds
)1/p

dt

≤ ‖ϕn − ϕ‖Sp
γ

+
1

2T

∫ T

−T

( ∫ t+1

t

γ(s− t)‖ϕn(s)‖ds
)1/p

dt.

Letting T → ∞ and then n → ∞ in the previous inequality, it follows that ϕb ∈
PAP0

(
Lp((0, 1), γds)

)
; that is, f = h + ϕ ∈ PAAp

γ(X). �

Theorem 3.5. Let γ, ν ∈ U. If γ ≺ ν, then PAAp
γ(X) = PAAp

ν(X).

Corollary 3.6. If γ ∈ UB, then PAAγ(X) = PAA(X).

The proofs of the Theorem 3.5 and Corollary 3.6 are straightforward and hence
omitted.

Definition 3.7. Let γ ∈ U∞. A function F : R × Y → X, (t, u) → F (t, u) with
F (·, u) ∈ Lp(R, γds) for each u ∈ Y, is said to be Sp

γ-pseudo almost automorphic
if there exists two functions H,Φ : R × Y → X such that F = H + Φ, where
Hb ∈ AA(R × Y, Lp((0, 1), γds)) and Φb ∈ PAP0(R × Y, Lp((0, 1), γds)). The
collection of those Sp

γ-pseudo almost automorphic functions will be denoted by
PAAp

γ(R× Y, X).
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Using similar arguments as in Fan et al. [15] and in Theorem 2.21, the following
composition result can be established.

Theorem 3.8. Let F = G + Φ ∈ PAAp
γ(R × Y, X) such that Hb ∈ AA(R ×

Y, Lp((0, 1), γ(s)ds)) and Φb ∈ PAP0(R×Y, Lp((0, 1), γ(s)ds)). Moreover, we sup-
pose that G satisfies (2.1) and that Φ satisfies: there exists L > 0 such that for all
u, v ∈ Lp

loc(R, γds) and t ∈ R,( ∫ 1

0

γ(s)‖Φ(t + s, u(s))− Φ(t + s, v(s))‖pds
)1/p

≤ L
( ∫ 1

0

γ(s)‖u(s)− v(s)‖pds
)1/p

.

(3.1)

Furthermore, if h = g + ϕ ∈ PAAp
γ(Y) with hb ∈ AA(Lp((0, 1), γ(s)ds)) and ϕb ∈

PAP0(Lp((0, 1), γ(s)ds)) and such that K = {g(t) : t ∈ R} is compact, then t 7→
F (t, h(t)) belongs to PAAp

γ(X).

4. Existence of pseudo almost automorphic solutions

Fix γ ∈ U and p > 1. Throughout the rest of the paper, we set q = 1 − p−1.
Note that q 6= 0, as p 6= 1. Moreover, we suppose that γ ∈ U satisfies

inf
t∈(0,∞)

γ(t) = m0 > 0.

This section is devoted to the search of a pseudo almost automorphic solution to
Eq. (1.2) with Sp

γ-pseudo almost automorphic coefficients. For that, we suppose
among others that there exists a Banach space (Y, ‖ · ‖Y) such that the embedding

(Y, ‖ · ‖Y) ↪→ (X, ‖ · ‖)

is continuous. Let C > 0 be the bound of this embedding. In addition to the above
we assume that the following assumptions hold:

(H1) The system

u′(t) = A(t)u(t), t ≥ s, u(s) = ϕ ∈ X (4.1)

has an associated evolution family of operators {U(t, s) : t ≥ s with t, s ∈
R}. In addition, we assume that the domains of the operators A(t) are
constant in t, that is, D(A(t)) = D = Y for all t ∈ R and that the evolution
family U(t, s) is asymptotically stable in the sense that there exist some
constants M, δ > 0 such that

‖U(t, s)‖B(X) ≤ Me−δ(t−s)

for all t, s ∈ R with t ≥ s.
(H2) The function s → A(s)U(t, s) defined from (−∞, t) into B(Y, X) is strongly

measurable and there exist a measurable function H : (0,∞) → (0,∞) with
H ∈ L1(0,∞) and a constant ω > 0 such that

‖A(s)U(t, s)‖B(Y,X) ≤ e−ω(t−s)H(t− s), t, s ∈ R, t > s.

(H3) The function R × R → X, (t, s) → U(t, s)y ∈ bAA(T, Y) uniformly for
y ∈ X.

(H4) The function R× R → X, (t, s) → A(s)U(t, s)y ∈ bAA(T, X) uniformly for
y ∈ Y.
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(H5) The function f ∈ PAA(R×X, Y) and g ∈ PAAp
γ(R×X, X)∩C(R×X, X).

Moreover, there exists L > 0 such that

‖f(t, u)− f(t, v)‖Y ≤ L‖u− v‖

for all u, v ∈ X and t ∈ R, and

‖g(t, u)− g(t, v)‖ ≤ L‖u− v‖

for all u, v ∈ X and t ∈ R.

Definition 4.1. A family of linear operators {U(t, s) : t ≥ swith t, s ∈ R} ⊂ B(X)
is called an evolution family of operators for (4.1) whenever the following conditions
hold:

(a) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r;
(b) for each x ∈ X, the function (t, s) 7→ U(t, s)x is continuous and U(t, s) ∈

B(X, D) for every t > s; and
(c) the function (s, t] → B(X), t 7→ U(t, s) is differentiable with

∂

∂t
U(t, s) = A(t)U(t, s).

To study the existence and uniqueness of pseudo almost automorphic solutions
to (1.2) we first introduce the notion of mild solution, which has been adapted from
Diagana et al. [8, Defintion 3.1].

Definition 4.2. A continuous function u : R → X is said to be a mild solution
of (1.2) provided that the function s → A(s)U(t, s)f(s, u(s)) is integrable on (s, t),
and

u(t) = −f(t, u(t)) + U(t, s)
(
u(s) + f(s, u(s))

)
−

∫ t

s

A(s)U(t, s)f(s, u(s))ds +
∫ t

s

U(t, s)g(s, u(s))ds

for t ≥ s and for all t, s ∈ R.

Under assumptions (H1)-(H2), it can be easily shown that the function

u(t) = −f(t, u(t)) +
∫ t

−∞
U(t, s)g(s, u(s))ds−

∫ t

−∞
A(s)U(t, s)f(s, u(s))ds

for each t ∈ R, is a mild solution of (1.2).

Lemma 4.3. Under assumptions (H1), (H3), (H5), then the nonlinear integral
operator Γ defined by

(Γu)(t) :=
∫ t

−∞
U(t, s)g(s, u(s))ds

maps PAA(X) into PAA(X).

Proof. Let u ∈ PAA(X). Using Theorem 3.8 it follows that G(t) := g(t, u(t))
belongs to PAAp

γ(X). Now let G = h + ϕ, where hb ∈ AA
(
Lp((0, 1), γds)

)
and

ϕb ∈ PAP0

(
Lp((0, 1), γds)

)
. Consider for each k = 1, 2, . . . , the integral

Vk(t) =
∫ k

k−1

U(t, t− ξ)g(t− ξ)dξ
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=
∫ k

k−1

U(t, t− ξ)h(t− ξ)dξ +
∫ k

k−1

U(t, t− ξ)ϕ(t− ξ)dξ

and set Yk(t) =
∫ k

k−1
U(t, t− ξ)h(t− ξ)dξ and Xk(t) =

∫ k

k−1
U(t, t− ξ)ϕ(t− ξ)dξ.

Let us show that Yk ∈ AA(X). For that, letting r = t− ξ one obtains

Yk(t) =
∫ t−k+1

t−k

U(t, r)h(r)dr for each t ∈ R.

From (H1) it follows that the function s → U(t, r)h(r) is integrable over (−∞, t)
for each t ∈ R. Now using the Hölder’s inequality, it follows that

‖Yk(t)‖ ≤
∫ t−k+1

t−k

‖U(t, r)h(r)‖dr

≤ M

∫ t−k+1

t−k

e−δ(t−r)‖h(r)‖dr

= M

∫ t−k+1

t−k

γ−1/p(r − t + k)e−δ(t−r)‖h(r)‖γ1/p(r − t + k)dr

≤ M
[ ∫ t−k+1

t−k

γ−q/p(r − t + k)e−qδ(t−r)dr
]1/q

×
[ ∫ t−k+1

t−k

γ(r − t + k)‖h(r)‖pdr
]1/p

≤ Mm
−1/p
0

[ ∫ k

k−1

e−qδsds
]1/q

‖h‖Sp
γ

≤
[
e−δkm

−1/p
0 M q

√
(1 + eqδ)/(qδ)

]
‖h‖Sp

γ
.

Using the fact that

m
−1/p
0 M q

√
(1 + eqδ)/(qδ)

∞∑
k=1

e−δk < ∞

we deduce from the well-known Weirstrass theorem that the series
∑∞

k=1 Yk(t) is
uniformly convergent on R. Furthermore,

Y (t) :=
∫ t

−∞
U(t, s)h(s)ds =

∞∑
k=1

Yk(t),

Y ∈ C(R, X), and

‖Y (t)‖ ≤
∞∑

k=1

‖Yk(t)‖ ≤ K1‖h‖Sp
γ
,

where K1 > 0 is a constant.
Fix k ∈ N. Let (sm)m∈N be a sequence of real numbers. Since U(t, s)x ∈ bAA(R×

R, Y) and h ∈ ASp
γ(X), for every sequence (sm)m∈N there exists a subsequence

(smn)k∈N of (sm)m∈N and functions U1 and v ∈ ASp
γ(X) such that

lim
n→∞

U(t + smn , s + smn)x = U1(t, s)x, t, s ∈ R, x ∈ X, (4.2)

lim
n→∞

U1(t− smn , s− smn)x = U(t, s)x, t, s ∈ R, x ∈ X, (4.3)

lim
n→∞

‖h(t + smn + ·)− v(t + ·)‖Sp
γ

= 0, for each t ∈ R, (4.4)
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lim
n→∞

‖v(t− smn + ·)− h(t + ·)‖Sp
γ

= 0, for each t ∈ R. (4.5)

Define

Tk(t) =
∫ k

k−1

U1(t, t− ξ)h(t− ξ)dξ,

Zk(t) =
∫ k

k−1

U(t, t− ξ)v(t− ξ)dξ.

Now let

Ik
n(t) :=

∥∥∥∫ k

k−1

U(t + smn
, t + smn

− ξ)
(
h(t + smn

− ξ)− v(t− ξ)
)
dξ

∥∥∥,

Jk
n(t) :=

∥∥∥∫ k

k−1

(
U(t + smn

, t + smn
− ξ)− U(t, t− ξ)

)
v(t− ξ)dξ

∥∥∥.

Then
‖Yk(t + smn

)− Zk(t)‖ ≤ Ik
n(t) + Jk

n(t) .

Then using the Hölder’s inequality we obtain

Ik
n(t) ≤ M

∫ k

k−1

e−δξ‖h(t + smn
− ξ)− v(t− ξ)‖dξ

≤ M

∫ k

k−1

e−δξ‖h(t + smn − ξ)− v(t− ξ)‖dξ

≤ M

∫ k

k−1

γ−1/p(ξ − k + 1)e−δξ‖h(t + smn − ξ)− v(t− ξ)‖γ1/p(ξ − k + 1)dξ

≤ K2

[ ∫ k

k−1

γ(ξ − k + 1)‖h(t + smn
− ξ)− v(t− ξ)‖pdξ

]1/p

where K2 > 0 is a constant.
Now using (4.4) it follows that Ik

n(t) → 0 as n → ∞ for each t ∈ R. Simi-
larly, using the Lebesgue Dominated Convergence theorem and (4.2) it follows that
Jk

n(t) → 0 as n →∞ for each t ∈ R. Now,

‖Yk(t + smn)− Zn(t)‖ → 0 as n →∞.

Similarly, using (4.3) and (4.5) it can be shown that

‖Zk(t− smn)− Yk(t)‖ → 0 as n →∞.

Therefore each Yk ∈ AA(X) for each k and hence their uniform limit Y (t) ∈ AA(X),
by using [28, Theorem 2.1.10].

Let us show that each Xn ∈ PAP0(X). For that, note that

‖Xk(t)‖ ≤ M

∫ t−k+1

t−k

e−δ(t−r)‖ϕ(r)‖dr

≤
[
e−δkm

−1/p
0 M q

√
1 + eqδ

qδ

][ ∫ t−k+1

t−k

γ(r − t + k)‖ϕ(r)‖pdr
]1/p

≤ K3

[ ∫ t−k+1

t−k

γ(r − t + k)‖ϕ(r)‖pdr
]1/p
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where K3 > 0 is a constant. Now

1
2T

∫ T

−T

‖Xk(t)‖dt ≤ K3

2T

∫ T

−T

[ ∫ t−k+1

t−k

γ(r − t + k)‖ϕ(r)‖pdr
]1/p

dt.

Letting T → ∞ in the previous inequality it follows that Xk ∈ PAP0(X), as
ϕb ∈ PAP0(Lp((0, 1), γds)). Furthermore,

X(t) :=
∫ t

−∞
U(t, s)ϕ(s)ds =

∞∑
k=1

Xk(t),

X ∈ C(R, X), and

‖X(t)‖ ≤
∞∑

k=1

‖Xk(t)‖ ≤ K4 ‖ϕ‖Sp
γ
,

where K4 > 0 is a constant. Consequently the uniform limit X(t) =
∑∞

k=1 Xk(t) ∈
PAP0(X), see [9, Lemma 2.5]. Therefore, Γu(t) = X(t) + Y (t) ∈ PAA(X). �

Lemma 4.4. Under assumptions (H1), (H2), (H4), (H5), then the nonlinear inte-
gral operator Λ defined by

(Λu)(t) :=
∫ t

−∞
A(s)U(t, s)f(s, u(s))ds

maps PAA(X) into itself whenever the series
∑∞

n=1

[ ∫ n

n−1
e−ωsH(s)qds

]1/q

con-
verges.

Proof. Let u ∈ PAA(X). Using the composition of pseudo almost automorphic
functions it follows that F (t) := f(t, u(t)) belongs to PAA(Y) ⊂ PAAp

γ(Y) ⊂
PAAp

γ(X). The proof is, up to some slight modifications, similar to the proof
of Lemma 4.3. Indeed, write F = h + ϕ, where hb ∈ AA

(
Lp((0, 1), γds)

)
and

ϕb ∈ PAP0

(
Lp((0, 1), γds)

)
. Consider for each k = 1, 2, . . . , the integral

vk(t) =
∫ n

k−1

A(t− ξ)U(t, t− ξ)g(t− ξ)dξ

=
∫ k

k−1

A(t− ξ)U(t, t− ξ)h(t− ξ)dξ +
∫ k

k−1

A(t− ξ)U(t, t− ξ)ϕ(t− ξ)dξ

and set

Wk(t) =
∫ k

k−1

A(t−ξ)U(t, t−ξ)h(t−ξ)dξ, Zk(t) =
∫ k

k−1

A(t−ξ)U(t, t−ξ)ϕ(t−ξ)dξ.

Let us show that Wk ∈ AA(X). For that, letting r = t− ξ one obtains

Wk(t) =
∫ t−k+1

t−k

A(r)U(t, r)h(r)dr for each t ∈ R.

From (H2) it follows that the function s → A(r)U(t, r)h(r) is integrable over
(−∞, t) for each t ∈ R. Now using the Hölder’s inequality, it follows that

‖Wk(t)‖ ≤
∫ t−k+1

t−k

e−ω(t−r)H(t− r)‖h(r)‖dr

=
∫ t−k+1

t−k

γ−1/p(r − t + k)H(t− r)e−ω(t−r)‖h(r)‖γ1/p(r − t + k)dr
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≤
[ ∫ t−k+1

t−k

γ−q/p(r − t + k)e−ω(t−r)Hq(t− r)dr
]1/q

×
[ ∫ t−k+1

t−k

γ(r − t + k)‖h(r)‖pdr
]1/p

≤ m
−1/p
0

[ ∫ k

k−1

e−qωsH(s)qds
]1/q

‖h‖Sp
γ

≤ m
−1/p
0

[ ∫ n

k−1

e−qωsH(s)qds
]1/q

‖h‖Sp
γ
.

Using the fact that the series given by

m
−1/p
0

[ ∫ k

k−1

e−qωsH(s)qds
]1/q

converges, we then deduce from the well-known Weirstrass theorem that the series∑∞
k=1 Wk(t) is uniformly convergent on R. Furthermore,

W (t) :=
∫ t

−∞
A(s)U(t, s)h(s)ds =

∞∑
k=1

Wk(t),

W ∈ C(R, X), and

‖W (t)‖ ≤
∞∑

k=1

‖Yk(t)‖ ≤ K5 ‖h‖Sp
γ
,

where K5 > 0 is a constant.
Fix k ∈ N. Let (sm)m∈N be a sequence of real numbers. Since A(s)U(t, s)x ∈

bAA(R×R, X) and h ∈ ASp
γ(Y) ⊂ ASp

γ(X), for every sequence (sm)m∈N there exists
a subsequence (smn)k∈N of (sm)m∈N and functions Θ1 and v ∈ ASp

γ(Y) ⊂ ASp
γ(X)

such that

lim
n→∞

A(s + smn)U(t + smn , s + smn)x = Θ(t, s)x, t, s ∈ R, x ∈ X, (4.6)

lim
n→∞

Θ(t− smn , s− smn)x = A(s)U(t, s)x, t, s ∈ R, x ∈ X, (4.7)

lim
n→∞

‖h(t + smn + ·)− v(t + ·)‖Sp
γ

= 0, for each t ∈ R, (4.8)

lim
n→∞

‖v(t− smn + ·)− h(t + ·)‖Sp
γ

= 0, for each t ∈ R. (4.9)

Define

Tk(t) =
∫ k

k−1

Θ(t, t− ξ)h(t− ξ)dξ,

Zk(t) =
∫ k

k−1

A(t− ξ))U(t, t− ξ)v(t− ξ)dξ.

Now let

Lk
n(t) :=

∥∥∫ k

k−1

A(t + smn − ξ)U(t + smn , t + smn − ξ)

×
(
h(t + smn − ξ)− v(t− ξ)

)
dξ

∥∥,

Mk
n(t) :=

∥∥∫ k

k−1

(
A(t + smn − ξ)U(t + smn , t + smn − ξ)
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−A(t− ξ)U(t, t− ξ)
)
v(t− ξ)dξ

∥∥.

Then
‖Wk(t + smn)− Zk(t)‖ ≤ Lk

n(t) + Mk
n(t)

Then using the Hölder’s inequality we obtain

Lk
n ≤

∫ k

k−1

e−ωξH(ξ)‖h(t + smn
− ξ)− v(t− ξ)‖Ydξ

≤
∫ k

k−1

e−ωξH(ξ)‖h(t + smn − ξ)− v(t− ξ)‖Ydξ

≤
∫ k

k−1

γ−1/p(ξ − k)e−ωξH(ξ)‖h(t + smn − ξ)− v(t− ξ)‖Yγ1/p(ξ − k)dξ

≤ K6

[ ∫ k

k−1

e−ωξHq(ξ)dξ
]1/q[ ∫ k

k−1

γ(ξ − k)‖h(t + smn
− ξ)− v(t− ξ)‖p

Ydξ
]1/p

where K6 > 0 is a constant. Now using (4.8) it follows that Lk
n(t) → 0 as n → ∞

for each t ∈ R. Similarly, using the Lebesgue Dominated Convergence theorem and
(4.6) it follows that Mk

n(t) → 0 as n →∞ for each t ∈ R. Now,

‖Wk(t + smn
)− Zk(t)‖ → 0 as n →∞.

Similarly, using (4.7) and (4.9) it can be shown that

‖Zk(t− smn)−Wk(t)‖ → 0 as n →∞.

Therefore each Wk ∈ AA(X) for each k and hence it uniform limit W (t) ∈ AA(X).
Let us show that each Zk ∈ PAP0(X). For that, note that

‖Zk(t)‖ ≤
∫ t−k+1

t−k

e−ω(t−r)H(t− r)‖ϕ(r)‖Ydr

≤
∫ t−k+1

t−k

e−ω(t−r)H(t− r)‖ϕ(r)‖Ydr

≤ m
−1/p
0

[ ∫ k

k−1

e−ωsH(s)qds
]1/q[ ∫ t−k+1

t−k

γ(r − t + k)‖ϕ(r)‖p
Ydr

]1/p

and hence Zk ∈ PAP0(X), as ϕb ∈ PAP0(Lp((0, 1), γds)). Furthermore,

Z(t) :=
∫ t

−∞
A(s)U(t, s)ϕ(s)ds =

∞∑
k=1

Zk(t),

Z ∈ C(R, X), and

‖Z(t)‖ ≤
∞∑

k=1

‖Zk(t)‖ ≤ K7 ‖ϕ‖Sp
γ
,

where K7 > 0 is a constant. Consequently the uniform limit Z(t) =
∑∞

k=1 Zk(t) ∈
PAP (X), see [9, Lemma 2.5]. Therefore, Λu(t) = W (t) + Z(t) ∈ PAA(X). �

In addition to the previous assumptions, we suppose that the series
∞∑

n=1

[ ∫ n

n−1

e−ωsH(s)qds
]1/q

converges.
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Theorem 4.5. Under assumptions (H1)–(H5), Equation (1.2) has a unique mild
solution u ∈ PAA(X) whenever L is small enough.

Proof. Consider the nonlinear operator Γ defined by

(Πu)(t) = −f(t, u(t)) +
∫ t

−∞
U(t, s)g(s, u(s))ds−

∫ t

−∞
A(s)U(t, s)f(s, u(s))ds

for each t ∈ R. Using the proofs of Lemma 4.3 and 4.4 as well as the composition
of pseudo almost automorphic function for Lipschitzian function [24, Theorem 2.4],
one can easily see that Λ maps PAA(X) into PAA(X). To complete the proof, it
suffices to apply the Banach fixed-point theorem to the nonlinear operator Π. For
that, note that for all u, v ∈ PAA(X),

‖Πu−Πv‖∞ ≤ d‖u− v‖∞
where

d := L
[
Mδ−1 + C

(
1 +

∫ ∞

0

e−ωsH(s)ds
)]

.

Therefore, (1.2) has a unique fixed-point u ∈ PAA(X) whenever L is small enough,
that is, i.e. d < 1, or

L <
[
Mδ−1 + C

(
1 +

∫ ∞

0

e−ωsH(s)ds
)]−1

.

�

5. Example

Fix γ ∈ U and p > 1. Let Ω ⊂ RN (N ≥ 1) be an open bounded subset with C2

boundary Γ = ∂Ω and let X = L2(Ω) equipped with its natural topology ‖ · ‖2.
In this section we study the existence and uniqueness of a pseudo almost au-

tomorphic solution to the heat equation with a negative time-dependent diffusion
coefficient given by

∂

∂t

[
u(t, x) + F (t, u(t, x))

]
= −a(t, x)∆u(t, x) + G (t, u(t, x)) , in R× Ω (5.1)

u = 0, on R× Γ (5.2)

where F,G : R × L2(Ω → L2(Ω) are Sp
γ-pseudo almost automorphic and jointly

continuous, the function (t, x) → a(t, x) is jointly continuous, x → a(t, x) is differ-
entiable for all t ∈ R, t → a(t, x) is ω-periodic (ω > 0) in the sense that

a(t + ω, x) = a(t, x)

for all t ∈ R and x ∈ Ω, and the following assumptions hold:
(H6) inft∈R,x∈Ω a(t, x) = m0 > 0, and
(H7) there exists d > 0 and 0 < µ ≤ 1 such that |a(t, x)− a(s, x)| ≤ d|s− t|µ for

all t, s ∈ R uniformly in x ∈ Ω.
The problem is quite interesting as the system given by (5.1)-(5.2) models among

other things the heat conduction in the domain R×Ω ⊂ R×RN . Namely, solutions
u(t, x) to this system represent the temperature at position x ∈ Ω at time t ∈ R.

Define the linear operators A(t) appearing in (5.1)–(5.2) as follows:

A(t)u = −a(t, x)∆u for all u ∈ D(A(t)) = D = H1
0 (Ω) ∩H2(Ω).
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Under previous assumptions, it is clear that the operators A(t) defined above are
invertible and satisfy Acquistapace-Terreni conditions. Clearly, the system

u′(t) = A(t)u(t), t ≥ s,

u(s) = ϕ ∈ L2(Ω),

has an associated evolution family (U(t, s))t≥s on L2(Ω), which satisfies: there exist
ω0 > 0 and M ≥ 1 such that

‖U(t, s)‖B(L2(Ω)) ≤ Me−ω0(t−s) for every t ≥ s.

Moreover, since A(t + ω) = A(t) for all t ∈ R, it follows that

U(t + ω, s + ω) = U(t, s), A(s + ω)U(t + ω, s + ω) = A(s)U(t, s)

for all t, s ∈ R with t ≥ s. Therefore, (t, s) 7→ U(t, s)w belongs to bAA(T, L2(Ω))
uniformly in w ∈ L2(Ω) and (t, s) 7→ A(s)U(t, s)w belongs to bAA(T, D) uniformly
in w ∈ D. It is also clear that (H2) holds.

In this section, we take Y = (D, ‖ · ‖gr(∆))) where ‖ · ‖gr(∆) is the graph norm of
the N -dimensional Laplace operator ∆ with domain D defined by

‖u‖gr(∆) = ‖u‖2 + ‖∆u‖2
for all u ∈ D. Clearly, the bound of the embedding H1

0 (Ω) ∩ H2(Ω) ↪→ L2(Ω) is
C = 1.

We need the following additional assumption:
(H8) The functions F ∈ PAA(R× L2(Ω),H1

0 (Ω) ∩H2(Ω)) and G ∈ PAAp
γ(R×

L2(Ω), L2(Ω)) ∩ C(R × L2(Ω), L2(Ω)). Moreover, there exits L > 0 such
that

‖F (t, u)− F (t, v)‖gr(∆) ≤ L‖u− v‖2
for all u, v ∈ L2(Ω) and t ∈ R, and

‖G(t, u)−G(t, v)‖2 ≤ L‖u− v‖2
for all u, v ∈ L2(Ω) and t ∈ R.

Theorem 5.1. Under assumptions (H6)–(H8), the heat equation (5.1)-(5.2), with
time-dependent diffusion coefficient, has a unique solution u ∈ PAA(L2(Ω)) when-
ever L is small enough.
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