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EXISTENCE OF SOLUTIONS FOR MULTI-POINT NONLINEAR
DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDERS WITH

INTEGRAL BOUNDARY CONDITIONS

GANG WANG, WENBIN LIU, CAN REN

Abstract. In this article, we study the multi-point boundary-value problem
of nonlinear fractional differential equation

Dα
0+u(t) = f(t, u(t)), 1 < α ≤ 2, t ∈ [0, T ], T > 0,

I2−α
0+ u(t)|t=0 = 0, Dα−2

0+ u(T ) =
mX

i=1

aiI
α−1
0+ u(ξi),

where Dα
0+ and Iα

0+ are the standard Riemann-Liouville fractional derivative

and fractional integral respectively. Some existence and uniqueness results are
obtained by applying some standard fixed point principles. Several examples
are given to illustrate the results.

1. Introduction

The study of fractional differential equations ranges from the theoretical aspects
of existence and uniqueness of solutions to the analytic and numerical methods
for finding solutions. Fractional differential equations appear naturally in a num-
ber of fields such as physics, polymer rheology, regular variation in thermodynam-
ics, biophysics,blood flow phenomena, aerodynamics, electro-dynamics of complex
medium, viscoelasticity, Bodes analysis of feedback amplifiers, capacitor theory,
electrical circuits, electron-analytical chemistry, biology, control theory, fitting of
experimental data, etc. An excellent account in the study of fractional differential
equations can be found in [13, 14, 16, 17]. Boundary value problems for fractional
differential equations have been discussed in [1, 8, 11, 12, 15, 19, 20, 21].

Integral boundary conditions have various applications in applied fields such as
blood flow problems, chemical engineering, thermo-elasticity, underground water
flow, population dynamics, and so forth. For a detailed description of the integral
boundary conditions, we refer the reader to a recent paper [6]. For more details of
nonlocal and integral boundary conditions, see [7, 9, 10] and references therein.
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Ahmada and Nieto [1] considered the anti-periodic fractional boundary value
problem given

cDqu(t) = f(t, u(t)), 1 < α ≤ 2,

u(0) = −u(T ), cDpu(0) =c Dpu(T ),

where cDq is the standard Caputo fractional derivative. Using of some existence and
uniqueness results are obtained by applying some standard fixed point principles.

Ahmada and Nieto [3] considered the fractional integro-differential equation with
integral boundary conditions

cDqx(t) = f(t, x(t), (χx)(t)), 1 < q ≤ 2, t ∈ (0, 1),

αx(0) + βx′(0) =
∫ 1

0

q1(x(s))ds, αx(1) + βx′(1) =
∫ 1

0

q2(x(s))ds,

where cDq is the standard Caputo fractional derivative,

(χx)(t) =
∫ t

0

γ(t, s)x(s)ds.

Some existence and uniqueness results are obtained by applying standard fixed
point principles.

In this paper, we investigate the existence and uniqueness of solutions for the
fractional boundary-value problem

Dα
0+u(t) = f(t, u(t)), 1 < α ≤ 2, t ∈ [0, T ], T > 0, (1.1)

I2−α
0+ u(t)|t=0 = 0, Dα−2

0+ u(T ) =
m∑

i=1

aiI
α−1
0+ u(ξi), (1.2)

where 0 < ξi < T , T > 0, ai ∈ R, m ≥ 2, Dα
0+ and Iα

0+ are the standard Riemann-
Liouville fractional derivative and fractional integral respectively, f : [0, T ]×R → R
is continuous.

2. Preliminaries

For the convenience of the reader, we present here some necessary basic knowl-
edge and definitions for fractional calculus theory, that can be found in the recent
literature.

Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞) → R
is given by

Iα
0+y(t) =

1
Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

provided the right side is pointwise defined on (0,∞), where Γ(·) is the Gamma
function.

Definition 2.2. The fractional derivative of order α > 0 of a function y : (0,∞) →
R is given by

Dα
0+y(t) =

1
Γ(n− α)

(
d

dt
)n

∫ t

0

y(s)
(t− s)α−n+1

ds,

where n = [α] + 1, provided the right side is pointwise defined on (0,∞).
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Lemma 2.3. Let α > 0 and u ∈ C(0, 1) ∩ L1(0, 1).Then fractional differential
equation Dα

0+u(t) = 0 has

u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cN tα−N , ci ∈ R, N = [α] + 1,

as unique solution.

Lemma 2.4. Assume that u ∈ C(0, 1) ∩ L1(0, 1) with a fractional derivative of
order α > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cN tα−N ,

for some ci ∈ R, i = 1, 2, . . . , N , where N is the smallest integer grater than or
equal to α.

Definition 2.5. For n ∈ N , we denote by ACn[0, 1] the space of functions u(t)
which have continuous derivatives up to order n − 1 on [0, 1] such that u(n−1)(t)
is absolutely continuous: ACn[0, 1] ={u|[0, 1] → R and (D(n−1))u(t) is absolutely
continuous in [0, 1]}.

Lemma 2.6 ([13]). Let α > 0, n = [α] + 1. Assume that u ∈ L1(0, 1) with a
fractional integration of order n− α that belongs to ACn[0, 1]. Then the equality

(Iα
0+Dα

0+u)(t) = u(t)−
n∑

i=1

((In−α
0+ u)(t))n−i|t=0

Γ(α− i + 1)
tα−i

holds almost everywhere on [0, 1].

Lemma 2.7 ([13]). (i) Let k ∈ N,α > 0. If Dα
a+y(t) and (Dα+k

a+ y)(t) exist,
then

(DkDα
a+)y(t) = (Dα+k

a+ y)(t);
(ii) If α > 0, β > 0, α + β > 1, then

(Iα
a+Iα

a+)y(t) = (Iα+β
a+ y)(t)

satisfies at any point on [a, b] for y ∈ Lp(a, b) and 1 ≤ p ≤ ∞;
(iii) Let α > 0 and y ∈ C[a, b]. Then (Dα

a+Iα
a+)y(t) = y(t) holds on [a, b];

(iv) Note that for λ > −1, λ 6= α− 1, α− 2, . . . , α− n, we have

Dαtλ =
Γ(λ + 1)

Γ(λ− α + 1)
tλ−α,

Dαtα−i = 0, i = 1, 2, . . . , n

Lemma 2.8. For any y(t) ∈ C[0, 1], the linear fractional boundary-value problem

Dα
0+u(t) = y(t), 1 < α ≤ 2, t ∈ [0, T ],

I2−α
0+ u(t)|t=0 = 0, Dα−2

0+ u(T ) =
m∑

i=1

aiI
α−1
0+ u(ξi),

(2.1)

has unique solution

u(t) =
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds

+
tα−1

Γ(α)(T −A)

[ ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2y(s)ds−
∫ T

0

(T − s)y(s)ds
]
,

(2.2)
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where A =
∑m

i=1 aiξ
2α−2
i /Γ(2α− 1) and T 6= A.

Proof. By Lemma 2.4. the solution of (2.1) can be written as

u(t) = c1t
α−1 + c2t

α−2 +
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds.

From I2−α
0+ u(t)|t=0 = 0, and by Lemmas 2.6 and 2.7, we know that c2 = 0, and

Dα−2
0+ u(t) = c1tΓ(α) + I2

0+y(t),

Iα−1
0+ u(t) = c1

Γ(α)
Γ(2α− 1)

t2α−2 + Iα−1
0+ Iα

0+y(t),

from Dα−2
0+ u(T ) =

∑m
i=1 aiI

α−1
0+ u(ξi), we have

c1 =
1

Γ(α)(T −A)

[ ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2y(s)ds−
∫ T

0

(T − s)y(s)ds
]
,

where A =
∑m

i=1 aiξ
2α−2
i /Γ(2α− 1) and T 6= A, so

u(t) =
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds

tα−1

Γ(α)(T −A)

[ ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2y(s)ds−
∫ T

0

(T − s)y(s)ds
]
.

The proof is complete. �

3. Existence and uniqueness of solutions

Let E = C([0, T ], R) denote the Banach space of all continuous functions from
[0, T ] → R endowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [0, T ]}. Now
we state some known fixed point theorems which are needed to prove the existence
of solutions for (1.1)–(1.2).

Theorem 3.1 ([18]). Let X be a Banach space. Assume that T : X → X is a
completely continuous operator and the set V = {u ∈ X|u = µTu, 0 < µ < 1} is
bounded. Then T has a fixed point in X.

Theorem 3.2. [18] Let X be a Banach space. Assume that Ω is an open bounded
subset of X with θ ∈ Ωand let T : Ω̄ → X be a completely continuous operator such
that

‖Tu‖ ≤ ‖u‖,∀u ∈ ∂Ω.

Then T has a fixed point in Ω̄.

We define, in relation to (2.2), an operator P : E → E, as

(Pu)(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(t, u(s))ds

+
tα−1

Γ(α)(T −A)

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2f(t, u(s))ds

−
∫ T

0

(T − s)f(t, u(s))ds
)
.

(3.1)

Observe that this equation has a solution if and only if the operator P has a fixed
point.
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Theorem 3.3. Assume that there exists a positive constant L1 such that |f(t, u)| ≤
L1 for t ∈ [0, T ], u ∈ E. Then (1.1)-(1.2) has at least one solution.

Proof. We show, as a first step, that the operator P is completely continuous.
Clearly, continuity of the operator P follows from the continuity of f . Let Ω ⊂ E
be bounded. Then, ∀u ∈ Ω together with the assumption |f(t, u)| ≤ L1, we obtain

(Pu)(t) ≤
∫ t

0

(t− s)α−1

Γ(α)
|f(t, u(s))|ds

+
tα−1

Γ(α)|T −A|

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2|f(t, u(s))|ds

−
∫ T

0

(T − s)|f(t, u(s))|ds
)

≤ L1

[ ∫ t

0

(t− s)α−1

Γ(α)
ds

+
tα−1

Γ(α)|T −A|

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2ds−
∫ T

0

(T − s)ds
)]

≤ L1

[ Tα

Γ(α + 1)
+

Tα−1

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1

Γ(2α)
− T 2

2

)]
,

which implies

‖Pu‖ ≤ L1

[ Tα

Γ(α + 1)
+

Tα−1

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1

Γ(2α)
− T 2

2

)]
< ∞.

Hence, T (Ω) is uniformly bounded.
For any t1, t2 ∈ [0, T ], u ∈ Ω, we have

|(Pu)(t1)− (Pu)(t2)|

=
∣∣∣ ∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, u(s))ds

+
tα−1
1

Γ(α)(T −A)

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2f(s, u(s))ds

−
∫ T

0

(T − s)f (s, u(s))ds
)
−

∫ t2

0

(t2 − s)α−1

Γ(α)
f(s, u(s))ds− tα−1

2

Γ(α)(T −A)

×
( ∑m

i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2f(s, u(s))ds−
∫ T

0

(T − s)f(s, u(s))ds
)∣∣∣

≤ L1

∣∣∣ ∫ t1

0

(t1 − s)α−1 − (t2 − s)α−1

Γ(α)
ds

+
tα−1
1 − tα−1

2

Γ(α)(T −A)

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2ds

−
∫ T

0

(T − s)ds
)
−

∫ t2

t1

(t2 − s)α−1

Γ(α)
ds

∣∣∣
≤ L1

[∣∣∣ ∫ t1

0

(t1 − s)α−1 − (t2 − s)α−1

Γ(α)
ds−

∫ t2

t1

(t2 − s)α−1

Γ(α)
ds

∣∣∣
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+
∣∣∣ tα−1

1 − tα−1
2

Γ(α)(T −A)

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2ds−
∫ T

0

(T − s)ds
)∣∣∣]

→ 0 as t1 → t2.

Thus, by the Arzela-Ascoli theorem, P (Ω) is equicontinuous. Consequently, the
operator P is compact.

Next, we consider the set V = {u ∈ E : u = µPu, 0 < µ < 1}, and show that it
is bounded. Let u ∈ V ; then u = µPu, 0 < µ < 1. For any t ∈ [0, T ], we have

u(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(t, u(s))ds

+
tα−1

Γ(α)(T −A)

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2f(t, u(s))ds

−
∫ T

0

(T − s)f(t, u(s))ds
)
,

and

|u(t)| = µ|Pu|

≤
∫ t

0

(t− s)α−1

Γ(α)
|f(t, u(s))|ds

+
tα−1

Γ(α)(T −A)

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2|f(t, u(s))|ds

−
∫ T

0

(T − s)|f(t, u(s))|ds
)

≤ L1

[ ∫ t

0

(t− s)α−1

Γ(α)
ds

+
tα−1

Γ(α)|T −A|

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2ds−
∫ T

0

(T − s)ds
)]

≤ max
t∈[0,T ]

{
L1

[ |tα|
Γ(α + 1)

+
|tα−1|

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1

Γ(2α)
− T 2

2

)]}
= M.

Thus, ‖u‖ ≤ M . So, the set V is bounded. Thus, by the conclusion of Theorem
3.1, the operator P has at least one fixed point, which implies that (1.1)-(1.2) has
at least one solution. �

Theorem 3.4. Let limx→0
f(t,x)

x = 0. Then (1.1)-(1.2) has at least one solution.

Proof. Since limx→0
f(t,x)

x = 0, there exists a constant r > 0 such that |f(t, x)| ≤
ε|x| for 0 < |x| < r, where ε > 0 is such that

max
t∈[0,T ]

{ |tα|
Γ(α + 1)

+
|tα−1|

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1

Γ(2α)
− T 2

2

)}
ε ≤ 1, (3.2)

Define Ω1 = {x ∈ E : ‖x‖ < r} and take x ∈ E such that ‖x‖ = r; that is, x ∈ Ω1.
As before, it can be shown that T is completely continuous and

|(Tx)(t)| ≤ maxt∈[0,T ]

{ |tα|
Γ(α + 1)

+
|tα−1|

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1

Γ(2α)
− T 2

2

)}
ε‖x‖,
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which, in view of (3.2), yields ‖Tx‖ ≤ ‖x‖, x ∈ ∂Ω1. Therefore, by Theorem 3.2,
the operator T has at least one fixed point, which in turn implies that (1.1)-(1.2)
has at least one solution. �

For the next theorem we use the following two assumptions:
(H1) there exist positive functions L , such that

|f(t, x)− f(t, y)| ≤ L|x− y|, ∀t ∈ [0, T ], x, y ∈ R,

(H2) The function L satisfies

2L ≤
[ Tα

Γ(α + 1)
+

Tα−1

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1
i

Γ(2α)
− T 2

2

)]−1

.

Theorem 3.5. Assume thatUnder assumptions (H1), (H2), Problem (1.1)–(1.2))
has a unique solution in C[0, T ].

Proof. Let us set supt∈[0,T ] |f(t, 0)| = M1, and choose

r ≥ 2M1

[ Tα

Γ(α + 1)
+

Tα−1

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1
i

Γ(2α)
− T 2

2

)]
Then we show that PBr ⊂ Br, where Br = {u ∈ E : ‖u‖ ≤ r}. For u ∈ Br, we
have

‖(Pu)(t)‖

= sup
t∈[0,T ]

∣∣∣ ∫ t

0

(t− s)α−1

Γ(α)
f(s, u(s))ds

+
tα−1

Γ(α)(T −A)

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2f(s, u(s))ds

−
∫ T

0

(T − s)f(s, u(s))ds
)∣∣∣

≤ sup
t∈[0,T ]

[ ∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(s)|ds

+
tα−1

Γ(α)(T −A)

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2|f(s, u(s)|ds

−
∫ T

0

(T − s)|f(s, u(s))|ds
)]

≤ sup
t∈[0,T ]

[ ∫ t

0

(t− s)α−1

Γ(α)
(|f(s, u(s)− f(s, 0)|+ |f(s, 0)|)ds

+
tα−1

Γ(α)|T −A|

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2(|f(s, u(s)− f(s, 0)|+ |f(s, 0)|)ds

−
∫ T

0

(T − s)(|f(s, u(s)− f(s, 0)|+ |f(s, 0)|)ds
)]

≤ sup
t∈[0,T ]

[
(Lr + M1)

( ∫ t

0

(t− s)α−1

Γ(α)
ds

+
tα−1

Γ(α)|T −A|

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2ds−
∫ T

0

(T − s)ds
))]
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≤ (Lr + M1)
[ Tα

Γ(α + 1)
+

Tα−1

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1
i

Γ(2α)
− T 2

2

)]
≤ r

Taking the maximum over the interval [0, T ], we obtain ‖(Pu)(t)‖ ≤ r.
In view of (H1), for every t ∈ [0, T ], we have

‖(Px)(t)− (Py)(t)‖

= sup
t∈[0,T ]

∣∣∣ ∫ t

0

(t− s)α−1

Γ(α)
(f(t, x)− f(t, y)ds

+
tα−1

Γ(α)(T −A)

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2(f(t, x)− f(t, y)ds

−
∫ T

0

(T − s)(f(t, x)− f(t, y)ds
)∣∣∣

≤ sup
t∈[0,T ]

[ ∫ t

0

(t− s)α−1

Γ(α)
|(f(t, x)− f(t, y)|ds

+
tα−1

Γ(α)|T −A|

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2|(f(t, x)− f(t, y)|ds

−
∫ T

0

(T − s)|(f(t, x)− f(t, y)|ds
)]

≤ sup
t∈[0,T ]

[
L‖x− y‖

( ∫ t

0

(t− s)α−1

Γ(α)
ds

+
tα−1

Γ(α)|T −A|

( ∑m
i=1 ai

Γ(2α− 1)

∫ ξi

0

(ξi − s)2α−2ds−
∫ T

0

(T − s)ds
))]

≤ L‖x− y‖
[ Tα

Γ(α + 1)
+

Tα−1

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1
i

Γ(2α)
− T 2

2

)]
= A‖x− y‖,

where

A = L
[ Tα

Γ(α + 1)
+

Tα−1

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1
i

Γ(2α)
− T 2

2

)]
,

which depends only on the parameters involved in the problem. As A < 1, T
is therefore a contraction. Thus, the conclusion of the theorem follows by the
contraction mapping principle (the Banach fixed point theorem). �

Example 3.6. Consider the following three-point nonlinear differential equations

D
3/2
0+ u(t) = f(t, u(t)), 0 < t < 1, (3.3)

I2−α
0+ u(t)|t=0 = 0, Dα−2

0+ u(T ) =
m∑

i=1

aiI
α−1
0+ u(ξi), (3.4)

where f(t, u) = e−2sin2(u(t))[3+5 sin(2t)+4ln(5+2 cos2(u(t)))]/(2+ cos t), a1 = 4,
a2 = 2, ξ1 = 1/2, ξ2 = 1/4, T = 1 we have A =

∑m
i=1 aiξ

2α−2
i /Γ(2α − 1) = 5/2 6=

T = 1.
Clearly L1 = 4 + 2ln7, and the hypothesis of Theorem 3.3 holds. Therefore, the

conclusion of Theorem 3.3 applies to (3.3)–(3.4). Then, there exists at least one
solution.
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Example 3.7. Consider the problem

D
3/2
0+ u(t) = f(t, u(t)), 0 < t < 1, (3.5)

I2−α
0+ u(t)|t=0 = 0, Dα−2

0+ u(T ) =
m∑

i=1

aiI
α−1
0+ u(ξi), (3.6)

where f(t, u) = (8 + 2u3(t))1/3 + (2t− 1)(2u− 2 sin(u(t)))− 2, a1 = 1/2, a2 = 1/3,
ξ1 = 1/3, ξ2 = 1/4, T = 2 we have A =

∑m
i=1 aiξ

2α−2
i /Γ(2α − 1) = 1/4 6= T = 2.

Clearly limu→0
f(t,u)

u = 0. It can easily be verified that all the assumptions of
Theorem 3.4 hold. Consequently, (3.5)-(3.6) has at least one solution.

Example 3.8. Consider the three-point nonlinear differential equation

D
3/2
0+ u(t) + f(t, u(t)) = 0, 0 < t < 1, (3.7)

I2−α
0+ u(t)|t=0 = 0, Dα−2

0+ u(T ) =
m∑

i=1

aiI
α−1
0+ u(ξi), (3.8)

where f(t, u) = 1
(2t+8)2

8‖u‖
1+‖u‖ , a1 = 2, a2 = 3, ξ1 = 1/2, ξ2 = 1/3, T = 2 we have

A =
∑m

i=1 aiξ
2α−2
i /Γ(2α− 1) = 1 6= T = 2. Clearly, L = 1/8 as

|f(t, u)− f(t, v)| ≤ 1/8‖u− v‖.

Further,

L
[ Tα

Γ(α + 1)
+

Tα−1

Γ(α)|T −A|

(∑m
i=1 aiξ

2α−1
i

Γ(2α)
− T 2

2

)]
≈ 0.3 < 1.

Thus, all the assumptions of Theorem 3.5 are satisfied. Hence, (3.7)-(3.8) has a
unique solution on [0, 1].
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