Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 55, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF GLOBAL SOLUTIONS FOR A GIERER-MEINHARDT SYSTEM WITH THREE EQUATIONS

SALEM ABDELMALEK, HICHEM LOUAFI, AMAR YOUKANA

Abstract

This articles shows the existence of global solutions for a GiererMeinhardt model of three substances described by reaction-diffusion equations with fractional reactions. Our technique is based on a suitable Lyapunov functional.

1. Introduction

In recent years, systems of Reaction-Diffusion equations have received a great deal of attention, motivated by their widespread occurrence in modeling chemical and biological phenomena. Among these systems, the Gierer-Meinhardt is an important one. Meinhardt, Koch and Bernasconi [7] proposed activator-inhibitor models (an example is given in section 4) to describe a theory of biological pattern formation in plants (Phyllotaxis).

We consider a reaction-diffusion system with three components:

$$
\begin{gather*}
u_{t}-a_{1} \Delta u=f(u, v, w)=\sigma-b_{1} u+\frac{u^{p_{1}}}{v^{q_{1}}\left(w^{r_{1}}+c\right)} \\
v_{t}-a_{2} \Delta v=g(u, v, w)=-b_{2} v+\frac{u^{p_{2}}}{v^{q_{2}} w^{r_{2}}} \tag{1.1}\\
w_{t}-a_{3} \Delta w=h(u, v, w)=-b_{3} w+\frac{u^{p_{3}}}{v^{q_{3}} w^{r_{3}}}
\end{gather*}
$$

with $x \in \Omega, t>0$, and with Neummann boundary conditions

$$
\begin{equation*}
\frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta}=\frac{\partial w}{\partial \eta}=0 \quad \text { on } \partial \Omega \times\{t>0\} \tag{1.2}
\end{equation*}
$$

and initial data

$$
\begin{gather*}
u(0, x)=\varphi_{1}(x)>0 \\
v(0, x)=\varphi_{2}(x)>0 \tag{1.3}\\
w(0, x)=\varphi_{3}(x)>0
\end{gather*}
$$

on Ω, and $\varphi_{i} \in C(\bar{\Omega})$ for all $i=1,2,3$. Here Ω is an open bounded domain of class C^{1} in \mathbb{R}^{N}, with boundary $\partial \Omega ; \partial / \partial \eta$ denotes the outward normal derivative on $\partial \Omega$.

[^0]We use the following assumptions: $a_{i}, b_{i}, p_{i}, q_{i}, r_{i}$ are nonnegative for $i=1,2,3$, with $\sigma>0, c \geq 0$:

$$
\begin{equation*}
0<p_{1}-1<\max \left\{p_{2} \min \left(\frac{q_{1}}{q_{2}+1}, \frac{r_{1}}{r_{2}}, 1\right), p_{3} \min \left(\frac{r_{1}}{r_{3}+1}, \frac{q_{1}}{q_{3}}, 1\right)\right\} \tag{1.4}
\end{equation*}
$$

We set $A_{i j}=\frac{a_{i}+a_{j}}{2 \sqrt{a_{i} a_{j}}}$ for $i, j=1,2,3$. Let α, β and γ be positive constants such that

$$
\begin{gather*}
\alpha>2 \max \left\{1, \frac{b_{2}+b_{3}}{b_{1}}\right\}, \quad \frac{1}{\beta}>2 A_{12}^{2} \tag{1.5}\\
\left(\frac{1}{2 \beta}-A_{12}^{2}\right)\left(\frac{1}{2 \gamma}-A_{13}^{2}\right)>\left(\frac{\alpha-1}{\alpha} A_{23}-A_{12} A_{13}\right)^{2} . \tag{1.6}
\end{gather*}
$$

The main result of the paper reads as follows.
Theorem 1.1. Suppose that the functions f, g and h satisfy condition (1.4). Let $(u(t, \cdot), v(t, \cdot), w(t, \cdot))$ be a solution of (1.1)-(1.3) and let

$$
\begin{equation*}
L(t)=\int_{\Omega} \frac{u^{\alpha}(t, x)}{v^{\beta}(t, x) w^{\gamma}(t, x)} d x \tag{1.7}
\end{equation*}
$$

Then the functional L is uniformly bounded on the interval $\left[0, T^{*}\right], T^{*}<T_{\max }$, where $T_{\max }\left(\left\|u_{0}\right\|_{\infty},\left\|v_{0}\right\|_{\infty},\left\|w_{0}\right\|_{\infty}\right)$ denotes the eventual blow-up time.

Corollary 1.2. Under the assumptions of Theorem 1.1, all solutions of 1.1$)-(1.3)$ with positive initial data in $C(\bar{\Omega})$ are global. If in addition $b_{1}, b_{2}, b_{3}, \sigma>0$, then u, v, w are uniformly bounded in $\bar{\Omega} \times[0, \infty)$.

2. Preliminaries

The usual norms in spaces $L^{p}(\Omega), L^{\infty}(\Omega)$ and $C(\bar{\Omega})$ are denoted respectively by:

$$
\begin{gather*}
\|u\|_{p}^{p}=\frac{1}{|\Omega|} \int_{\Omega}|u(x)|^{p} d x \\
\|u\|_{\infty}=\operatorname{ess} \sup _{x \in \Omega}|u(x)| \tag{2.1}\\
\|u\|_{C(\bar{\Omega})}=\max _{x \in \bar{\Omega}}|u(x)|
\end{gather*}
$$

In 1972, following an ingenious idea of Turing [10], Gierer and Meinhardt [6] proposed a mathematical model for pattern formations of spatial tissue structures of hydra in morphogenesis, a biological phenomenon discovered by Trembley in 1744 [9]. It is a system of reaction-diffusion equations of the form

$$
\begin{align*}
u_{t}-a_{1} \Delta u & =\sigma-\mu u+\frac{u^{p}}{v^{q}} \\
v_{t}-a_{2} \Delta v & =-\nu v+\frac{u^{r}}{v^{s}} \tag{2.2}
\end{align*}
$$

for $x \in \Omega$ and $t>0$, with Neummann boundary conditions

$$
\begin{equation*}
\frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta}=0, \quad x \in \partial \Omega, t>0 \tag{2.3}
\end{equation*}
$$

and initial conditions

$$
\begin{equation*}
u(x, 0)=\varphi_{1}(x)>0, \quad v(x, 0)=\varphi_{2}(x)>0, \quad x \in \Omega \tag{2.4}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $\partial \Omega, a_{1}, a_{2}>0, \mu, \nu, \sigma>$ 0 , the indexes p, q, r and s are non negative with $p>1$.

Existence of solutions in $(0, \infty)$ is proved by Rothe in 1984 [12 in a particular situation when $p=2, q=1, r=2, s=0$ and $N=3$. Rothe's method cannot be applied (at least directly) to the general case. Wu and Li [5] obtained the same results for 2.2 -(2.4) so long as u, v^{-1} and σ are suitably small. Mingde, Shaohua and Yuchun [8] show that solutions of this problem are bounded all the time for any initial values if

$$
\begin{equation*}
\frac{p-1}{r}<\frac{q}{s+1}, \quad \frac{p-1}{r}<1 . \tag{2.5}
\end{equation*}
$$

Masuda and Takahashi 11] considered a more general system for (u, v),

$$
\begin{align*}
& u_{t}-a_{1} \Delta u=\sigma_{1}(x)-\mu u+\rho_{1}(x, u) \frac{u^{p}}{v^{q}} \tag{2.6}\\
& v_{t}-a_{2} \Delta v=\sigma_{2}(x)-\nu v+\rho_{2}(x, u) \frac{u^{r}}{v^{s}}
\end{align*}
$$

with $\sigma_{1}, \sigma_{2} \in C^{1}(\bar{\Omega}), \sigma_{1} \geq 0, \sigma_{2} \geq 0, \rho_{1}, \rho_{2} \in C^{1}\left(\bar{\Omega} \times \overline{\mathbb{R}}_{+}^{2}\right) \cap L^{\infty}\left(\bar{\Omega} \times \overline{\mathbb{R}}_{+}^{2}\right)$ satisfying $\rho_{1} \geq 0, \rho_{2}>0$ and p, q, r, s are nonnegative constants satisfying (2.5). Obviously, system (2.4) is a special case of system 2.6.

In 1987, Masuda and Takahashi [11] extended the result to $\frac{p-1}{r}<\frac{2}{N+2}$ under the sole condition $\sigma_{1}>0$. In 2006, Jiang [4], under the conditions 2.5), $\varphi_{1}, \varphi_{2} \in$ $W^{2, l}(\Omega), l>\max \{N, 2\}, \frac{\partial \varphi_{1}}{\partial \eta}=\frac{\partial \varphi_{2}}{\partial \eta}=0$ on $\partial \Omega$ and $\varphi_{1} \geq 0, \varphi_{2}>0$ in $\bar{\Omega}$, showed that 2.6) has a unique nonnegative global solution (u, v) satisfying (2.3)-(2.4).

It is well-known that to prove existence of global solutions to (1.1)-(1.3), it suffices to derive a uniform estimate of $\|f(u, v, w)\|_{p},\|g(u, v, w)\|_{p}$ and $\|h(u, v, w)\|_{p}$ on $\left[0 ; T_{\max }\right)$ in the space $L^{p}(\Omega)$ for some $p>N / 2$ (see Henry [3]). Our aim is to construct a polynomial Lyapunov functional allowing us to obtain L^{p} - bounds on u, v and w that lead to global existence. Since the functions f, g and h are continuously differentiable on \mathbb{R}_{+}^{3}, then for any initial data in $C(\bar{\Omega})$, it is easy to check directly their Lipschitz continuity on bounded subsets of the domain of a fractional power of the operator

$$
\mathcal{A}=-\left(\begin{array}{ccc}
a_{1} \Delta & 0 & 0 \tag{2.7}\\
0 & a_{2} \Delta & 0 \\
0 & 0 & a_{3} \Delta
\end{array}\right)
$$

Under these assumptions, the following local existence result is well known (see Henry [3]).

Proposition 2.1. System (1.1)-(1.3) admits a local unique, classical solution ($u, v, w)$ on $\left(0, T_{\max }\right) \times \Omega$. If $T_{\max }<\infty$ then

$$
\begin{equation*}
\lim _{t / T_{\max }}\left(\|u(t, .)\|_{\infty}+\|v(t, .)\|_{\infty}+\|w(t, .)\|_{\infty}\right)=\infty \tag{2.8}
\end{equation*}
$$

3. Proofs of main results

For the proof of Theorem 1.1, we need some preparatory Lemmas.
Lemma 3.1. Assume that p, q, r, s, m, and n satisfy

$$
\frac{p-1}{r}<\min \left(\frac{q}{s+1}, \frac{m}{n}, 1\right) .
$$

For all $h, l, \alpha, \beta, \gamma>0$, there exist $C=C(h, l, \alpha, \beta, \gamma)>0$ and $\theta=\theta(\alpha) \in(0,1)$, such that

$$
\begin{equation*}
\alpha \frac{x^{p-1+\alpha}}{y^{q+\beta} z^{m+\gamma}} \leq \beta \frac{x^{r+\alpha}}{y^{s+1+\beta} z^{n+\gamma}}+C\left(\frac{x^{\alpha}}{y^{\beta} z^{\gamma}}\right)^{\theta}, \quad x \geq 0, y \geq h, z \geq l \tag{3.1}
\end{equation*}
$$

Proof. For all $x \geq 0, y \geq h, z \geq l$, from the inequality (3.1), we have

$$
\begin{equation*}
\alpha \frac{x^{p-1}}{y^{q} z^{m}} \leq \beta \frac{x^{r}}{y^{s+1} z^{n}}+C\left(\frac{x^{\alpha}}{y^{\beta} z^{\gamma}}\right)^{\theta-1} \tag{3.2}
\end{equation*}
$$

We can write

$$
\alpha \frac{x^{p-1}}{y^{q} z^{m}}=\alpha \beta^{-(p-1) / r}\left(\beta \frac{x^{r}}{y^{s+1} z^{n}}\right)^{\frac{p-1}{r}} y^{\frac{(s+1)(p-1)}{r}-q} z^{\frac{n(p-1)}{r}-m}
$$

For each ϵ such that $0<\epsilon<\min \left(\frac{q}{s+1}, \frac{m}{n}, 1\right)-\frac{p-1}{r}$, we have

$$
\alpha \frac{x^{p-1}}{y^{q} z^{m}}=\alpha \beta^{-(p-1) / r}\left(\beta \frac{x^{r}}{y^{s+1} z^{n}}\right)^{\frac{p-1}{r}+\epsilon}\left(\beta \frac{x^{r}}{y^{s+1} z^{n}}\right)^{-\epsilon} v^{\frac{(s+1)(p-1)}{r}-q} z^{\frac{n(p-1)}{r}-m} .
$$

Then

$$
\begin{align*}
\alpha \frac{x^{p-1}}{y^{q} z^{m}}= & \alpha(\beta)^{-\frac{p-1}{r}-\epsilon}\left(\beta \frac{x^{r}}{y^{s+1} z^{n}}\right)^{\frac{p-1}{r}+\epsilon}\left(\frac{1}{x^{\alpha}}\right)^{\frac{r \epsilon}{\alpha}}(y)^{\frac{(s+1)(p-1)}{r}-q+\epsilon(s+1)} \\
& \times z^{\frac{n(p-1)}{r}-m+\epsilon n} \\
\leq & \alpha(\beta)^{-\frac{p-1}{r}-\epsilon}\left(\beta \frac{x^{r}}{y^{s+1} z^{n}}\right)^{\frac{p-1}{r}+\epsilon}\left(\frac{1}{x^{\alpha}}\right)^{\frac{r \epsilon}{\alpha}}(h)^{\frac{(s+1)(p-1)}{r}-q+\epsilon(s+1)} \\
& \times l^{\frac{n(p-1)}{r}-m+\epsilon n} \tag{3.3}\\
\leq & \alpha(\beta)^{-\frac{p-1}{r}-\epsilon}\left(\beta \frac{x^{r}}{y^{s+1} z^{n}}\right)^{\frac{p-1}{r}+\epsilon}\left(\frac{1}{x^{\alpha}}\right)^{\frac{r \epsilon}{\alpha}}(h)^{\frac{(s+1)(p-1)}{r}-q+\epsilon(s+1)} \\
& \times l^{\frac{n(p-1)}{r}-m+\epsilon n}\left(\frac{y}{h}\right)^{\frac{\beta r \epsilon}{\alpha}}\left(\frac{z}{l}\right)^{\frac{\gamma r \epsilon}{\alpha}} \\
\leq & C_{1}\left(\beta \frac{x^{r}}{y^{s+1} z^{n}}\right)^{\frac{p-1}{r}+\epsilon}\left(\frac{y^{\beta} z^{\gamma}}{x^{\alpha}}\right)^{r \epsilon / \alpha},
\end{align*}
$$

where

$$
C_{1}=\alpha(\beta)^{-\frac{p-1}{r}-\epsilon} h^{\frac{(s+1)(p-1)}{r}-q+\epsilon(s+1)-\frac{\beta r \epsilon}{\alpha}} l^{\frac{(n)(p-1)}{r}-m+\epsilon n-\frac{\gamma r \epsilon}{\alpha}} .
$$

Using Young's inequality for (3.3) by taking

$$
C=C_{1}^{1+\frac{p-1+r \epsilon}{r-(p-1)-r \epsilon}}, \quad \theta=1-\frac{r \epsilon}{\alpha\left(1-\frac{p-1}{r}-\epsilon\right)}
$$

where ϵ is sufficiently small, we obtain inequality 3.2 .
Lemma 3.2. Let $T>0$ and $f=f(t)$ be a non-negative integrable function on $[0, T)$. Let $0<\theta<1$ and $W=W(t)$ be a positive function on $[0, T)$ satisfying the differential inequality

$$
\frac{d W}{d t} \leq-W(t)+f(t) W^{\theta}(t), \quad 0 \leq t<T
$$

Then $W(t) \leq \kappa$, where κ is the positive root of the algebraic equation

$$
x-\left(\sup _{0<t<T} \int_{0}^{t} e^{-(t-\xi)} f(\xi) d \xi\right) x^{\theta}=W(0)
$$

Lemma 3.3. Let $(u(t, \cdot), v(t, \cdot), w(t, \cdot))$ be a solution of 1.1)-(1.3). Then for any (t, x) in $\left(0, T_{\max }\right) \times \Omega$, we have

$$
\begin{align*}
& u(t, x) \geq e^{-b_{1} t} \min \left(\varphi_{1}(x)\right)>0 \\
& v(t, x) \geq e^{-b_{2} t} \min \left(\varphi_{2}(x)\right)>0 \tag{3.4}\\
& w(t, x) \geq e^{-b_{3} t} \min \left(\varphi_{3}(x)\right)>0
\end{align*}
$$

The proof of the above lemma follows immediately from the maximum principle, and it is omitted.
Proof of Theorem 1.1. Differentiating $L(t)$ with respect to t yields

$$
\begin{aligned}
L^{\prime}(t) & =\int_{\Omega} \frac{d}{d t}\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right) d x \\
& =\int_{\Omega}\left(\alpha \frac{u^{\alpha-1}}{v^{\beta} w^{\gamma}} \partial_{t} u-\beta \frac{u^{\alpha}}{v^{\beta+1} w^{\gamma}} \partial_{t} v-\gamma \frac{u^{\alpha}}{v^{\beta} w^{\gamma+1}} \partial_{t} w\right) d x
\end{aligned}
$$

Replacing $\partial_{t} u, \partial_{t} v$ and $\partial_{t} w$ by their values in 1.1), we obtain

$$
L^{\prime}(t)=I+J
$$

where I contains the Laplacian terms and J contains the other terms,

$$
I=a_{1} \alpha \int_{\Omega} \frac{u^{\alpha-1}}{v^{\beta} w^{\gamma}} \Delta u d x-a_{2} \beta \int_{\Omega} \frac{u^{\alpha}}{v^{\beta+1} w^{\gamma}} \Delta v d x-a_{3} \gamma \int_{\Omega} \frac{u^{\alpha}}{v^{\beta} w^{\gamma+1}} \Delta w d x
$$

and

$$
\begin{aligned}
J= & \left(-b_{1} \alpha+b_{2} \beta+b_{3} \gamma\right) L(t)+\alpha \int_{\Omega} \frac{u^{p_{1}+\alpha-1}}{v^{q_{1}+\beta} w_{3}^{\gamma}\left(w^{r_{1}}+c\right)} d x \\
& -\beta \int_{\Omega} \frac{u^{p_{2}+\alpha}}{v^{q_{2}+\beta+1} w^{r_{2}+\gamma}} d x-\gamma \int_{\Omega} \frac{u^{p_{3}+\alpha}}{v^{q_{3}+\beta} w^{r_{3}+\gamma+1}} d x+\sigma \alpha \int_{\Omega} \frac{u^{\alpha-1}}{v^{\beta} w^{\gamma}} d x .
\end{aligned}
$$

Estimation of I. Using Green's formula, we obtain

$$
\begin{aligned}
I= & \int_{\Omega}\left(-a_{1} \alpha(\alpha-1) \frac{u^{\alpha-2}}{v^{\beta} w^{\gamma}}|\nabla u|^{2}+a_{1} \alpha \beta \frac{u^{\alpha-1}}{v^{\beta+1} w^{\gamma}} \nabla u \nabla v+a_{1} \alpha \gamma \frac{u^{\alpha-1}}{v^{\beta} w^{\gamma+1}} \nabla u \nabla w\right. \\
& +a_{2} \beta \alpha \frac{u^{\alpha-1}}{v^{\beta+1} w^{\gamma}} \nabla u \nabla v-a_{2} \beta(\beta+1) \frac{u^{\alpha}}{v^{\beta+2} w^{\gamma}}|\nabla v|^{2}-a_{2} \beta \gamma \frac{u^{\alpha}}{v^{\beta+1} w^{\gamma+1}} \nabla v \nabla w \\
& \left.+a_{3} \gamma \alpha \frac{u^{\alpha-1}}{v^{\beta} w^{\gamma+1}} \nabla u \nabla w-a_{3} \gamma \beta \frac{u^{\alpha}}{v^{\beta+1} w^{\gamma+1}} \nabla v \nabla w-a_{3} \gamma(\gamma+1) \frac{u^{\alpha}}{v^{\beta} w^{\gamma+2}}|\nabla w|^{2}\right) d x \\
= & -\int_{\Omega}\left[\frac{u^{\alpha-2}}{v^{\beta+2} w^{\gamma+2}}(Q T) \cdot T\right] d x
\end{aligned}
$$

where

$$
Q=\left(\begin{array}{ccc}
a_{1} \alpha(\alpha-1) & -\alpha \beta \frac{a_{1}+a_{2}}{2} & -\alpha \gamma \frac{a_{1}+a_{3}}{2} \\
-\alpha \beta \frac{a_{1}+a_{2}}{2} & a_{2} \beta(\beta+1) & \beta \gamma \frac{a_{2}+a_{3}}{2} \\
-\alpha \gamma \frac{a_{1}+a_{3}}{2} & \beta \gamma \frac{a_{2}+a_{3}}{2} & a_{3} \gamma(\gamma+1)
\end{array}\right)
$$

The matrix Q is positive definite if, and only if, all its principal successive determinants $\Delta_{1}, \Delta_{2}, \Delta_{3}$ are positive. To see this, we have:
$\Delta_{1}=a_{1} \alpha(\alpha-1)>0$ by 1.5. Note that

$$
\Delta_{2}=\left|\begin{array}{ll}
a_{1} \alpha(\alpha-1) & -\alpha \beta \frac{a_{1}+a_{2}}{2} \\
-\alpha \beta \frac{a_{1}+a_{2}}{2} & a_{2} \beta(\beta+1)
\end{array}\right|=\alpha^{2} \beta^{2} a_{1} a_{2}\left(\frac{\alpha-1}{\alpha} \frac{\beta+1}{\beta}-A_{12}^{2}\right)
$$

which is positive by 1.5.

Using [1, Theorem 1], we obtain

$$
\begin{aligned}
(\alpha-1) \Delta_{3}= & (\alpha-1)|Q| \\
= & \alpha(\alpha \gamma \beta)^{2} a_{1} a_{2} a_{3}\left(\left(\frac{\alpha-1}{\alpha} \frac{\beta+1}{\beta}-A_{12}^{2}\right)\left(\frac{\alpha-1}{\alpha} \frac{\gamma+1}{\gamma}-A_{13}^{2}\right)\right. \\
& \left.-\left(\frac{\alpha-1}{\alpha} A_{23}-A_{12} A_{13}\right)^{2}\right)
\end{aligned}
$$

Then using (1.5)-(1.6), we obtain $\Delta_{3}>0$.
Consequently, $I \leq 0$ for all $(t, x) \in\left[0, T^{*}\right] \times \Omega$.
Estimation of J. According to the maximum principle, there exists C_{0} depending on $\left\|\varphi_{1}\right\|_{\infty},\left\|\varphi_{2}\right\|_{\infty},\left\|\varphi_{3}\right\|_{\infty}$ such that $v, w \geq C_{0}>0$. We then have

$$
\frac{u^{\alpha-1}}{v^{\beta} w^{\gamma}}=\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{(\alpha-1) / \alpha}\left(\frac{1}{v}\right)^{\beta / \alpha}\left(\frac{1}{w}\right)^{\gamma / \alpha} \leq\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{\frac{\alpha-1}{\alpha}}\left(\frac{1}{C_{0}}\right)^{(\beta+\gamma) / \alpha}
$$

So

$$
\frac{u^{\alpha-1}}{v^{\beta} w^{\gamma}} \leq C_{2}\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{(\alpha-1) / \alpha} \quad \text { where } C_{2}=\left(\frac{1}{C_{0}}\right)^{(\beta+\gamma) / \alpha}
$$

Using Lemma 3.1, for all $(t, x) \in\left[0, T^{*}\right] \times \Omega$, we obtain

$$
\begin{equation*}
\alpha \frac{u^{p_{1}+\alpha-1}}{v^{q_{1}+\beta} w^{\gamma}\left(w^{r_{1}}+c\right)} \leq \alpha \frac{u^{p_{1}+\alpha-1}}{v^{q_{1}+\beta} w^{\gamma+r_{1}}} \leq \beta \frac{u^{p_{2}+\alpha}}{v^{q_{2}+\beta+1} w^{r_{2}+\gamma}}+C\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{\theta} \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha \frac{u^{p_{1}+\alpha-1}}{v^{q_{1}+\beta} w^{\gamma+r_{1}}} \leq \gamma \frac{u^{p_{3}+\alpha}}{w^{r_{3}+1+\gamma} v^{q_{3}+\beta}} C\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{\theta} \tag{3.6}
\end{equation*}
$$

We have

$$
\begin{aligned}
J= & \left(-b_{1} \alpha+b_{2} \beta+b_{3} \gamma\right) L(t)+\alpha \int_{\Omega} \frac{u^{p_{1}+\alpha-1}}{v^{q_{1}+\beta} w^{\gamma}\left(w^{r_{1}}+c\right)} d x \\
& -\beta \int_{\Omega} \frac{u^{p_{2}+\alpha}}{v^{q_{2}+\beta+1} w^{r_{2}+\gamma}} d x-\gamma \int_{\Omega} \frac{u^{p_{3}+\alpha}}{v^{q_{3}+\beta} w^{r_{3}+\gamma+1}} d x+\sigma \alpha \int_{\Omega} \frac{u^{\alpha-1}}{v^{\beta} w^{\gamma}} d x .
\end{aligned}
$$

Using (3.6),

$$
J \leq\left(-b_{1} \alpha+b_{2} \beta+b_{3} \gamma\right) L(t)+\int_{\Omega} C\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{\theta} d x+\alpha \sigma \int_{\Omega} C_{2}\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{(\alpha-1) / \alpha} d x
$$

Applying Hölder's inequality, for all $t \in\left[0, T^{*}\right]$, we obtain

$$
\int_{\Omega} C\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{\theta} d x \leq\left(\int_{\Omega}\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right) d x\right)^{\theta}\left(\int_{\Omega} C^{\frac{1}{1-\theta}} d x\right)^{1-\theta}
$$

Then

$$
\int_{\Omega} C\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{\theta} d x \leq C_{3} L^{\theta}(t), \quad \text { where } C_{3}=C|\Omega|^{1-\theta}
$$

We have

$$
\int_{\Omega} C_{2}\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{(\alpha-1) / \alpha} d x \leq\left(\int_{\Omega}\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right) d x\right)^{(\alpha-1) / \alpha}\left(\int_{\Omega}\left(C_{2}\right)^{\alpha} d x\right)^{1 / \alpha}
$$

Whereupon

$$
\int_{\Omega} C_{2}\left(\frac{u^{\alpha}}{v^{\beta} w^{\gamma}}\right)^{(\alpha-1) / \alpha} d x \leq C_{4} L^{(\alpha-1) / \alpha}(t) \quad \text { where } C_{4}=C_{2}|\Omega|^{1 / \alpha}
$$

We have

$$
J \leq\left(-b_{1} \alpha+b_{2} \beta+b_{3} \gamma\right) L(t)+C_{3} L^{\theta}(t)+\alpha \sigma C_{4} L^{\frac{\alpha-1}{\alpha}}(t)
$$

Whereupon

$$
J \leq\left(-b_{1} \alpha+b_{2} \beta+b_{3} \gamma\right) L(t)+C_{5}\left(L^{\theta}(t)+\alpha \sigma L^{\frac{\alpha-1}{\alpha}}(t)\right)
$$

Thus under conditions and 1.5 , we obtain the differential inequality

$$
L^{\prime}(t) \leq\left(-b_{1} \alpha+b_{2} \beta+b_{3} \gamma\right) L(t)+C_{5}\left(L^{\theta}(t)+\alpha \sigma L^{(\alpha-1) / \alpha}(t)\right)
$$

Since $-b_{1} \alpha+b_{2} \beta+b_{3} \gamma<0$, we obtain

$$
\begin{equation*}
L^{\prime}(t) \leq C_{5} L^{\theta}(t)+C_{5} \alpha \sigma L^{(\alpha-1) / \alpha}(t) \tag{3.7}
\end{equation*}
$$

Using Lemma 3.2, we deduce that $L(t)$ is bounded on $\left(0, T_{\max }\right)$; i.e, $L(t) \leq \gamma_{1}$, where γ_{1} dependents on the L^{∞}-norm of φ_{1}, φ_{2} and φ_{3}.

Proof of Corollary 1.2. Since $L(t)$ is bounded on $\left(0, T_{\max }\right)$ and the functions

$$
\frac{u^{p_{1}}}{v^{q_{1}}\left(w^{r_{1}}+c\right)}, \quad \frac{u^{p_{2}}}{v^{q_{2}} w^{r_{2}}}, \quad \frac{u^{p_{3}}}{v^{q_{3}} w^{r_{3}}}
$$

are in $L^{\infty}\left(\left(0, T_{\max }\right), L^{m}(\Omega)\right)$ for all $m>\frac{N}{2}$, as a consequence of the arguments in Henry 3 and Haraux and Kirane [2, we conclude that the solution of the system (1.1)- 1.6 is global and uniformly bounded on $\Omega \times(0,+\infty)$.

4. Example

In this section we present a particular activator-inhibitor model that illustrates the applicability of Theorem 1.1 and Corollary 1.2 . We assume that all reactions take place in bounded region Ω with smooth boundary $\partial \Omega$.
Example 4.1. The model proposed by Meinhrdt, Koch and Bernasconi 7 to describe a theory of biological pattern formation in plants (Phyllotaxis) is

$$
\begin{gather*}
\frac{\partial u}{\partial t}-a_{1} \frac{\partial^{2} u}{\partial x^{2}}=-b_{1} u+\frac{a^{2}}{v\left(w+k_{u}\right)}+\sigma \\
\frac{\partial v}{\partial t}-a_{2} \frac{\partial^{2} v}{\partial x^{2}}=-b_{2} v+u^{2} \tag{4.1}\\
\frac{\partial w}{\partial t}-a_{3} \frac{\partial^{2} w}{\partial x^{2}}=-b_{3} w+u
\end{gather*}
$$

for $x \in \Omega$ and $t>0$, where u, v, w are the concentrations of the three substances; called activator (u) and inhibitors (v and w).

We claim that (4.1) with boundary conditions (1.2) and non-negative uniformly bounded initial data (1.3) has a global solution. This claim follows from this model being a special case of (1.1), with $p_{1}=2, q_{1}=1, r_{1}=1, p_{2}=2, q_{2}=0, r_{2}=0$, $p_{3}=1, q_{3}=0, r_{3}=0$. Since these indexes satisfy the conditions for global existence: $\frac{p_{1}-1}{p_{2}}<\min \left(\frac{q_{1}}{q_{2}+1}, \frac{r_{1}}{r_{2}}, 1\right)$, we have a global solution.

We remark that system 4.1) exhibits all the essential features of phyllotaxis.

References

[1] S. Abdelmalek, S. Kouachi; A Simple Proof of Sylvester's (Determinants) Identity, App. Math. Scie. Vol. 2. 2008. no 32. p. 1571-1580.
[2] A. Haraux and M. Kirane, Estimations C^{1} pour des problèmes paraboliques semi-linéaires, Ann. Fac. Sci. Toulouse 5 (1983), 265-280.
[3] D. Henry; Geometric Theory of Semi-linear Parabolic Equations. Lecture Notes in Mathematics 840, Springer-Verlag, New-York, 1984.
[4] H. Jiang; Global existence of Solution of an Activator-Inhibitor System, Discrete and continuous Dynamical Systems. V 14, N4 April 2006. p. 737-751.
[5] J. Wu, Y. Li; Global Classical Solution for the Activator-Inhibitor Model. Acta Mathematicae Applicatae Sinica (in Chinese), 1990, 13: 501-505.
[6] A. Gierer, H. A. Meinhardt; Theory of Biological Pattern Formation. Kybernetik, 1972, 12:30-39.
[7] H. Meinhardt, Koch A., G. Bernasconi; Models of pattern formation applied to plant development, Reprint of a chapter that appeared in: Symmetry in Plants (D. Barabe and R. V. Jean, Eds), World Scientific Publishing, Singapore; pp. 723-75.
[8] L. Mingde, C. Shaohua, Q. Yuchun; Boundedness and Blow Up for the general ActivatorInhibitor Model, Acta Mathematicae Applicatae Sinica, vol. 11 No.1. Jan, 1995.
[9] A. Trembley; Mémoires pour servir à l'histoire d'un genre de polypes d'eau douce, a bras en forme de cornes. 1744.
[10] A. M. Turing; The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society (B), 237: 37-72, 1952.
[11] K. Masuda, K. Takahashi; Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation. Japan J. Appl. Math., 4(1): 47-58, 1987.
[12] F. Rothe; Global Solutions of Reaction-Diffusion Equations. Lecture Notes in Mathematics, 1072, Springer-Verlag, Berlin, 1984.

Salem Abdelmalek
Department of Mathematics, College of Arts and Sciences, Yanbu Taibah University, Saudi Arabia.
Department of Mathematics, University of Tebessa 12002 Algeria
E-mail address: sallllm@gmail.com
Hichem Louafi
Faculty of Economics and Management Science, University of Batna, 5000 Algeria
E-mail address: hichemlouafi@gmail.com
Amar Youkana
Department of Mathematics, University of Batna, 5000 Algeria
E-mail address: youkana_amar@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35K57, 92C15.
 Key words and phrases. Gierer-Meinhardt system; Lyapunov functional; activator-inhibitor. (C) 2012 Texas State University - San Marcos.

 Submitted March 22, 2012. Published April 5, 2012.

