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PERIODIC SOLUTIONS FOR NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH IMPULSES ON TIME

SCALES

YONGKUN LI, XIAOYAN DOU, JIANWEN ZHOU

Abstract. Let T be a periodic time scale. We use Krasnoselskii’s fixed point
theorem to show that the neutral functional differential equation with impulses

x∆(t) = −A(t)xσ(t) + g∆(t, x(t− h(t))) + f(t, x(t), x(t− h(t))),

t 6= tj , t ∈ T,

x(t+j ) = x(t−j ) + Ij(x(tj)), j ∈ Z+

has a periodic solution. Under a slightly more stringent conditions we show
that the periodic solution is unique using the contraction mapping principle.

1. Introduction

The study of differential equations on time scales, which has been created in order
to unify the study of differential and difference equations, is an area of mathematics
that has recently gained a lot of attention, moreover, many results on this issue have
been well documented in the monographs [1, 2, 6].

Recently Kaufmann and Raffoul [3] investigated the existence of periodic solu-
tions for the neutral dynamical equation on time scale

x∆(t) = −a(t)xσ(t) + c(t)x∆(t− k) + q(t, x(t), x(t− k)), t ∈ T, (1.1)

where k is a fixed constant if T = R and is a multiple of the period of T if T 6= R.
Differential equations with impulses provide an adequate mathematical model

of many evolutionary process that suddenly change their state at certain moments.
Therefore, the study of this class of dynamical system has gained prominence and
it is rapidly growing field. See, for instance the monographs [4, 5, 8, 9, 10].

In this article, we are concerned with the system

x∆(t) = −A(t)xσ(t) + g∆(t, x(t− h(t))) + f(t, x(t), x(t− h(t))),
t 6= tj , t ∈ T,

x(t+j ) = x(t−j ) + Ij(x(tj)), j ∈ Z+,

(1.2)
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where T is an ω-periodic time scale and 0 ∈ T. For each interval U of R, we denote
by UT = U ∩T, x(t+j ) and x(t−j ) represent the right and the left limit of x(tj) in the
sense of time scales, in addition, if tj is left-scattered, then x(t−j ) = x(tj), A(t) =
diag(ai(t))n×n(ai ∈ C(T,R+) is a diagonal matrix with continuous real-valued
functions as its elements, R+ = {a(t) ∈ C(T,R) : 1 + µ(t)a(t) > 0}, h ∈ C(T,T),
g = (g1, g2, . . . , gn) ∈ C(T×Rn

0 ,Rn
0 ), f = (f1, f2, . . . , fn) ∈ C(T×Rn

0×Rn
0 ,Rn

0 ), Ij =
(I(1)

j , I
(2)
j , . . . , I

(n)
j ) ∈ C(Rn

0 ,Rn
0 ), Rn

0 = {(t1, t2, . . . , tn) : ti ∈ R, ti ≥ 0, i = 1, 2, . . . }
and A(t), h(t), g(t, u(t − h(t))), f(t, u(t), u(t − h(t))) are all ω-periodic functions
respect to t, ω > 0 is a constant. There exists a positive integer p such that
tj+p = tj + ω, Ij+p = Ij , j ∈ Z+, without loss of generality, we also assume that
[0, ω)T ∩ {tj , j ∈ Z+} = {t1, t2, . . . , tp}.

Our main purpose in this paper is using Krasnoselskii’s fixed point theorem to
study the existence of positive periodic solutions to system (1.2).

The organization of this paper is as follows. In Section 2, we introduce some no-
tations and definitions, and state some preliminary results needed in later sections,
then we give the Green’s function of (1.2), which plays an important role in this
paper. In Section 3, we establish our main results for positive periodic solutions by
applying Krasnoselskii’s fixed point theorem, and provide an example to illustrate
the effectiveness of our results obtained in the previous sections.

2. Preliminaries

In this section, we shall recall some basic definitions and lemmas which are used
in what follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward
jump operators σ, ρ : T → T and the graininess µ : T → R+ are defined, respectively,
by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < sup T and σ(t) = t, and right-scattered if σ(t) > t. If T has a
left-scattered maximum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous provided it is continuous at
right-dense point in T and its left-side limits exist at left-dense points in T. If f is
continuous at each right-dense points and each left-dense point, then f is said to
be a continuous function on T. The set of continuous functions f : T → R will be
denoted by C(T).

For x : T → R and t ∈ Tk, we define the delta derivative of x(t), x∆(t), to be
the number (if it exists) with the property that for a given ε > 0, there exists a
neighborhood UT of t such that

|[x(σ(t))− x(s)]− x∆(t)[σ(t)− s]| < ε|σ(t)− s|

for all s ∈ UT.
If x is continuous, then x is right-dense continuous, and if x is delta differentiable

at t, then x is continuous at t.

Remark 2.1. x : T → Rn is delta derivable or right-dense continuous or continuous
if each entry of x is delta derivable or right-dense continuous or continuous.
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Let x be right-dense continuous. If X∆(t) = x(t), then we define the delta
integral by ∫ t

a

x(s)∆s = X(t)−X(a).

Definition 2.2 ([3]). We say that a time scale T is periodic if there exists p > 0
such that if t ∈ T, then t± p ∈ T. For T 6= R, the smallest positive p is called the
period of the time scale.

Let T 6= R be a periodic time scale with period p. We say that the function
f : T → R is periodic with period ω if there exists a natural number n such that
ω = np, f(t + ω) = f(t) for all t ∈ T and ω is the smallest positive number such
that f(t+ ω) = f(t).

If T = R, we say that f is periodic with period ω > 0 if ω is the smallest positive
number such that f(t+ ω) = f(t) for all t ∈ T.

Remark 2.3. According to [3], if T is a periodic time scale with period p, then
σ(t + np) = σ(t) + np and the graininess function µ is a periodic function with
period p.

Definition 2.4 ([2]). An n× n-matrix-valued function A on time scale T is called
regressive (respect to T) provided

I + µ(t)A(t)

is invertible for all t ∈ Tk.

Let A,B : T → Rn×n be two n× n-matrix-valued regressive functions on T, we
define

(A⊕B)(t) := A(t) +B(t) + µ(t)A(t)B(t),

(	A)(t) := −[I + µ(t)A(t)]−1A(t) = −A(t)[I + µ(t)A(t)]−1,

(A(t))	 (B(t)) := (A(t))⊕ (	(B(t))),

for all t ∈ Tk.

Theorem 2.5 ([2]). Let A be an regressive and rd-continuous n× n-matrix-valued
function on T and suppose that f : T → Rn is rd-continuous. Let t0 ∈ T and
y0 ∈ Rn. Then the initial value problem

y∆ = A(t)y + f(t), y(t0) = y0

has a unique solution y : T → Rn.

Definition 2.6 ([2]). Let t0 ∈ T and assume that A is an regressive and rd-
continuous n×n-matrix-valued function. The unique matrix-valued solution of the
initial value problem

x∆(t) = A(t)x(t), x(t0) = I,

where I denotes as usual the n×n-identity matrix, is called the matrix exponential
function (at t0), and it is denoted by eA(·, t0).
Remark 2.7. Assume that A is a constant n× n-matrix. If T = R, then

eA(t, t0) = eA(t−t0),

while if T = Z and I +A is invertible, then

eA(t, t0) = (I +A)(t−t0).
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In the following lemma, we give some properties of the matrix exponential func-
tion.

Lemma 2.8 ([2]). Assume that A,B : T → Rn×n are regressive and rd-continuous
matrix-valued functions on T. Then

(i) e0(t, s) ≡ I and eA(t, t) ≡ I;
(ii) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s);
(iii) e−1

A (t, s) = e∗	A∗(t, s);
(iv) eA(t, s) = e−1

A (s, t) = e∗	A∗(s, t);
(v) eA(t, s)eA(s, r) =A (t, r);
(vi) eA(t, s)eB(t, s) = eA⊕B(t, s), if eA(t, s) and B(t) commute,

where A∗ denotes the conjugate transpose of A.

Lemma 2.9 ([2]). Suppose A and B are regressive matrix-valued functions, then
(i) A∗ is regressive;
(ii) 	A∗ = (	A)∗;
(iii) (A∗)∆ = (A∆)∗ holds for any differential matrix-valued function A.

Next, we state Krasnoselskii’s fixed point theorem which enables us to prove the
existence of a periodic solution of (1.2). For its proof we refer the reader to [7] .

Theorem 2.10 (Krasnoselskii). Let M be a closed convex nonempty subset of Ba-
nach space (B, ‖ · ‖). Suppose that Φ and Ψ map M into B such that

(i) x, y ∈ M imply Φx+ Ψy ∈ M;
(ii) Ψ is compact and continuous;
(iii) Φ is a contraction mapping.

Then there exists z ∈ M with z = Φz + Ψz.

Lemma 2.11. A function x(t) is an ω-periodic solution of (1.2) if and only if x(t)
is an ω-periodic solution of the equation

x(t) = g(t, x(t− h(t))) +
∫ t+ω

t

G(t, s)[f(s, x(s), x(s− h(s)))

− (	A(t))gσ(s, x(s− h(s)))]∆s+
∑

j:tj∈[t,t+ω)

G(t, tj)Ij(x(tj)),

where

G(t, s) = diag(Gi(t, s))n×n, Gi(t, s) =
(
1− e	ai(ω, 0)

)−1
e	ai(t, s)

	A(t) = diag(	ai(t))n×n.

Proof. If x is an ω-periodic solution of (1.2). For any t ∈ T, there exists j ∈ Z
such that tj is the first impulsive point after t. Then for i = 1, 2, . . . , n, xi is an
ω-periodic solution of the equation

x∆
i (t) + ai(t)xσ

i (t) = g∆
i (t, xi(t− h(t))) + fi(t, xi(t), xi(t− h(t))). (2.1)

Multiply both sides of (2.1) by eai(t, 0) and then integrate from t to s ∈ [t, tj ]T, we
obtain ∫ s

t

[eai(τ, 0)xi(τ)]∆∆τ

=
∫ s

t

eai(τ, 0)[g∆
i (τ, xi(τ − h(τ))) + fi(τ, xi(τ), xi(τ − h(τ)))]∆τ,
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or

eai
(s, 0)xi(s) = eai

(t, 0)xi(t) +
∫ s

t

eai
(τ, 0)[g∆

i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ,

then

xi(s) = e	ai(s, t)xi(t) +
∫ s

t

e	ai(s, τ)[g
∆
i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ, i = 1, 2, . . . , n,

hence

xi(tj) = e	ai
(tj , t)xi(t) +

∫ tj

t

e	ai
(tj , τ)[g∆

i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ, i = 1, 2, . . . , n.
(2.2)

Similarly, for s ∈ (tj , tj+1], we have

xi(s) = e	ai
(s, tj)xi(t+j ) +

∫ s

tj

e	ai(s, τ)[g
∆
i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ

= e	ai(s, tj)xi(t−j ) +
∫ s

tj

e	ai(s, τ)[g
∆
i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ + e	ai(s, tj)Iij(xi(tj))

= e	ai(s, tj)xi(tj) +
∫ s

tj

e	ai(s, τ)[g
∆
i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ + e	ai(s, tj)Iij(xi(tj)),

for i = 1, 2, . . . , n. Substituting (2.2) in the above equality, we obtain

xi(s) = e	ai
(s, t)xi(t) +

∫ s

t

e	ai
(s, τ)[g∆

i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ + e	ai(s, tj)Iij(xi(tj)).

Repeating the above process for s ∈ [t, t+ ω]T, we have

xi(s) = e	ai
(s, t)xi(t) +

∫ s

t

e	ai
(s, τ)[g∆

i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ +
∑

j:tj∈[t,t+ω)

e	ai(s, tj)Iij(xi(tj)),

for i = 1, 2, . . . , n. Let s = t+ ω in the above equality, we have

xi(t+ ω) = e	ai(t+ ω, t)xi(t) +
∫ t+ω

t

e	ai(t+ ω, τ)[g∆
i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ +
∑

j:tj∈[t,t+ω)

e	ai(t+ ω, tj)Iij(xi(tj)),
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i = 1, 2, . . . , n. Noticing that xi(t + ω) = xi(t) and e	ai(t + ω, t) = e	ai(ω, 0), we
obtain

(1− e	ai(ω, 0))xi(t) =
∫ t+ω

t

e	ai(t+ ω, τ)[g∆
i (τ, xi(τ − h(τ)))

+ fi(τ, xi(τ), xi(τ − h(τ)))]∆τ

+
∑

j:tj∈[t,t+ω)

e	ai(t+ ω, tj)Iij(xi(tj)),

(2.3)

for i = 1, 2, . . . , n. Notice that∫ t+ω

t

e	ai
(t, τ)g∆

i (τ, xi(τ − h(τ)))∆τ

= e	ai
(t, t+ ω)gi(t+ ω, xi(t+ ω − h(t+ ω)))− e	ai

(t, t)gi(t, xi(t− h(t)))

−
∫ t+ω

t

e	ai
(t, τ)(	ai(t))gσ

i (τ, xi(τ − h(τ)))∆τ

= [e	ai
(0, ω)− 1]gi(t, xi(t− h(t)))

−
∫ t+ω

t

e	ai
(t, τ)(	ai(t))gσ

i (τ, xi(τ − h(τ)))∆τ, i = 1, 2, . . . , n.

(2.4)

It follows from (2.3) and (2.4) that

xi(t) = gi(t, xi(t− h(t))) +
∫ t+ω

t

[1− e	ai
(ω, 0)]−1e	ai(t, τ)

× [fi(τ, xi(τ), xi(τ − h(τ)))− (	ai(t))gσ
i (τ, xi(τ − h(τ)))]∆τ

+
∑

j:tj∈[t,t+ω)

[1− e	ai(ω, 0)]−1e	ai(t, tj)Iij(xi(tj))

= gi(t, xi(t− h(t))) +
∫ t+ω

t

Gi(t, τ)[fi(τ, xi(τ), xi(τ − h(τ)))

− (	ai(t))gσ
i (τ, xi(sτ − h(τ)))]∆τ +

∑
j:tj∈[t,t+ω)

Gi(t, tj)Iij(xi(tj)),

for i = 1, 2, . . . , n. Next, we prove the converse. Let

xi(t) = gi(t, xi(t− h(t))) +
∫ t+ω

t

Gi(t, s)[fi(s, xi(s), xi(s− h(s)))

− (	ai(t))gσ
i (s, xi(s− h(s)))]∆s+

∑
j:tj∈[t,t+ω)

Gi(t, tj)Iij(xi(tj)),

where
Gi(t, s) = (1− e	ai(ω, 0))−1e	ai(t, s), i = 1, 2, . . . , n.

Then if t 6= ti, i ∈ Z+, we have

x∆
i (t)

= g∆
i (t, xi(t− h(t)))

+
∫ t+ω

t

{Gi(t, s)[fi(s, xi(s), xi(s− h(s)))− (	ai(t))gσ
i (s, xi(s− h(s)))]}∆∆s

+Gi(t, t+ ω)[fi(t+ ω, xi(t+ ω), xi(t+ ω − h(t+ ω)))

− (	ai(t))gσ
i (t+ ω, xi(t+ ω − h(t+ ω)))]
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−Gi(t, t)[fi(t, xi(t), xi(t− h(t)))− (	ai(t))gσ
i (t, xi(t− h(t)))]

= g∆
i (t, xi(t− h(t))) + f(t, xi(t), xi(t− h(t)))

+
∫ t+ω

t

{Gi(t, s)[fi(s, xi(s), xi(s− h(s)))

− (	ai(t))gσ
i (s, xi(s− h(s)))]}∆∆s− (	ai(t))gσ

i (t, xi(t− h(t)))

= g∆
i (t, xi(t− h(t))) + fi(t, xi(t), xi(t− h(t)))− ai(t)xσ

i (t)

= −ai(t)xσ
i (t) + g∆

i (t, xi(t− h(t))) + f(t, xi(t), xi(t− h(t))), i = 1, 2, . . . , n.

If t = ti, i ∈ Z+, we obtain

xi(t+i )− x(t−i )

=
∑

j:tj∈[t+i ,t+i +ω)

Gi(ti, tj)Iij(xi(tj))−
∑

j:tj∈[t−i ,t−i +ω)

Gi(ti, tj)Iij(xi(tj))

= Gi(ti, ti + ω)Ii(xi(ti + ω))−Gi(ti, ti)Ii(xi(ti))

= Ii(xi(ti)), i = 1, 2, . . . , n.

So we know that, x is also an ω-periodic solution of (1.2). This completes the
proof. �

Throughout this paper, we make the following assumptions:
(H1) The function g = (g1, g2, . . . , gn) satisfies a Lipschitz condition in x. That

is, for i ∈ {1, 2, . . . , n}, there exists a positive constant Li such that

|gi(t, x)− gi(t, y)| ≤ Li‖x− y‖, for all t ∈ T, x, y ∈ Rn
0 .

(H2) The function f = (f1, f2, . . . , fn) satisfies a Lipschitz condition in x and y.
That is, for i ∈ {1, 2, . . . , n}, there exist positive constants Mi and Ni such
that

|fi(t, x, y)−fi(t, ξ, ζ)| ≤Mi‖x−ξ‖+Ni‖y−ζ‖, for all t ∈ T, (x, y), (ξ, ζ) ∈ Rn
0×Rn

0 .

(H3) For j ∈ Z, Ij = (I(1)
j , I

(2)
j , . . . , I

(n)
j ) satisfies Lipschitz condition. That is,

for i ∈ {1, 2, . . . , n} there exists a positive constant P (i)
j such that

|I(i)
j (x)− I

(i)
j (y)| ≤ P

(i)
j ‖x− y‖, for all x, y ∈ Rn

0 .

To apply Theorem 2.10 to (1.2), we define

PC(T) = {x : T → Rn : x|(tj ,tj+1)T ∈ C(tj , tj+1)T,∃x(t−j ) = x(tj), x(t+j ), j ∈ Z+}.

Consider the Banach space

X = {x(t) ∈ PC(T) : x(t+ ω) = x(t)}

with the norm ‖x‖ = maxt∈[0,ω]T |x(t)|0, where |x(t)|0 = max1≤i≤n |xi(t)|.

Lemma 2.12 ([3]). Let x ∈ X. Then there exists ‖xσ‖, and ‖xσ‖ = ‖x‖.

Noticing that
Gi(t, s) ≤ (1− e	ai(ω, 0))−1 := ηi,

for convenience, we introduce the notation

η̄ := max
1≤i≤n

ηi, γ := max
1≤i≤n

max
t∈[0,ω]T

| 	 ai(t)|, L := max
1≤i≤n

Li, M := max
1≤i≤n

Mi,
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N := max
1≤i≤n

Ni, Pj := max
1≤i≤n

P
(i)
j , P := max

1≤j≤p
Pj .

Define the mapping H : X → X by

(Hϕ)(t) = g(t, ϕ(t− h(t))) +
∫ t+ω

t

G(t, s)[f(s, ϕ(s), ϕ(s− h(s)))

− (	A(t))gσ(s, ϕ(s− h(s)))]∆s+
∑

j:tj∈[t,t+ω)

G(t, tj)Ij(x(tj)).
(2.5)

To apply Theorem 2.10, we need to construct two mappings: one is a contraction
and the other is continuous and compact. We express (2.5) as

(Hϕ)(t) = (Φϕ)(t) + (Ψϕ)(t),

where

(Φϕ)(t) = g(t, ϕ(t− h(t))), (2.6)

(Ψϕ) =
∫ t+ω

t

G(t, s)[f(s, ϕ(s), ϕ(s− h(s)))− (	A(t))gσ(s, ϕ(s− h(s)))]∆s

+
∑

j:tj∈[t,t+ω)

G(t, tj)Ij(ϕ(tj)).

(2.7)

Lemma 2.13. Suppose (H1) holds and L < 1, then Φ : X → X, as defined by
(2.6), is a contraction.

Proof. Trivially, Φ : X → X. For ϕ,ψ ∈ X, we have
‖Φ(ϕ)− Φ(ψ)‖ = max

t∈[0,ω]T
max

1≤i≤n
|gi(t, ϕ(t− h(t)))− gi(t, ψ(t− h(t)))|

≤ L‖ϕ− ψ‖.
(2.8)

Hence Φ defines a contraction mapping with contraction constant L. �

Lemma 2.14. Suppose (H1)–(H3) hold, then Ψ : X → X, as defined by (2.7), is
continuous and compact.

Proof.

(Ψϕ)(t+ ω)

=
∫ t+2ω

t+ω

G(t+ ω, s)[f(s, ϕ(s), ϕ(s− h(s)))− (	A(t+ ω))gσ(s, ϕ(s− h(s)))]∆s

+
∑

j:tj∈[t+ω,t+2ω)

G(t+ ω, tj)Ij(ϕ(tj)).

=
∫ t+ω

t

G(t, u+ ω)[f(u+ ω, ϕ(u+ ω), ϕ(u+ ω − h(u+ ω)))

− (	A(t+ ω))gσ(u+ ω, ϕ(u+ ω − h(u+ ω)))]∆u+
∑

k:tk∈[t,t+ω)

G(t, tk)Ij(ϕ(tk))

=
∫ t+ω

t

G(t, u)[f(u, ϕ(u), ϕ(u− h(u)))

− (	A(t))gσ(u, ϕ(u− h(u)))]∆u+
∑

k:tk∈[t,t+ω)

G(t, tk)Ij(ϕ(tk))
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= (Ψϕ)(t).

That is, Ψ : X → X.
Now, we show that Ψ is continuous. Let ϕ,ψ ∈ X, given ε > 0, take

δ =
ε

η[ω(M +N + Lγ) + P ]

such that for ‖ϕ− ψ‖ ≤ δ. By using the Lipschitz condition, we obtain

‖Ψϕ−Ψψ‖

≤ max
t∈[0,ω]T

|
∫ t+ω

t

G(t, s)[f(s, ϕ(s), ϕ(s− h(s)))− f(s, ψ(s)− ψ(s− (h(s))))]∆s|0

+ max
t∈[0,ω]T

|
∫ t+ω

t

G(t, s)(	A(t))[g(s, ϕ(s− h(s)))− g(s, ψ(s− h(s)))]∆s|0

+ max
t∈[0,ω]T

∑
j:tj∈[t,t+ω)

|G(t, tj)[Ij(ϕ(tj))− Ij(ψ(tj))]|0

≤ η

∫ ω

0

|f(s, ϕ(s), ϕ(s− h(s)))− f(s, ψ(s), ψ(s− h(s)))|0∆s

+ ηγ

∫ ω

0

|g(s, ϕ(s− h(s)))− g(s, ψ(s− h(s)))|0∆s

+ η max
1≤j≤p

|Ij(ϕ(tj))− Ij(ψ(tj))|0

≤ η[ω(M +N + Lγ) + P ]‖ϕ− ψ‖ < ε.

This proves Ψ is continuous. Next, we need to show that Ψ is compact. Consider
the sequence of periodic functions {ϕn} ⊂ X and assume that the sequence is
uniformly bounded. Let Θ > 0 be such that ‖ϕn‖ ≤ Θ, for all n ∈ N . In view of
(H1)–(H3), we arrive at

‖gσ(t, x)‖ ≤ ‖gσ(t, x)− gσ(t, 0)‖+ ‖gσ(t, 0)‖
= max

t∈[0,ω]T
max

1≤i≤n
|gσ

i (t, x)− gσ
i (t, 0)|+ αg

≤ L‖x‖+ αg;

(2.9)

‖f(t, x, y)‖ ≤ ‖f(t, x, y)− f(t, 0, 0)‖+ ‖f(t, 0, 0)‖
= max

t∈[0,ω]T
max

1≤i≤n
|fi(t, x, y)− fi(t, 0, 0)|+ αf

≤ (M +N)‖x‖+ αf ;

(2.10)

‖Ij(x)‖ ≤ ‖Ij(x)− Ij(0)‖+ ‖Ij(0)‖

= max
1≤i≤n

n|I(i)
j (x)− I

(i)
j (0)|+ αIj

≤ Pj‖x‖+ αIj , for j ∈ Z+,

(2.11)
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where αg = ‖gσ(t, 0, 0)‖, αf = ‖f(t, 0, 0)‖ and αIj = ‖Ij(0)‖. Hence,

‖Ψϕn‖

≤ max
t∈[0,ω]T

|
∫ t+ω

t

G(t, s)[f(s, ϕn(s), ϕn(s− h(s)))

− (	A(t))gσ(s, ϕn(s− h(s)))]∆s|0 + max
t∈[0,ω]T

∑
j:tj∈[t,t+ω)

|G(t, tj)Ij(ϕn(tj))|0

≤ η

∫ ω

0

|f(s, ϕn(s), ϕn(s− h(s)))|0∆s+ ηγ

∫ ω

0

|gσ(s, ϕn(s− h(s)))|0∆s

+ η

p∑
j=1

|Ij(ϕn(tj))|0

≤ ηω(M‖ϕn‖+N‖ϕn‖+ αf )

+ ηγω(L‖ϕn‖+ αg) + η( max
1≤j≤p

(Pj‖ϕn‖+ αIj ))

≤ ηωΘ(M +N + γL) + η(ωαf + γωαg + PΘ + α) := D,

(2.12)
where α = max1≤j≤p αIj

. Thus the sequence {Ψϕn} is uniformly bounded. Now,
it can be easily checked that

(Ψϕn)∆(t) = −A(t)(Ψϕn)σ(t) + f(t, ϕn(t), ϕn(t− h(t)))

+
∑

j:tj∈[t,t+ω)

G∆(t, tj)Ij(ϕn(tj)).

Consequently, it follows from (2.10), (2.11), (2.12) and Lemma 2.12 that

|(Ψϕn)∆(t)|0 ≤ ‖A‖‖(Ψϕn)σ‖+ ‖f(t, ϕn(t), ϕn(t− h(t)))‖

+ | 	A(t)|0
∑

j:tj∈[t,t+ω)

|G(t, tj)Ij(ϕn(tj))|0

≤ ‖A‖‖(Ψϕn)‖+ (M +N)‖ϕn‖+ αf + γη

p∑
j=1

|Ij(ϕn(tj))|0

≤ ‖A‖D + (M +N)‖ϕn‖+ αf + γη

p∑
j=1

‖Ij(ϕn)‖

≤ ‖A‖D + (M +N)‖ϕn‖+ αf + γη

p∑
j=1

(Pj‖ϕn‖+ αIj )

≤ ‖A‖D + (M +N)Θ + αf + γη(PΘ + α),

for all n. That is, ‖(Ψϕn)∆‖ ≤ ‖A‖D + (M + N)Θ + αf + γη(PΘ + α), thus
the sequence {Ψϕn} is uniformly bounded and equi-continuous. The Arzela-Ascoli
theorem implies that Ψ is compact. �

3. Main Result

Our main result reads as follows.

Theorem 3.1. Assume that (H1)–(H3) hold and L < 1. Suppose that there is a
positive constant G such that all solutions x(t) of (1.2), x(t) ∈ X, satisfy ‖x‖ ≤ G,
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and the inequality

γωαg + ωαf + α

1/η − ω(γL+M +N)− L/η − P
< G (3.1)

holds. Then (1.2) has an ω-periodic solution.

Proof. Define M = {ϕ ∈ X : ‖ϕ‖ ≤ G}. Then Lemma 2.14 implies Ψ : X → X
and Ψ is compact and continuous. Also, from Lemma 2.13, the mapping Φ is a
contraction and Φ : X → X. We need to show that if ϕ,ψ ∈M , then ‖Φϕ+Ψψ‖ ≤
G. Let ϕ,ψ ∈M with ‖ϕ‖, ‖ψ‖ ≤ G, from (2.9)-(2.11), we have

‖Φϕ+ Ψψ‖ ≤ ‖Φϕ‖+ ‖Ψψ‖
≤ LG+ ηωG(γL+M +N) + η(γωαg + ωαf +GP + α) ≤ G.

Thus Φϕ + Ψψ ∈ M. We see that all the conditions of Krasnoselskii theorem are
satisfied on the set M. Hence there exists a fixed point z in M such that z = Φz+Ψz.
By Lemma 2.11, this fixed point is a solution of (1.2). �

Theorem 3.2. Suppose that (H1)–(H3) hold. If

Υ := η[ω(γL+M +N) + P ] < 1,

then (1.2) has an unique ω-periodic solution.

Proof. For ϕ,ψ ∈ X, we have

‖Hϕ−Hψ‖ ≤ η

∫ ω

0

|f(s, ϕ(s), ϕ(s− h(s)))− f(s, ψ(s), ψ(s− h(s)))|0∆s

+ ηγ

∫ ω

0

|gσ(s, ϕ(s− h(s)))− gσ(s, ψ(s− h(s)))|0∆s

+ η

p∑
j=1

|Ij(ϕ(tj))− Ij(ψ(tj))|0

≤ ηω(M‖ϕ− ψ‖+N‖ϕ− ψ‖) + ηγωL‖ϕ− ψ‖+ ηP‖ϕ− ψ‖
< η[ω(γL+M +N) + P ]‖ϕ− ψ‖
= Υ‖ϕ− ψ‖.

This completes the proof. �

The next corollary shows that G in Theorem 3.1 can be attained.

Corollary 3.3. Consider (1.2) and suppose that (H1)–(H3) hold and L < 1. Set
ρ = mint∈[0,ω]T max1≤i≤n |ai(t)|, if

ρ >
M +N

1− ω(‖A‖+ L+M +N)

holds and defined by

G =
αf + ρω(αf + αg)

ρ− (M +N)− ρω(‖A‖+ L+M +N)

satisfies (3.1), then (1.2) has an ω-periodic solution.
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Proof. Let x ∈ X. Then, for i = 1, 2, . . . , n, integrating (1.2) from 0 to ω, we obtain

xi(ω)− xi(0) = −
∫ ω

0

ai(t)xσ
i (t)∆t+

∫ ω

0

g∆
i (t, xi(t))∆t

+
∫ ω

0

fi(t, xi(t), xi(t− h(t)))∆t.

Then

0 = −
∫ ω

0

ai(t)xσ
i (t)∆t+ gi(ω, xi(ω − h(ω)))− gi(0, xi(0− h(0)))

+
∫ ω

0

fi(t, xi(t), xi(t− h(t)))∆t, i = 1, 2, . . . , n;

that is, ∫ ω

0

ai(t)xσ
i (t)∆t =

∫ ω

0

fi(t, xi(t), xi(t− h(t)))∆t, i = 1, 2, . . . , n.

Claim. There exists t∗ ∈ [0, ω] such that

ωai(t∗)xσ
i (t∗) ≤

∫ ω

0

ai(t)xσ
i (t)∆t.

Suppose the Claim is false. Define Si :=
∫ ω

0
ai(t)xσ

i (t)∆t, i = 1, 2, . . . , n. Then
there exists εi > 0 such that

ωai(t)xσ
i (t) > Si + εi

for all t ∈ [0, ω]. So

Si :=
∫ ω

0

ai(t)xσ
i (t)∆t >

1
ω

∫ ω

0

(Si + εi)∆t = Si + εi, i = 1, 2, . . . , n,

which is a contradiction.
As a consequence of the claim, we have

ω|A(t∗)|0|xσ(t∗)|0 ≤
∫ ω

0

|f(t, x(t), x(t− h(t)))|0∆t

≤
∫ ω

0

(M‖x‖+N‖x‖+ αf )∆t.

So,
|A(t∗)|0|xσ(t∗)|0 ≤ (M +N)‖x‖+ αf ,

which implies

|xσ(t∗)|0 ≤
(M +N)‖x‖+ αf

|A(t∗)|0
≤ (M +N)‖x‖+ αf

ρ
.

Since for all t ∈ [0, ω]T,

xσ(t) = xσ(t∗) +
∫ t

t∗
x∆(σ(s))∆s,

it follows that

|xσ(t)|0 ≤ |xσ(t∗)|0 +
∫ t

0

|x∆(σ(s))|0∆s

≤ (M +N)‖x‖+ αf

ρ
+ ω‖x∆‖.
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This implies

‖x‖ ≤ 1
ρ
(M +N)‖x‖+

αf

ρ
+ ω‖x∆‖. (3.2)

From (1.2), we have

‖x∆‖ ≤ ‖A‖‖x‖+ L‖x‖+ αg + (M +N)‖x‖+ αf . (3.3)

Substituting (3.3) in (3.2) yields

‖x‖ ≤ 1
ρ
(M +N)‖x‖+

αf

ρ
+ ω

[
(‖A‖+ L+M +N)‖x‖+ αg + αf

]
.

Then

‖x‖ ≤ αf + ρω(αg + αf )
ρ− (M +N)− ρω(‖A‖+ L+M +N)

= G.

Thus, for all x(t) ∈ X, ‖x‖ ≤ G. Define M = {ϕ ∈ X : ‖ϕ‖ ≤ G}. Then by
Theorem 3.1, Equation (1.2) has an ω-periodic solution. The proof is complete. �

4. Example

On time scale T =
⋃∞

k=−∞[kπ, kπ+ π
2 ], consider the neutral dynamical equation,

with period ω = π,

x∆(t) = −A(t)xσ(t) + g∆(t, x(t− h(t))) + f(t, x(t), x(t− h(t))), t 6= tj , t ∈ T,
x(t+j ) = x(t−j ) + Ij(x(tj)), j ∈ Z+,

(4.1)
where

A(t) =
(

0.001 sin 2t 0
0 0.003 cos 2t

)
, g1(t, u) = g2(t, u) = 0.0002| sin t| cosu,

f1(t, u, v) = 0.0002| sin t|(sinu+ cos v), f2(t, u, v) = 0.0003| cos t|(sinu+ cos v),

I1
j (u) = I2

j (u) = 0.0009
(
u
u

)
, j ∈ Z+,

t1 =
π

6
, t2 =

π

4
, tj+2 = tj + π, j ∈ Z+.

By simple calculation, we have L = 0.0002, M = 0.0003, N = 0.0003, P = 0.0009,
αf = 0.0003, αg = 0.0002, α = 0, P = 0.0009, ‖A‖ = 0.003. For t ∈ T, if t 6= kπ+ π

2 ,
we have µ(t) = 0 and if t = kπ + π

2 , we have µ(t) = π.
When µ(t) = 0, we have 	ai = −ai, then

e	ai(ω, 0) = e−ai(π, 0) ≤ e0.003(π, 0), i = 1, 2.

When µ(t) = π, we have 	ai = − ai

1+πai
, then

e	ai
(ω, 0) ≤ e0.003(π, 0), i = 1, 2

and η̄ = 1
0.0094 , γ ' 0.003. It is easy to show that all conditions in Theorem 3.1

and Corollary 3.1 are satisfied. Therefore, (4.1) has a π-periodic solution.
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