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HARNACK INEQUALITIES, A PRIORI ESTIMATES, AND
SUFFICIENT STATISTICS FOR NONLINEAR ELLIPTIC

SYSTEMS IN QUANTUM MECHANICS

CARLOS C. ARANDA

Abstract. In this article, we consider systems of nonlinear elliptic problems
and their relations with minimal sufficient statistics, which is a fundamental
tool in classics statistics. This allows us to introduce new experimental tools
in quantum physics.

1. The Hamiltonian operator and the Schrödinger equation

In [7] it is stated that “The wave function Ψ completely determines the states of a
physical system in quantum mechanics”. Thus we let q represent the coordinates of
a particle and |Ψ|2dq the probability that a measurement performed on the system
will find the values of the coordinates to be in the element dq of the space. The
Hamilton equation is

ı~
dΨ
dt

= ĤΨ, (1.1)

where Ĥ is the linear operator given by

Ĥ = −1
2

~2
∑

a

∆a

ma
+ U(r1, r2, . . . ), (1.2)

where a is the number of the particle, ∆a is the Laplacian operator in which the
differentiation is with respect to the coordinate of the ath particle and U(r1, r2, . . . )
is the potential energy of the interaction in function only of the coordinates of the
particle. The eigenvalue equation for one particle

Ĥψ = Eψ,

represents the eigenvalue E energy and ψ represents the stationary waves. The
stationary wave corresponding to the smallest energy is called the normal or ground
state of the system. Finally an arbitrary wave function has a expansion given by

Ψ =
∑

n

ane
− ı

~ Entψn(q).
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2. A review on statistics

In this section, we recall some basics on mathematical statistics. Our main goal
is to join theories that usually are studied in a no related approach.

Definition 2.1. The characteristic S1 is subordinate to S2 if S1 is a measurable
function of S2 : S1 = ϕ(S2). In the σ-algebra representation the statistic S1 is
subordinate to S2 if σ(S1) ⊆ σ(S2), where σ(S) is the σ-algebra generated by the
measurable function S : (Ω, σ, Pθ) → R. We assume that there exists a measure
P such that dPθ

dP the Radon Nykodim derivative is well defined for all θ in the
parameter space Θ.

Definition 2.2. If S1 is subordinate to S2 and S2 is subordinate to S1, we denom-
inate this statistics equivalents.

Definition 2.3 (Fisher [8], Neyman [20] and Zacks [25]). The statistic S is suf-
ficient if for any measurable function T : (Ω, σ) → R, the conditional distribution
Pθ(T ∈ B|σ(S)) is independent of θ.

Definition 2.4. The sufficient statistic S0 is a minimal statistic if it is subordinate
to any S sufficient statistic.

Theorem 2.5 (Lehmann-Scheffe [14]). The σ-algebra U = σ(r(x, θ) ≡ fθ

fP
(x) =

dPθ

dP (x), θ ∈ Θ) is a minimal sufficient σ-algebra.

Remark 2.6. If we define S(x) such that S(x) = S(x0) if and only if the relation
h(x, x0) = fθ(x)

fθ(x0)
no depend on θ. Then S is a sufficient minimal statistic.

Theorem 2.7. (Blackwell [3], Rao [21]) If we assume Eθ(T ) =
∫
T (x)fθ(x)dP = θ,

θ ∈ Θ. Then ∫
(E(T |S)(x)− θ)2fθ(x)dP ≤

∫
(T (x)− θ)2fθ(x)dP,

for all θ ∈ Θ.

3. A priori estimates

This section is concerned with the study of a priori estimates for the equation

−∆u = f(x, u,∇u), u(x) ≥ 0, x ∈ Ω ⊂ RN , (3.1)

and the fully coupled systems

−∆u = f1(x, u, v),

−∆v = f2(x, u, v),

u(x), v(x) ≥ 0, x ∈ Ω ⊂ RN ,

where Ω is a open set in RN , N > 2. A priori estimate means: we obtain bounds
independent of any given solution and any given boundary condition. This is central
because in Schrödinger equations we have no boundary and therefore for a statistical
analysis we need this class of a priori estimates. Another central topic in this article
is the derivation of weakly coupled Harnack inequalities for fully coupled systems.
In [7] it is stated that
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If the integral |Ψ|2 converges, then by choosing an appropriate con-
stant coefficient the function ψ can always be, as we say, normalized.
However, we shall see later that the integral of |Ψ|2 may diverge,
and then ψ cannot be normalized by the condition. . . In such cases
|Ψ|2 does not, of course, determine the absolute values of the prob-
ability of the coordinates, but the ratio of the values of |Ψ|2 at
two different points of configuration space determines the relative
probability of the corresponding values of the coordinates.

Existence of a priori estimates for the equation (3.1) is a question with few known
results, moreover it seems there are not previous results for systems. In [10] the au-
thors obtain a priori estimates for (3.1) with f(x, u,∇u) = ur, in the neighborhood
of an isolated singularity. In [6] we have the same result:

Theorem 3.1 (Dancer [6]). Assume N > 2 and 1 < r < N+2
N−2 . Let u be a non-

negative solution of the equation

−∆u = ur,

in a domain Ω 6≡ RN . Then for every x ∈ Ω we have

u(x) ≤ C(N, p)[dist(x, ∂Ω)]−2/(r−1).

In particular, u is bounded on any compact subset Ω′ of Ω, the bound being in-
dependent of the solution. The range 1 < r < N+2

N−2 and the exponent are both
optimal.

Now, we recall two results.

Theorem 3.2 (Ladyzhenskaya and Ural’tseva [13]). Suppose that u(x) is a gener-
alized solution in W 1,2(Ω) of the equation

∂

∂xi
(aijuxj

+ aiu) + biuxi
+ au = f +

∂fi

∂xi
,

with the conditions

ν

N∑
i=1

ξ2i ≤ aijξiξj ≤ µ

N∑
i=1

ξ2i , ν > 0,

‖
N∑

i=1

a2
i ,

N∑
i=1

b2i , a‖
L

q
2 (Ω)

≤ µ, q > N.

Then, for an arbitrary Ω′ ⊂ Ω, the quantity ess,maxΩ′ |u| is finite and bounded
from above by a constant depending only on ν, µ, q, ‖u‖L2(Ω) and the distance from
Ω′ to ∂Ω.

Remark 3.3. The conditions in Theorem 3.2 are necessary and sufficient for
uniqueness “in the small”, and more important in our context, to have bounded
solutions [13].

Lemma 3.4 (Bidaut Veron and Pohozaev [1]). If u is a non-negative weak solution
of

−∆u ≥ C1u
r in Ω, (3.2)

where Ω is an open set in RN . Then∫
BR

uγdx ≤ C(r, γ,N,C1)RN− 2γ
r−1 , (3.3)
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where B2R ⊂ Ω is a ball of radius 2R and r − 1 < γ < r.

A careful examination of Theorem 3.2 and Lemma 3.4 suggest that it is possible
to obtain a priori estimates for a class of nonlinear elliptic problems with convection
terms and optimal perturbations. Our first result is as follows.

Theorem 3.5. If u is a non-negative W 1,2(Ω) solution of the equation

−∆u = du+ f(u) +G(∇u) + g in Ω ⊂ RN , (3.4)

where
(i) d, g ∈ L

q
2 (Ω), q > N , d ≥ 0 and g ≥ 0.

(ii) 0 ≤ G(∇u) ≤ C|∇u|+ C0.
(iii) C1u

r ≤ f(u) ≤ C2u
r, 1 < r < N

N−2 = 2∗ − 1.
Then for any ball B3R(y) ⊂ Ω,

sup
BR(y)

{u+ 1} ≤ H1(R), (3.5)∫
BR(y)

|∇u|2dx ≤ H2(R), (3.6)

where limR↘0Hi(R) = ∞, for i = 1, 2 and the dependence is given by

H1(R) = H1(R, ‖d, g‖L
q/2
loc (Ω)

, C, C0, C1, C2),

H2(R) = H2(R,dist(BR(y), ∂Ω), ‖d, g‖
L

q/2
loc (Ω)

, C, C0, C1, C2).

Remark 3.6. In [22, Lemma 2.4] is stated that: if −∆u ≥ ur in Ω where u ≥ 0 and
r > 1, then

∫
BR

|∇u|µdx ≤ C for all µ ∈ (0, 2r
r+1 ). This result does not cover our

estimate (3.6). Moreover in [22], there are not optimal condition like d, g ∈ Lq/2(Ω)
on the perturbation.

Remark 3.7. Matukuma [17] proposed the equation

−∆u =
ur

1 + |x|2
in R3 (3.7)

where u is the gravity potential and ρ = (2π)−1(1 + |x|2)−1ur is the density, to
study the gravitational potential u of a globular cluster of stars. For the same
problem Hénon [12] suggested

−∆u = |x|lur in Ω ⊂ R3. (3.8)

Our work is well suited to establish bounds for the gravitational potential u, par-
ticularly in the presence of “black holes”, that means situations where u becomes
singular, Ω is punctured or if in (3.8) we have l < 0. For example we analyze
equation (3.8): if 0 ∈ Ω, 1 < sq < 3 and 0 < −l s

s−1
q
2 < 1 for s > 1, q > 3,

using the Young inequality ab ≤ aq

q + q−1
q b

q
q−1 , we deduce that the problem (3.8)

has not “black holes” solutions. Black holes solutions means that the gravitational
potential of the cluster behaves like 1

r (r = |x|) near the center. In 1972 Peebles
gives for the first time a derivation of the steady state distribution of the star near
a massive collapsed object, the same year Peebles motivated the observer and theo-
retician with the title of his paper “Black holes are where you find them”([15]-[16].
The question of the existence of black hole in a globular cluster is still open (1995).
Core collapse does occur, for instance using Hubble Space Telescope, Bendinelli
documented the first detection of a collapsed cluster in M31 [2]
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Tous ces corps devenus invisibles son à le même place où ils on été
observés, puisqu’ils n’ en ont point changé, durant leur apparation
il existe donc dans les spaces célestes, des corps obscurs aussi con-
sidérables et peut être en aussi grand nombre que les etoiles. Un
astre lumineux de meme densite que la terre, et dont le diametre
serait deux cents cinquante fois plus grand que celui du soleil, ne
laisserant en vertu de son attraction parvenr aucun de ses rayons
jusqu’à nous, il es done possible que les plus grands corps lumineux
de l’univers, soient par cela même invisibles. Une étoile qui sans
être de cette grandeur, surpaserait considerablement le soileil, af-
faiblirait sensiblemente la v̂ıtesse de la lumiere et augmenterait ainsi
l’étendue de la lumière.

This quotation belongs to Pierre Simon de Laplace in Exposition du systeme du
Monde 1796, second volume p348.

Harnack inequality for weak solutions is a classical property in the study of linear
elliptic equations [19]. For nonlinear elliptic equations, we have

Theorem 3.8 (Schoen [23]). For N ≥ 3, let B3R be a ball of radius 3R in RN ,
and let u ∈ C2(B3R) be a positive solution of

−∆u = N(N − 2)u
N+2
N−2 .

Then
(max

BR

u)(min
B2R

u) ≤ C(N)R2−N .

For the p-Laplacian operator, we have

Definition 3.9 (Serrin and Zou [22]). We say that f is subcritical if N > p and
there exists a number 1 < α < p∗ = Np

N−p such that

f(u) ≥ 0, (α− 1)f(u)− uf ′(u) ≥ 0, for u ≥ 0.

Note in particular that the function f(u) = ur−1 is subcritical when 1 < r < p∗.
Let Ω ∈ RN and assume N > p. Let u be a non-negative weak solution of the
two-sided differential inequality

ur−1 − up−1 ≤ −∆pu ≤ Λ(ur−1 + 1), x ∈ Ω, (3.9)

where Λ > 1 and p < r < p∗ = p(N−1)
N−p . Let u be a solution of

−∆pu = f(u), u ≥ 0, x ∈ Ω. (3.10)

Suppose that f is subcritical and that, for some Λ > 1 and r > p, it satisfies the
power-like condition

ur−1 ≤ f(u) ≤ Λ(ur−1 + 1). (3.11)

Theorem 3.10 (Serrin and Zou [22]). Let R and x0 be such that BR ≡ BR(x0) ⊂
B2R(x0) ⊂ Ω, and assume N > p. Then we have the following conclusions.

(a) Let u be a non-negative weak solution of the differential inequality (3.9).
Then for every R0 > 0 there exists C = C(N, p, r,Λ, R0) > 0 such that

sup
BR

u ≤ C inf
BR

u, (3.12)

provided R ≤ R0. If the terms up−1 and 1 are dropped in (3.9), then (3.12) holds
with C = C(N, p, r,Λ) and with no further restriction on R.
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(b) Let u be a solution of (3.10), where f is subcritical. Suppose either N = 2 and
p > 1

4 (1+
√

17) , or N ∈ [3, 2p), p > 3
2 . Then (3.12) holds with C = C(N, p, α) > 0.

(c) Let u be a solution of (3.10), where f is subcritical, and suppose that (3.11)
is satisfied for some r > p. Then (3.12) holds with C = C(N, p, r, α,Λ).

The second statement of this work is as follows.

Theorem 3.11. If u is a non-negative W 1,2(Ω) solution of the equation

−∆u = du+ f(u) +G(∇u) + g in Ω ⊂ RN , (3.13)

where:
(i) d, g ∈ L

q
2 (Ω), q > N and d, g ≥ 0.

(ii) 0 ≤ G(∇u) ≤ C|∇u|+ C0.
(iii) C1u

r ≤ f(u) ≤ C2u
r, 1 < r < N

N−2 .
Then for any ball B3R(y) ⊂ Ω

sup
BR(y)

{u+ 1} ≤ C(R) inf
BR(y)

{u+ 1},

where the dependence is given by

C(R) = C(R, ‖d, g‖
L

q/2
loc (Ω)

, C, C0, C1, C2).

The above theorem is valid for f(u) ≡ 0. This statement of classical Harnack
inequality is different from the usual ones where d ∈ L∞(Ω) and generalizes the
usual Harnack inequality for homogeneous elliptic equations for the nonhomoge-
neous situation. The reader can see that in [11]. With the Moser iteration technique
developed in this paper, we obtain a priori estimates for a class of fully coupled
systems:

Theorem 3.12. If u,v are W 1,2(Ω) non-negative solutions of

−∆u = d1u+ f1,1(u) + f1,2(v) + g1 in Ω ⊂ RN , (3.14)

−∆v = d2v + f2,1(u) + f2,2(v) + g2 in Ω ⊂ RN , , (3.15)

where:
(i) C1,i,ju

r ≤ fi,j(u) ≤ C2,i,ju
r for all i, j = 1, 2 and 1 < r < N

N−2 .
(ii) 0 ≤ gi, di ∈ L

q
2 (Ω), for all i = 1, 2 and q > N .

Then for any ball B3R(y) ⊂ Ω,

sup
BR(y)

{u+ v + 1} ≤ H(R), (3.16)

where limR↘0H(R) = ∞ and the dependence is given by

H(R) = H(R, ‖di, gi‖L
q/2
loc (Ω)

, C1,i,j , C2,i,j).

From this last result, we infer the following result.

Theorem 3.13. If ui, i = 1, . . . , n are W 1,2(Ω) non-negative solutions of

−∆u1 = d1u1 + f1,1(u1) + f1,2(u2) + · · ·+ g1 in Ω ⊂ RN ,

−∆u2 = d2u2 + f2,1(u1) + f2,2(u2) + · · ·+ g2 in Ω ⊂ RN ,

. . . ,

−∆un = dnu2 + f2,1(u1) + f2,2(u2) + · · ·+ gn in Ω ⊂ RN ,

(3.17)

where:
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(i) C1,i,ju
r ≤ fi,j(u) ≤ C2,i,ju

r for all i, j = 1, 2 . . . n and 1 < r < N
N−2 .

(ii) 0 ≤ gi, di ∈ L
q
2 (Ω), for all i = 1, 2 and q > N .

Then for any ball B3R(y) ⊂ Ω

sup
BR(y)

{1 +
n∑

i=1

ui} ≤ H(R),

where limR↘0H(R) = ∞ and the dependence is given by

H(R) = H(R, ‖di, gi‖L
q/2
loc (Ω)

, C1,i,j , C2,i,j).

To our knowledge, for fully coupled elliptic systems, one of the most representa-
tive results on Harnack inequality is as follows.

Theorem 3.14 (Busca and Sirakov [4]). Let us consider the problem

−∆u = f1(u, v) in Ω, (3.18)

−∆v = f2(u, v) in Ω. (3.19)

Assume f1(u, v), f2(u, v) are globally Lipschitz continuous functions, with Lipschitz
constant A, which satisfy the cooperativeness assumption:

∂f1
∂v

≥ 0,
∂f2
∂u

≥ 0.

Let (u, v) be a nonnegative solution of (3.18), 3.19 in Ω. We suppose that the system
is fully coupled, in the sense that f1(0, v) > 0 for all v > 0, and f2(u, 0) > 0 for
u > 0. Then for any compact subset K of Ω there exists a function Φ(t) (depending
on A,K and Ω), continuous on [0,∞), such that Φ(0) = 0 and

supmax{u, v} ≤ Φ( inf
x∈K

min{u, v}). (3.20)

In particular, if any of u, v vanishes at one point in Ω then both u and v vanish
identically in Ω

We call (3.20) a fully coupled Harnack inequality because in that inequality both
u and v appear. In this frame, we derive weakly coupled Harnack inequalities, where
global Lipschitz continuity is not assumed. The authors are not aware of a more
advanced result in this direction.

Theorem 3.15. If u, v ∈W 1,2(Ω) are non-negative solutions of

−∆u = d1u+ f1,1(u) + f1,2(v) + g1 in Ω ⊂ RN , (3.21)

−∆v = d2v + f2,1(u) + f2,2(v) + g2 in Ω ⊂ RN , (3.22)

with the same conditions as in Theorem 3.12. Then for any ball B3R(y) ⊂ Ω,

sup
BR(y)

{u+ 1} ≤ C1(R) inf
BR(y)

{u+ 1}, (3.23)

sup
BR(y)

{v + 1} ≤ C2(R) inf
BR(y)

{v + 1}, (3.24)

where the dependence is given by

C1(R) = C1(R, ‖di, gi‖L
q/2
loc (Ω)

, C1,i,j , C2,i,j),

C2(R) = C2(R, ‖di, gi‖L
q/2
loc (Ω)

, C1,i,j , C2,i,j).
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We call (3.23), (3.24) a weakly coupled Harnack inequalities because the coupling
is located in C1(R) and C2(R). This is a new phenomenon: the fully coupled
equation (3.21), 3.22 satisfies a weakly coupled Harnack inequalities. A nice survey
is [9] for more details on elliptics systems, critical hyperbola, hamiltonian elliptic
systems etc.

Using the integral relations method to the problem of local properties of weak
solutions (see [11, Theorem 8.17 section 8.6]), we have the following result.

Theorem 3.16 (Morrey [18], Stampacchia [24]). If u is a W 1,2(Ω) solution of the
problem

−∆u+ cu = g in Ω, (3.25)

where c ∈ L∞(Ω), g ∈ L
q
2 (Ω) for some q > N . Then we have, for any ball

B2R(y) ⊂ Ω and p > 1:

sup
BR(y)

u ≤ C(R−
N
p ‖u+‖Lp(B2R(y)) +R2− 2N

q ‖g‖
L

q
2 (Ω)

), (3.26)

where C = C(N, ‖c‖L∞(Ω)R, q, p).

Therefore, if we want to establish a priori estimates for the simplified problem
−∆u = ur + g, u ≥ 0 in Ω, this is equivalent to (3.25) with c = −ur−1, but we
cannot apply directly Theorem 3.16 because it is not ensured ur−1 ∈ L∞(Ω). With
this in mind, we prove the following theorem.

Theorem 3.17. If u is a non-negative W 1,2(Ω) solution of

−∆u = cu+ g +G(|∇u|) in Ω, (3.27)

where Ω is a open set in RN , c and g belongs to L
q
2 (Ω), q > N , |G(∇u)| ≤

C|∇u|+ C0. Then, for any ball B 3R
2

(y) ⊂ Ω,

sup
BR(y)

{u+ 1} ≤
( ∫

B 3R
2

(y)

|u+ 1|pdx
)1/p

CR−N/(2p)(1 +
R

2
)N/(2p), (3.28)

where

C = C(p,N) exp
∞∑

s=0

log max{C
N

q−N
s , Cs}

χsp
,

Cs = 2
(

max{ (χsp)2

2|χsp− 1|
max{‖b̂s‖L

q
2 (B(1+2−s−1)R)

,
16

|χsp− 1|
}, 1}

)1/2

,

b̂s = |c|+ |g|+ 4C2

|χsp|
+ C0,

and p ∈ R>0 − {χ−s}∞s=0, χ = N
N−2 . Moreover for p < 0, with the same constants,

inf
BR

{u+ 1} ≥
( ∫

B 3R
2

(y)

|u+ 1|pdx
)1/p

CR−N/(2p)(1 +
R

2
)N/(2p). (3.29)

Our main results - Theorems 3.5, 3.11, 3.12 and 3.15 - follow by combining
Theorem 3.17 and Lemma 3.4. In section 5, we collect some preliminary results:
we recall a lemma essentially proved in [1] and we state variants of classical Lemmas
by Morrey and Trudinger (see [11]).
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4. The statistical procedure

First at all, we remember the fundamentals of quantum mechanics:
Postulate 1. For all time t a quantum system is determinated for a vector |ψ(t)〉 of
states belonging to E the space of quantum states.
Postulate 2. For all measurable value A, it is possible to built an operator A with
domain E . This operator A is an observable.
Postulate 3. The eigenvalues of the observable A are the unique measurable amount.
Postulate 4. The Hamiltonian operator Ĥ(t) of a quantum system is the observ-
able associated to the total energy of the system. The vector of state is given by

Ĥ(t)|ψ(t)〉 = i~
d

dt
|ψ(t)〉.

This section es dedicated to the construction of statistical estimators for high
dimensional problems in quantum physics. We consider another real problem: fi-
nancial markets. We deal with the problem of the estimate the eigenvalue energy
E. We begin with a unique particle because this problem is easy to understood in
this frame. The equation

−∆uσ,ϕ + U(r)uσ,ϕ = Eu in Ω ⊂ R3,

(
∂uσ,ϕ

∂n
+ σ(x)uσ,ϕ)|∂Ω = ϕ(x),

(4.1)

where 0 ≤ σ(x) ∈ C(∂Ω) has a unique solution in a classical weak representation.
We recall that the boundary condition represents combinations of absorption and
reflection of quantum particles. Moreover because the Hamiltonian is a linear op-
erator ϕ(x) ≡ 0, we are restricted to the class uσ = uσ,ϕ≡0. The corresponding
eigenvalue energy equation is

−∆ψ + U(r)ψ = Eψ in Ω ⊂ R3,

(
∂ψ

∂n
+ σ(x)ψ)|∂Ω = 0.

(4.2)

In our quantum representation qdq = udPσ = uσ(x)R
Ω uσ(x)dx

dx.

4.1. Quantum mechanics and minimal statistics. We present here the con-
nection on quantum mechanics and minimal statistics. First at all, we note that

Eσ(X1) =
∫

R
x1

{∫
Ω

T
X1=x1

uσ(x1, x2, x3)∫
Ω
uσ(x)dx

dx2dx3

}
dx1 = θ1(σ),

Eσ(X2) =
∫

R
x2

{∫
Ω

T
X2=x2

uσ(x1, x2, x3)∫
Ω
uσ(x)dx

dx1dx3

}
dx2 = θ1(σ),

Eσ(X3) =
∫

R
x3

{∫
Ω

T
X3=x3

uσ(x1, x2, x3)∫
Ω
uσ(x)dx

dx1dx2

}
dx3 = θ3(σ).

Therefore, we use Theorems 2.5, 2.7 and Remark 2.6 to obtain unbiased estimators
of minimum variance. This connection allow to use all the classical mathemati-
cal statistical procedure like the Bayesian approach on the parameter space. Of
fundamental importance is our a priori estimates without dependence on the dis-
tance to the boundary. In fact this provides a law of nature on the energy level on
non-relativistic quantum mechanics.
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Using Theorem 3.5, we obtain a quasilinear version of quantum mechanics, with
unbiased estimators of minimum variance and the Bayesian approach on the pa-
rameter space. This procedure es new in quantum mechanics because usually de
hamiltonian linear operator Ĥ is perturbed with another linear operator, in our
setting the perturbation is nonlinear.

If r ∈ (1, 1+ε) then equation 3.4 in Theorem 3.5 has an almost linear behaviour,
moreover is a good aproximation for equation 1.2 for a = 1. If r ≤ N

N−2 = 2∗ − 1,
we can use our results to derive a priori bounds for the equations 3.7 and 3.8 and
the corresponding statistical tools.

In section 5, we calculate all the constants because this is fundamental for nu-
merical computations.

4.2. High dimensional problems in quantum mechanics and in financial
mathematics. This is a central problem in mathematics. Again our a priori es-
timates without dependence on the distance to the boundary plays a central role.
The Schrödinger equation

ı~
dΨ
dt

= −1
2

~2
∑

a

∆a

ma
+ U(r1, r2, . . . ), (4.3)

is in real situations a high dimension problem because a is a usually big number.
The stationary equation in the weak formulation for the eigenvalue energy and the
stationary wave for the particle a is given by

− 1
2

~2 ∆a

ma
ψa + U(r1, r2, . . . )ψa = Eψa, in Ω ⊆ R3, (4.4)

but this equation was studied mainly in the last subsection. The potential U has
a big number of terms, this term when it is formulated in a weak sense, it is calcu-
lated with great accuracy using modern Montecarlo methods. Using Theorem 3.13,
we derive a quasilinear quantum statistic theory with the corresponding unbiased
estimators of minimum variance and the Bayesian approach.

5. Local properties of weak solutions of nonlinear elliptic problems
with gradient term

Proof of Lemma 3.4. Let η̂ be a radially symmetric C2 cut-off function on B2(0)
that is

(a) η̂(x) = 1 for |x| ≤ 1.
(b) η̂ has compact support in B2(0) and 0 ≤ η̂ ≤ 1.
(c) |∇η̂| ≤ 2.

We consider η(x) = η̂( x
R ). We use the classical test function ηkuβ . From −∆u ≥

C1u
r, taking β < 0, we have

k

∫
ηk−1uβ∇η · ∇udx+ β

∫
ηkuβ−1|∇u|2dx ≥ C1

∫
ηkuβ+rdx.

Therefore,

C1

∫
ηkuβ+rdx+ |β|

∫
ηkuβ−1|∇u|2dx ≤ k

∫
ηk−1uβ∇η · ∇u dx. (5.1)

Observe that

uβ∇ηk · ∇u ≤ ηk 2k
Rη

|∇u|uβ .
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Using uβ = u
β−1

2 u
β+1
2 , ηk−1 = η

k−2
2 ηk/2 and the Young inequality ab ≤ εa2+ε−1b2,

a, b ≥ 0, we compute

ηk−1 2k
R
|∇u|uβ = (ηk/2u

β−1
2 |∇u|)(2k

R
η

k−2
2 u

β+1
2 )

≤ ε(ηk/2u
β−1

2 |∇u|)2 + ε−1(
2k
R
η

k−2
2 u

β+1
2 )2

= ε(ηkuβ−1|∇u|2) + ε−1(
4k2

R2
ηk−2uβ+1).

If we choose ε = |β|
2 using (5.1), we find

|β|
2

∫
ηkuβ−1|∇u|2dx+ C1

∫
ηkuβ+r ≤ ε−14k2

R2

∫
ηk−2uβ+1dx. (5.2)

With the assumption γ > r − 1, we fix β = γ − r and k = 2γ
r−1 . Therefore

ηk−2uβ+1 = η
2γ

r−1−2uγ−r+1 = η2 γ−r+1
r−1 uγ−r+1.

Using Young’s inequality ab ≤ ε0a
q + ε

1
1−q

0 b
q

q−1 with q = γ
γ−r+1 (and consequently

q
q−1 = γ

r−1 ), we have

R−2ηk−2uβ+1 = η2 γ−r+1
r−1 uγ−r+1 ≤ ε0η

2γ
r−1uγ + ε

1
1−q

0 R−
2γ

r−1 .

It follows that∫
R−2ηk−2uβ+1dx ≤ ε0

∫
η

2γ
r−1uγdx+ ε

1
1−q

0 R−
2γ

r−1

∫
B2R

dx

= ε0

∫
ηkuγdx+ ε

1
1−q

0 ωNR
N− 2γ

r−1 ,

where ωN is the volume of the unit ball in RN . From (5.2), we find

C1

∫
ηkuβ+r ≤ ε−14k2

∫
R−2ηk−2uβ+1dx

≤ ε−14k2ε0

∫
ηkuγdx+ ε−14k2ε

1
1−q

0 ωNR
N− 2γ

r−1 .

Choosing

ε−14k2ε0 =
2

r − γ
4(

2γ
r − 1

)2ε0 =
C1

2
.

We find
C1

2

∫
BR

uγdx ≤
∫
ηkuγdx

≤ 2ε
q

1−q

0 ωNR
N− 2γ

r−1

= 2(
(r − γ)(r − 1)2C1

26γ2
)

γ
1−r ωNR

N− 2γ
r−1 .

This completes the proof. �

Next, we prove our main tool.
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Lemma 5.1. If u is a W 1,2(Ω) solution of

−∆u = cu+ g +G(∇u) in Ω, (5.3)

where Ω is a open set in RN , |G(∇u)| ≤ C|∇u| + C0, c and g belongs to L
q
2 (Ω),

q > N . Then, for any ball BR1(y) ⊂ BR2(y) ⊂ Ω and β 6= −1,(
‖u+ 1‖

L
N(β+1)

N−2 (BR1 )

)(β+1)/2

≤
{ 1
ε1

max{ε
N

N−q

1 ,
√

2}(1 +
1

R2 −R1
)
}
× (‖u+ 1‖Lβ+1(BR2 ))

(β+1)/2,

(5.4)

where

ε1 =
1
2

√
C(N)√

max
{ (β+1)2

2(|β|) max{‖|c|+ |g|+ 4C2

|β| + C0‖L
q
2 (BR2 )

, 16
|β|}, 1

} . (5.5)

and C(N) is the Sobolev embedding constant (C(N)‖w‖22N
N−2

≤
∫
|∇w|2dx for all

w ∈ H1
0 (Ω)).

Proof. We define û = u+ 1. We use a classical test function η2ûβ where η satisfies
for 0 < R1 < R2, η ≡ 1 in BR1 , η ≡ 0 in Ω−BR2 with |∇η| ≤ 1

R2−R1

∇(η2ûβ) = 2ηûβ∇η + βη2ûβ−1∇u.
From (5.3), we have

β

∫
|∇u|2η2ûβ−1dx =

∫
gη2ûβdx+

∫
G(∇u)η2ûβdx

− 2
∫
ηûβ∇u · ∇ηdx+

∫
cuη2ûβdx.

(5.6)

Using ûβ = û
β−1

2 û
β+1
2 , we have

2ηûβ |∇u||∇η| = (ηû
β−1

2 |∇u|)(2û
β+1
2 |∇η|).

From the interpolation inequality ab ≤ εa2 + 1
ε b

2 valid for non-negative numbers
a, b, ε, we find

2ηûβ |∇u||∇η| ≤ (ε/2)(ηû
β−1

2 |∇u|)2 +
1

(ε/2)
(2û

β+1
2 |∇η|)2. (5.7)

Similarly,

|G(∇u)η2ûβ | ≤ C|∇u|η2ûβ + C0η
2ûβ

= (ηû
β−1

2 |∇u|)(Cηû
β+1
2 ) + C0η

2ûβ

≤ (ε/2)(ηû
β−1

2 |∇u|)2 +
1

(ε/2)
(Cηû

β+1
2 )2 + C0η

2ûβ .

(5.8)

From ûβ ≤ ûβ+1, (5.6), (5.7) and (5.8),

|β|
∫
|∇u|2η2ûβ−1dx

≤
∫
|g|η2ûβdx+

∫
|G(∇u)η2ûβ |dx+ 2

∫
ηûβ |∇u||∇η|dx+

∫
|c|η2ûβ+1dx

≤
∫
|g|η2ûβ+1dx+ ε

∫
η2ûβ−1|∇u|2dx+

8
ε

∫
ûβ+1|∇η|2dx+

∫
|c|η2ûβ+1dx
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+
2C2

ε

∫
η2ûβ+1dx+ C0

∫
η2ûβ+1.dx

Then we obtain

(|β| − ε)
∫
|∇u|2η2ûβ−1dx ≤

∫ {
(|g|+ |c|+ 2C2

ε
+ C0)η2 +

8
ε
|∇η|2

}
ûβ+1dx. (5.9)

Now, if we set w = û
β+1
2 , we obtain

∇w =
β + 1

2
û

β−1
2 ∇u,

|η∇w|2 =
(β + 1)2

4
ûβ−1|∇u|2η2.

It follows from (5.9) that∫
|η∇w|2dx ≤ (β + 1)2

4(|β| − ε)

∫ {
(|g|+ |c|+ 2C2

ε
+ C0)η2 +

8
ε
|∇η|2

}
w2dx. (5.10)

If we set

b̂ ≡ |g|+ |c|+ 2C2

ε
+ C0,

applying the Hölder inequality,∫
b̂(ηw)2 ≤ ‖b̂‖

L
q
2 (BR2 )

‖(ηw)2‖ q
q−2

= ‖b̂‖
L

q
2 (BR2 )

‖ηw‖22q
q−2

.

We arrive at∫
|η∇w|2dx ≤ (β + 1)2

4(|β| − ε)
{
‖b̂‖

L
q
2 (BR2 )

‖ηw‖22q
q−2

+
8
ε

∫
|∇η|2

}
w2dx.

At this point we use the interpolation inequality for Lp norms: If p ≤ s ≤ r then
‖u‖s ≤ ε1‖u‖r + ε−µ

1 ‖u‖p, where

µ =
1
p −

1
s

1
s −

1
r

.

The condition q > N implies 2 < 2q
q−2 <

2N
N−2 , therefore

‖ηw‖ 2q
q−2

≤ ε1‖ηw‖ 2N
N−2

+ ε
N

N−q

1 ‖ηw‖2.

So, we have∫
|η∇w|2dx

≤ (β + 1)2

4(|β| − ε)
{‖b̂‖

L
q
2 (BR2 )

(ε1‖ηw‖ 2N
N−2

+ ε
N

N−q

1 ‖ηw‖2)2 +
8
ε

∫
|∇η|2w2dx}.

(5.11)

By the Sobolev inequality,

C(N)‖ηw‖22N
N−2

≤
∫
|η∇w|2dx+

∫
|w∇η|2dx.
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We deduce that

C(N)‖ηw‖22N
N−2

≤ (β + 1)2

4(|β| − ε)
{‖b̂‖

L
q
2 (BR2 )

(ε1‖ηw‖ 2N
N−2

+ ε
N

N−q

1 ‖ηw‖2)2 +
8
ε

∫
|∇η|2w2dx}+

∫
|w∇η|2

≤ max
{ (β + 1)2

4(|β| − ε)
max{‖b̂‖

L
q
2 (BR2 )

,
8
ε
}, 1

}
×

{
(ε1‖ηw‖ 2N

N−2
+ ε

N
N−q

1 ‖ηw‖2)2 + 2
∫
|w∇η|2

}
.

(5.12)

Using the triangle inequality for the Euclidean norm(
(ε1‖ηw‖ 2N

N−2
+ ε

N
N−q

1 ‖ηw‖2)2 + 2
∫
|w∇η|2dx

)1/2

≤ ε1‖ηw‖ 2N
N−2

+
(
ε

2N
N−q

1 ‖ηw‖22 + 2
∫
|w∇η|2dx

)1/2

≤ ε1‖ηw‖ 2N
N−2

+
√

max(ε
2N

N−q

1 , 2)
(
‖ηw‖22 +

∫
|w∇η|2dx

)1/2

= ε1‖ηw‖ 2N
N−2

+ max(ε
N

N−q

1 ,
√

2)
(
‖ηw‖22 +

∫
|w∇η|2dx

)1/2

.

We are able to compute

√
C(N)‖ηw‖ 2N

N−2
≤

√
max

{ (β + 1)2

4(|β| − ε)
max{‖b̂‖

L
q
2 (BR2 )

,
8
ε
}, 1

}
×

(
ε1‖ηw‖ 2N

N−2
+ max{ε

N
N−q

1 ,
√

2}
{
‖ηw‖22 +

∫
|w∇η|2

}1/2
)
.

Therefore, if we choose ε = |β|/2 then

√
C(N)‖ηw‖ 2N

N−2
≤

√
max

{ (β + 1)2

2(|β|)
max{‖b̂‖

L
q
2 (BR2 )

,
16
|β|
}, 1

}
×

(
ε1‖ηw‖ 2N

N−2
+ max{ε

N
N−q

1 ,
√

2}
{
‖ηw‖22 +

∫
|w∇η|2

}1/2
)
.

If

ε1 =
1
2

√
C(N)√

max{ (β+1)2

2(|β|) max{‖b̂‖
L

q
2 (BR2 )

16)
|β| }, 1}

,

then

1
2

√
C(N)‖ηw‖ 2N

N−2
≤

√
max

{ (β + 1)2

2(|β|)
max{‖b̂‖

L
q
2 (BR2 )

,
16
|β|
}, 1

}
×max{ε

N
N−q

1 ,
√

2}
{ ∫

w2(η2 + |∇η|2dx)
}1/2

.

We are led to

‖w‖
L

2N
N−2 (BR1 )

≤ 1
ε1

max{ε
N

N−q

1 ,
√

2}
(
1 +

1
R2 −R1

)
‖w‖L2(BR2 ).
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Finally, using

‖w‖
L

2N
N−2 (BR1 )

=
( ∫

BR1

û
β+1
2

2N
N−2 dx

)(N−2)/(2N)

=
{( ∫

BR1

û
(β+1)N

N−2 dx
) N−2

N(β+1)
} β+1

2
= ‖û‖

β+1
2

L
N(β+1)

N−2 (BR1 )

,

and
‖w‖L2(BR2 ) = ‖û‖

β+1
2

Lβ+1(BR2 )
.

This completes the proof. �

6. Proofs of main results

Proof of Theorem 3.17. Like in classical statements, we introduce the quantities

Φ(p,R) =
( ∫

BR

|u+ 1|pdx
)1/p

.

From (5.4) and (5.5),

Φ(
N

N − 2
β,R1)β/2 ≤

{
C(β, ‖b̂‖

L
q
2 (BR2 )

)(1 +
1

R2 −R1
)
}

Φ(β,R2)β/2,

where β ∈ R and b̂ = |c|+ |g|+ (4C2/|β|) + C0. We define

C(β,R2) = C(β, ‖b̂‖
L

q
2 (BR2 )

), χ =
N

N − 2
.

Therefore,

Φ(χβ,R1)β/2 ≤
{
C(β,R2)(1 +

1
R2 −R1

)
}
Φ(β,R2)β/2. (6.1)

We consider R > 0 such that B2R ⊂ Ω and the sequence R < (1 + 2−m)R <
(1 + 2−m+1)R < (1 + 2−m+2)R · · · < (1 + 2−1)R. We deduce

1 +
1

(1 + 2−m+j+1)R− 2−m+jR
=

1 + (1 + 2−m+j+1)R− (1 + 2−m+j)R
(1 + 2−m+j+1)R− (1 + 2−m+j)R

=
1 + 2−m+jR

2−m+jR

<
1 + 2−1R

2−m+jR
.

In this framework, we set

C(χm−jp) = C(χm−jp, ‖b̂‖
L

q
2 (B(1+2−m+j−1)R)

).

Using (6.1),

Φ(χmp,R) ≤
(C(χm−1p)(1 + 2−1R)

(1 + 2−m)R−R

) 1
χm−1p Φ(χm−1p, (1 + 2−m)R)

=
(C(χm−1p)(1 + 2−1R)

2−mR

) 1
χm−1p Φ(χm−1p, (1 + 2−m)R)

≤
(C(χm−1p)(1 + 2−1R)

2−mR

) 1
χm−1p (

C(χm−2p)(1 + 2−1R)
(1 + 2−m+1)R− (1 + 2−m)R

)
1

χm−2p

× Φ(χm−2p, (1 + 2−m+1)R)



16 C. C. ARANDA EJDE-2012/60

=
(C(χm−1p)(1 + 2−1R)

2−mR

) 1
χm−1p (

C(χm−2p)(1 + 2−1R)
2−mR

)
1

χm−2p ,

× Φ(χm−2p, (1 + 2−m+1)R).

Therefore,

Φ(χmp,R)

≤
{

(1 + 2−1R)
Pm

j=1
1

χm−jp

(C(χm−1p)
2−mR

) 1
χm−1p

m∏
j=2

(C(χm−jp)
2j−2−mR

) 1
χm−jp

}
Φ(p,

3R
2

).

Setting s = m− j it follows that

Φ(χmp,R) ≤
{

(1 + 2−1R)
Pm−1

j=0
1

χjp

(C(χm−1p)
2−mR

) 1
χm−1p

}
×

{ m−2∏
s=0

(2s+2C(χsp)
R

) 1
χsp

}
Φ(p,

3R
2

)

=
{
2

m

χm−1p 2
1
p

Pm−2
s=0

s+2
χs R

−1
p

Pm−1
s=0

1
χs (1 + 2−1R)

Pm−1
j=0

1
χjp

}
×

{ m−1∏
s=0

(C(χsp))
1

χsp

}
Φ(p,

3R
2

).

Now
m−1∏
s=0

(C(χsp))
1

χsp = exp
{ m−1∑

s=0

logC(χsp))
χsp

}
.

Therefore, we study the convergence of

∞∑
s=0

logC(χsp))
χsp

=
∞∑

s=0

log
(

1
ε1(χsp) max{

√
2, (ε1(χsp))

N
N−q }

)
χsp

=
∞∑

s=0

log
(
max{

√
2(ε1(χsp))−1, ((ε1(χsp))−1)

q
q−N }

)
χsp

,

(6.2)

where

ε1(χsp) =
1
2

√
C(N)√

max{ (χsp)2

2(χsp−1) max{‖b̂‖
L

q
2 (B(1+2−s−1)R)

, 16
χsp−1}, 1}

.

Now because the function s 7→ 16/(χsp − 1) is non-increasing, the function s 7→
2(χsp − 1)/(χsp)2 is bounded and the inequality χsp√

2(χsp−1)
≤ C(p, χ)

√
χsp holds.

Then we have

(ε1(χsp))−1 ≤

√
max{ (χsp)2

2(χsp−1) max{‖b̂‖
L

q
2 (B 3R

2
)
, 16

p−1}, 1}

1
2

√
C(N)

≤ χsp√
2(χsp− 1)

√
max{max{‖b̂‖

L
q
2 (B 3R

2
)
, 16

p−1},
2(χsp−1)
(χsp)2 }

1
2

√
C(N)
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≤ C(p, χ)
√
χsp

√
max{max{‖b̂‖

L
q
2 (B 3R

2
)
, 16

p−1}, C(p, χ)}

1
2

√
C(N)

.

From this inequality, we deduce, using the integral test, the convergence of the
series (6.2). Finally,

sup
BR

{u+ 1}

= lim
m→∞

Φ(χmp,R)

≤ Φ(p,
3R
2

) lim
m→∞

{
2

m

χm−1p 2
1
p

Pm−2
s=0

s+2
χs R

−1
p

Pm−1
s=0

1
χs (1 + 2−1R)

Pm−1
j=0

1
χjp

}
×

m−1∏
s=0

(C(χsp))
1

χsp

= Φ(p,
3R
2

)CR−N/(2p)(1 +
R

2
)N/(2p),

where

C = C(|c|, |g|, C, C0, N, p, q) = 2
1
p

P∞
s=0

s+2
χs

∞∏
s=0

(C(χsp))1/χsp,

In a similar manner, we can prove (3.29). �

Proof of Theorem 3.5. If a non-negative function u ∈W 1,2(Ω) solves the equation

−∆u = du+ f(u) +G(∇u) + g in Ω ⊂ RN ,

with the conditions in Theorem 3.5, then −∆u ≥ C1u
r. We set c = d + f(u)/u.

Now, we apply Theorem 3.17. From (3.28) and (3.3), we deduce

sup
BR(y)

{u+ 1} ≤
( ∫

B 3R
2

(y)

|u+ 1|pdx
)1/p

CR−N/(2p)(1 +
R

2
)N/(2p)

≤
(
‖u‖Lp(B 3R

2
(y)) + ω

1/p
N (

3R
2

)N/p
)
CR−N/(2p)(1 +

R

2
)N/(2p)

≤
(
C(N, p, r, C1)R

N
p −

2
r−1 + ω

1/p
N (

3R
2

)N/p
)
CR−N/(2p)(1 +

R

2
)N/(2p),

where max{r − 1, 1} < p < r and C = C(|c|, |g|, C, C0, N, p, q). Condition (iii) in
Theorem 3.5 implies

‖f(u)
u

‖Lq/2(B(1+2−s−1)R) ≤ C2‖ur−1‖Lq/2(B(1+2−s−1)R)

= C2‖u‖
1

r−1

L
(r−1)q

2 (B(1+2−s−1)R)
.

(6.3)

To use Lemma 3.4 and Theorem 3.17, we need to satisfy the conditions r − 1 <
(r−1)q/2 < r, N/2 ≤ q/2. Moreover, to get simple statements, we set an additional
condition 1 < (r− 1)q/2. For 1 < r < N/(N − 2) there exists q(r) satisfying all the
required restrictions. We deduce

‖u‖
1

r−1

L
(r−1)q(r)

2 (B(1+2−s−1)R)
≤ C(r,N,C1)(R

N

(r−1) q(r)
2

− 2
r−1

)
1

r−1 . (6.4)
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Therefore, the constant C = C(|c|, |g|, C, C0, N, p, q) is bounded above without de-
pendence on u. Finally (3.6) is a consequence of [13, Lemma 1.1]. This completes
the proof. �

Proof of Theorem 3.11. Because −∆{u+ 1} ≥ 0, there exists p0 < 0 such that∫
BR(y)

{u+ 1}p0dx

∫
BR(y)

{u+ 1}−p0dx ≤ C(R).

For the demonstration of this affirmation, see for example the proof of [5, Lemma
1.36]. Thus( ∫

BR(y)

{u+ 1}p0dx
)1/p0

=
( ∫

BR(y)

{u+ 1}p0dx

∫
BR(y)

{u+ 1}−p0dx
)1/p0

×
( ∫

BR(y)

{u+ 1}−p0dx
)−1/p0

≥ C(R, p0)
( ∫

BR(y)

{u+ 1}−p0dx
)−1/p0

.

Collecting this inequality with (3.29) and (3.28) in Theorem 3.17, we derive the
conclusion of Theorem 3.11. �

Proof of Theorem 3.12. From equations (3.14) (3.15), we compute

−∆(u+ v) ≤ (d1 + d2)(u+ v) +
( 2∑

i=1

fi,1(u)
u

+
fi,2(v)
v

)
(u+ v) + (g1 + g2)

≤ (d1 + d2)(u+ v) + C(ur−1 + vr−1)(u+ v) + (g1 + g2).

From −∆u ≥ C0,1,1u
r, −∆v ≥ C0,2,2v

r using Lemma 3.4 and with the same method
of proof of Theorem 3.5, we obtain the desired result. �

Proof of Theorem 3.15. By Theorem 3.12, if the non-negative pair (u, v) solves
equations (3.21) and (3.22), then (u, v) ∈ L∞loc(Ω), where there are not dependence
in the local bound on (u, v). Therefore the result follows from Theorem 3.11. �
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