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EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR
FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL

BOUNDARY CONDITIONS

JINGFU JIN, XIPING LIU, MEI JIA

Abstract. This article shows the existence of a positive solution for the sin-
gular fractional differential equation with integral boundary condition

CDpu(t) = λh(t)f(t, u(t)), t ∈ (0, 1),

u(0)− au(1) =

Z 1

0
g0(s)u(s) ds,

u′(0)− b CDqu(1) =

Z 1

0
g1(s)u(s) ds,

u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0,

where λ is a parameter and the nonlinear term is allowed to be singular at
t = 0, 1 and u = 0. We obtain an explicit interval for λ such that for any λ
in this interval, existence of at least one positive solution is guaranteed. Our
approach is by a fixed point theory in cones combined with linear operator
theory.

1. Introduction

We consider the singular integral boundary-value problem involving Caputo frac-
tional derivative:

CDpu(t) = λh(t)f(t, u(t)), t ∈ (0, 1),

u(0)− au(1) =
∫ 1

0

g0(s)u(s) ds,

u′(0)− b CDqu(1) =
∫ 1

0

g1(s)u(s) ds,

u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0,

(1.1)

where CD is the standard Caputo derivative, n ≥ 3 is an integer, p ∈ (n − 1, n),
0 < q < 1, 0 < a < 1, 0 < b < Γ(2 − q) are real numbers. f ∈ C([0, 1] ×
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(0,+∞), [0,+∞)), and f(t, u) may be singular at u = 0. g0, g1 ∈ C[0, 1] are given
functions. h ∈ C((0, 1), [0,+∞)), h(t) is allowed to be singular at t = 0, 1.

There exist a great number of important applications using fractional differential
equations in many areas, such as physics, mechanics, chemistry, engineering, etc.
Due to this, the study of related problems has attracted much attention of the
researchers, especially most recently [2, 3, 21, 1, 20, 5, 7, 14, 15, 16, 19]. Also, as
another important factor, singularity is sometimes inevitable in the mathematical
models of modern science and technology areas. Among the studies of the existence
of positive solutions for singular boundary-value problems, extensive work has been
done for the singular integer order differential equations with integral boundary
conditions; see [10, 11, 18, 9, 13, 12, 17, 8], and the references therein. On the
other hand, for fractional differential equations, however, most results on singular
boundary-value problems are only restricted to the two-point boundary conditions
[2, 3, 21, 1, 20, 5]. For example, with the assumptions of 1 < α < 2 and f(t, x, y) is
singular at x = 0, [1] discussed existence and multiplicity of positive solutions for
the two-point boundary-value problem (1.2):

Dα
0+u(t) + f(t, u(t), Dµu(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1.2)

where µ > 0 and α− µ ≥ 1, Dα
0+ is the standard Riemann-Liouville derivative.

When 2 < α < 3, the two-point boundary-value problems (1.3) and (1.4) are
studied in [2] and [20] respectively:

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = 0,
(1.3)

and
Dαu(t) + f(t, u(t), u′(t), Dµu(t)) = 0,

u(0) = 0, u′(0) = u′(1) = 0.
(1.4)

In (1.3), f is assumed to be singular at t = 0, and Dα
0+ is the standard Caputo

derivative. In (1.4), f(t, x, y, z) may be singular at the value 0 of all variables x, y, z
and Dαu(t) is the standard Riemann-Liouville fractional derivative.

In the literature, results on singular integral boundary-value problems of the
fractional differential equations are relatively rare. In this paper, we first give
the Green function of boundary-value problem (BVP) (1.1) and prove some of
its properties. Then, applying a fixed-point theorem with linear operator theory
analysis, we obtain some sufficient conditions on the existence of positive solutions
of (1.1). An explicit interval for λ is derived such that for any λ in this interval,
the existence of at least one positive solution is guaranteed.

2. Preliminaries

In this section, we introduce definitions and preliminary facts which are used
throughout this paper.

Definition 2.1 ([19]). The fractional integral of order α > 0 of a function y :
(0,+∞) → R is given by

Iαy(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s) ds.

provided that the right side is point wise defined on (0,+∞), and Γ denotes the
Gamma function.
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Definition 2.2 ([19]). The fractional Caputo derivative of order α > 0 for a
function x : (0,+∞) → R is given by

CDαx(t) =
1

Γ(n− α)

∫ t

0

x(n)(s)
(t− s)α+1−n

ds,

where n = [α] + 1, provided the right integral converges.

Lemma 2.3. Suppose that y ∈ C[0, 1] and n ≥ 3 is an integer, p ∈ (n − 1, n),
0 < q < 1, 0 < a < 1, 0 < b < Γ(2− q). Then the integral boundary-value problem

CDpu(t) = y(t), t ∈ (0, 1),

u(0)− au(1) =
∫ 1

0

g0(s)u(s) ds,

u′(0)− bCDqu(1) =
∫ 1

0

g1(s)u(s) ds,

u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0

(2.1)

is equivalent to the fractional integral equation

u(t) =
∫ 1

0

G(t, s)y(s) ds +
∫ 1

0

Φ(t, s)u(s) ds, (2.2)

where

G(t, s) =



(t−s)p−1

Γ(p) + aΓ(p−q)(Γ(2−q)−b)(1−s)p−1+bΓ(2−q)Γ(p)(a+t−at)(1−s)p−q−1

(1−a)(Γ(2−q)−b)Γ(p−q)Γ(p) ,

if 0 ≤ s ≤ t ≤ 1,

aΓ(p−q)(Γ(2−q)−b)(1−s)p−1+bΓ(2−q)Γ(p)(a+t−at)(1−s)p−q−1

(1−a)(Γ(2−q)−b)Γ(p−q)Γ(p) ,

if 0 ≤ t ≤ s ≤ 1.

(2.3)
and

Φ(t, s) =
(a + t− at)Γ(2− q)g1(s)

(1− a)(Γ(2− q)− b)
+

g0(s)
1− a

. (2.4)

Proof. From CDpu(t) = y(t), t ∈ (0, 1) and the boundary conditions u′′(0) =
u′′′(0) = · · · = u(n−1)(0) = 0, we have

u(t) = Ip
t y(t) + u(0) + u′(0)t +

u′′(0)
2!

t2 + · · ·+ u(n−1)(0)
(n− 1)!

tn−1

=
1

Γ(p)

∫ t

0

(t− s)p−1y(s) ds + u(0) + u′(0)t.

By properties of the Caputo derivative, we get
CDqu(t) = Ip−q

t y(t) +CDq(u(0) + u′(0)t)

=

∫ t

0
(t− s)p−q−1y(s) ds

Γ(p− q)
+

u′(0)t1−q

Γ(2− q)
.

Then

u(1) =
1

Γ(p)

∫ 1

0

(1− s)p−1y(s) ds + u(0) + u′(0),
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and
CDqu(1) =

∫ 1

0
(1− s)p−q−1y(s) ds

Γ(p− q)
+

u′(0)
Γ(2− q)

.

By the boundary conditions u(0)−au(1) =
∫ 1

0
g0(s)u(s) ds and u′(0)− bCDqu(1) =∫ 1

0
g1(s)u(s) ds, we have

u(0)− a

Γ(p)

∫ 1

0

(1− s)p−1y(s) ds− au(0)− au′(0) =
∫ 1

0

g0(s)u(s) ds,

and

u′(0)−
b
∫ 1

0
(1− s)p−q−1y(s) ds

Γ(p− q)
− bu′(0)

Γ(2− q)
=

∫ 1

0

g1(s)u(s) ds.

Hence,

u′(0) =
bΓ(2− q)

(Γ(2− q)− b)Γ(p− q)

∫ 1

0

(1− s)p−q−1y(s) ds

+
Γ(2− q)

Γ(2− q)− b

∫ 1

0

g1(s)u(s) ds,

and

u(0) =
1

1− a

∫ 1

0

g0(s)u(s) ds +
a

∫ 1

0
(1− s)p−1y(s) ds

(1− a)Γ(p)

+
abΓ(2− q)

∫ 1

0
(1− s)p−q−1y(s) ds

(1− a)(Γ(2− q)− b)Γ(p− q)
+

aΓ(2− q)
∫ 1

0
g1(s)u(s) ds

(1− a)(Γ(2− q)− b)
.

We can easily obtain

u(t) =
1

Γ(p)

∫ t

0

(t− s)p−1y(s) ds +
btΓ(2− q)

∫ 1

0
(1− s)p−q−1y(s) ds

(Γ(2− q)− b)Γ(p− q)

+
a

∫ 1

0
(1− s)p−1y(s) ds

(1− a)Γ(p)
+

abΓ(2− q)
∫ 1

0
(1− s)p−q−1y(s) ds

(1− a)(Γ(2− q)− b)Γ(p− q)

+
1

1− a

∫ 1

0

g0(s)u(s) ds +
tΓ(2− q)

∫ 1

0
g1(s)u(s) ds

Γ(2− q)− b

+
aΓ(2− q)

∫ 1

0
g1(s)u(s) ds

(1− a)(Γ(2− q)− b)

=
∫ 1

0

G(t, s)y(s) ds +
∫ 1

0

Φ(t, s)u(s) ds.

The proof is complete. �

Denote

k1 =
(Γ(2− q)− b)Γ(p− q) + bΓ(2− q)Γ(p)

(1− a)(Γ(2− q)− b)Γ(p− q)Γ(p)
,

k2 =
abΓ(2− q)

(1− a)(Γ(2− q)− b)Γ(p− q)
.

Lemma 2.4. The function G(t, s) in Lemma 2.3 satisfies the following conditions:
(i) G(t, s) is continuous on [0, 1]× [0, 1];
(ii) G(t, s) ≤ k1(1− s)p−q−1, for any (t, s) ∈ [0, 1]× [0, 1];
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(iii) G(t, s) ≥ k2(1− s)p−q−1, for any (t, s) ∈ [0, 1]× [0, 1].

Proof. It is easy to check that (i) holds and G(t, s) ≥ 0 on [0, 1]× [0, 1].
(ii) For 0 ≤ s ≤ t ≤ 1, denote

G1(t, s)

=
aΓ(p− q)(Γ(2− q)− b)(1− s)p−1 + bΓ(2− q)Γ(p)(a + t− at)(1− s)p−q−1

(1− a)(Γ(2− q)− b)Γ(p− q)Γ(p)

+
(t− s)p−1

Γ(p)
,

and for 0 ≤ t ≤ s ≤ 1, denote

G2(t, s)

=
aΓ(p− q)(Γ(2− q)− b)(1− s)p−1 + bΓ(2− q)Γ(p)(a + t− at)(1− s)p−q−1

(1− a)(Γ(2− q)− b)Γ(p− q)Γ(p)
.

For 0 ≤ s ≤ t ≤ 1, we have

(1− a)(Γ(2− q)− b)Γ(p− q)Γ(p)G1(t, s)

≤ (1− a)(Γ(2− q)− b)Γ(p− q)(1− s)p−1 + aΓ(p− q)(Γ(2− q)− b)(1− s)p−1

+ bΓ(2− q)Γ(p)(a + t− at)(1− s)p−q−1

≤ (1− s)p−q−1[(Γ(2− q)− b)Γ(p− q)(1− s)q + bΓ(2− q)Γ(p)(a + t− at)]

≤ (1− s)p−q−1[(Γ(2− q)− b)Γ(p− q) + bΓ(2− q)Γ(p)].

Hence, G1(t, s) ≤ k1(1− s)p−q−1, for any 0 ≤ s ≤ t ≤ 1.
For 0 ≤ t ≤ s ≤ 1, we have

(1− a)(Γ(2− q)− b)Γ(p− q)Γ(p)G2(t, s)

= (1− s)p−q−1[aΓ(p− q)(Γ(2− q)− b)(1− s)q + bΓ(2− q)Γ(p)(a + t− at)]

≤ (1− s)p−q−1[(Γ(2− q)− b)Γ(p− q) + bΓ(2− q)Γ(p)].

Hence, G2(t, s) ≤ k1(1− s)p−q−1.
Therefore, G(t, s) ≤ k1(1− s)p−q−1, for any (t, s) ∈ [0, 1]× [0, 1].
(iii) It is easy to see for (t, s) ∈ [0, 1]× [0, 1],

(1− a)(Γ(2− q)− b)Γ(p− q)Γ(p)G(t, s) ≥ bΓ(2− q)Γ(p)(a + t− at)(1− s)p−q−1

≥ abΓ(2− q)Γ(p)(1− s)p−q−1.

Therefore, G(t, s) ≥ k2(1− s)p−q−1, for any (t, s) ∈ [0, 1]× [0, 1]. �

Denote
m0 = min

t,s∈[0,1]
Φ(t, s), M0 = max

t,s∈[0,1]
Φ(t, s).

Let E = C[0, 1] be the Banach space with the norm ‖u‖ = max0≤t≤1 |u(t)|, P =
{u ∈ E : u(t) ≥ 0} and K = {u ∈ P : u(t) ≥ k2(1−M0)

k1
‖u‖} be cones of E.

Denote Kr = {u ∈ K : ‖u‖ < r}, ∂Kr = {u ∈ K : ‖u‖ = r}, and Kr,R = {u ∈
K : r ≤ ‖u‖ ≤ R}, where 0 < r < R < +∞.

Lemma 2.5 ([6, 4]). Let K be a positive cone in real Banach space E, 0 < r <
R < +∞, and let S : Kr,R → K be a completely continuous operator and such that

(i) ‖Su‖ ≤ ‖u‖ for u ∈ ∂KR;
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(ii) There exists e ∈ ∂Kr such that u 6= Su + me for any u ∈ ∂Kr, and m > 0.
Then S has a fixed point in Kr,R.

Remark 2.6. If (i) and (ii) are satisfied for u ∈ ∂Kr and e ∈ ∂KR, respectively.
Then Lemma 2.5 is still true.

Define a linear operator A : E → E, by

Au(t) =
∫ 1

0

Φ(t, s)u(s) ds. (2.5)

Lemma 2.7. Suppose 0 ≤ m0 ≤ M0 < 1 holds. Then
(i) A is a bounded linear operator;
(ii) A(P ) ⊂ P ;
(iii) (I −A) is invertible and ‖(I −A)−1‖ ≤ 1

1−M0
.

Proof. (i) It is easy to see that A is a linear operator with

|Au(t)| =
∣∣ ∫ 1

0

Φ(t, s)u(s) ds
∣∣ ≤ M0‖u‖.

Therefore, ‖A‖ ≤ M0 < 1. It follows that A is a bounded linear operator.
(ii) For each u ∈ P , we have u ∈ C([0, 1]), u(t) ≥ 0. Since Φ(t, s) is continuous

and nonnegative, it is easy to check that Au ∈ C([0, 1]), Au(t) ≥ 0. This implies
that A(P ) ⊂ P .

(iii) We have proved in (i) that ‖A‖ ≤ M0 < 1, which implies that (I − A)−1 is
invertible.

To find the expression for (I − A)−1, we use the theory of Fredholm integral
equations. We have u(t) = (I −A)−1v(t) if and only if u(t) = v(t) + Au(t) for each
t ∈ [0, 1]. The definition of the operator A implies that

u(t) = v(t) +
∫ 1

0

Φ(t, s)u(s) ds. (2.6)

The condition ‖A‖ ≤ M0 < 1 implies that 1 is not an eigenvalue of the kernel
Φ(t, s).

Hence, (2.6) has a unique solution u ∈ E, for each v ∈ E. By successive substi-
tutions in (2.6), we obtain

u(t) = v(t) +
∫ 1

0

ρ(t, s)v(s) ds, (2.7)

where the resolvent kernel ρ(t, s) is given by

ρ(t, s) =
∞∑

j=1

Φj(t, s),

where Φ1(t, s) = Φ(t, s), Φj(t, s) =
∫ 1

0
Φ(t, τ)Φj−1(τ, s) dτ , (j = 2, 3, . . . ). Since

0 ≤ m0 ≤ Φ(t, s) ≤ M0 < 1, we have mj
0 ≤ Φj(t, s) ≤ M j

0 , (j = 1, 2, 3, . . . ). Hence,
we have

m0

1−m0
≤ ρ(t, s) ≤ M0

1−M0
, (2.8)

and ρ(t, s) is continuous on [0, 1]× [0, 1]. In view of (2.7) and (2.8), we obtain

|(I −A)−1v(t)| ≤ |v(t)|+
∫ 1

0

|ρ(t, s)v(s)|ds ≤ (1 +
M0

1−M0
)‖v‖ =

1
1−M0

‖v‖.
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That is, ‖(I −A)−1‖ ≤ 1/(1−M0). �

Define a nonlinear operator T : E → E, by

Tu(t) = λ

∫ 1

0

G(t, s)h(s)f(s, u(s)) ds. (2.9)

In view of (2.5), (2.9), and Lemma 2.3, we can easily prove that the existence of
solutions to (1.1) is equivalent to the existence of solutions to the equation

u(t) = Tu(t) + Au(t), t ∈ [0, 1]. (2.10)

It follows from Lemma 2.7 that u is a solution of (2.10) if and only if u is a solution
of u(t) = (I−A)−1Tu(t). That is, u is a fixed point of the operator S := (I−A)−1T .
By (2.7) and (2.9), we have

(Su)(t) = λ

∫ 1

0

G(t, s)h(s)f(s, u(s)) ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)f(τ, u(τ)) dτ ds.

(2.11)

We can prove the following lemma.

Lemma 2.8. A function u is a solution of (1.1) if and only if u is a fixed point of
the operator S.

We denote

L =
∫ 1

0

(1− s)p−q−1h(s) ds.

and assume the following conditions hold

(H) h ∈ C((0, 1), [0,+∞)),
∫ 1

0
h(s) ds < +∞ and 0 < L < +∞.

To overcome the singularity, we consider the following approximating equation of
(2.11) with boundary condition of (1.1),

(Snu)(t) = λ

∫ 1

0

G(t, s)h(s)fn(s, u(s)) ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, u(τ)) dτ ds.

(2.12)

where n is a positive integer and fn(t, u) = f(t, max{1/n, u}).

Lemma 2.9. Suppose 0 ≤ m0 ≤ M0 < 1 and (H) holds. Then for each positive
integer n, we have

(i) For any 0 < r ≤ R < +∞, the operator Sn : Kr,R → P is completely
continuous;

(ii) Sn(Kr,R) ⊂ K.

Proof. (i) Suppose D ⊂ Kr,R is a bounded set. Then there exists r1 > 0 such that
‖u‖ ≤ r1 for any u ∈ D. Denote

M1 = max{f(t, max{1/n, u}) : (t, u) ∈ [0, 1]× [
1
n

,
1
n

+ r1]}.

By (2.8) and Lemma 2.4, for any u ∈ D and t ∈ [0, 1], we have

|Snu(t)|
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= |λ
∫ 1

0

G(t, s)h(s)fn(s, u(s)) ds + λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, u(τ)) dτ ds|

≤ λk1

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

+
M0λk1

1−M0

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

=
λk1

1−M0

∫ 1

0

(1− s)p−q−1h(s)f(s,max{1/n, u(s)}) ds

≤ λk1M1

1−M0

∫ 1

0

(1− s)p−q−1h(s) ds

=
λk1M1L

1−M0
.

Therefore, Sn(D) is uniformly bounded.
We can also prove that Sn(D) is equicontinuous. For t1, t2 ∈ [0, 1] and u ∈ D,

we have

|(Snu)(t1)− (Snu)(t2)|

= |λ
∫ 1

0

(G(t1, s)−G(t2, s))h(s)fn(s, u(s)) ds

+ λ

∫ 1

0

(ρ(t1, s)− ρ(t2, s))
∫ 1

0

G(s, τ)h(τ)fn(τ, u(τ)) dτ ds|

≤ λM1

( ∫ 1

0

|G(t1, s)−G(t2, s)|h(s) ds

+ k1

∫ 1

0

|ρ(t1, s)− ρ(t2, s)|
∫ 1

0

(1− s)p−q−1h(τ) dτ ds
)

≤ λM1

( ∫ 1

0

|G(t1, s)−G(t2, s)|h(s) ds + k1L

∫ 1

0

|ρ(t1, s)− ρ(t2, s)|ds
)
.

Since G(t, s) and ρ(t, s) are continuous on [0, 1]×[0, 1], we can get G(t, s) and ρ(t, s)
are uniformly continuous on [0, 1]× [0, 1], it follows that |(Snu)(t2)−(Snu)(t1)| → 0
as |t2−t1| → 0. Hence, Sn(D) is equicontinuous. Using the Ascoli-Arzela’s theorem,
Sn(D) is relatively compact. Therefore, Sn : Kr,R → P is compact.

Now we show that Sn is continuous. Suppose u, um ∈ D, (m = 1, 2, 3, . . . ) with
‖um − u‖ → 0 as m → ∞. Then there exists r2 > 0 such that ‖um‖ < r2 and
‖u‖ < r2.

For t ∈ [0, 1] ,

|(Snum)(t)− (Snu)(t)|

= |λ
∫ 1

0

G(t, s)h(s)
(
fn(s, um(s))− fn(s, u(s))

)
ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)
(
fn(τ, um(τ))− fn(τ, u(τ))

)
dτ ds|

≤ λk1

∫ 1

0

(1− s)p−q−1h(s)
∣∣fn(s, um(s))− fn(s, u(s))

∣∣ ds
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+
λk1M0

1−M0

∫ 1

0

(1− s)p−q−1h(s)
∣∣fn(s, um(s))− fn(s, u(s))

∣∣ ds

=
λk1

1−M0

∫ 1

0

(1− s)p−q−1h(s)
∣∣fn(s, um(s))− fn(s, u(s))

∣∣ ds.

Since fn(s, u) is continuous on [0, 1]× [ 1
n , 1

n + r2], we can get fn(s, u) is uniformly
continuous on [0, 1]× [ 1

n , 1
n + r2]. Hence, we have

lim
m→∞

‖fn(s, um(s))− fn(s, u(s))‖ = 0.

It is easy to see
lim

m→∞
‖Snum − Snu‖ = 0.

Therefore, Sn is continuous on P .
(ii) For any u ∈ Kr,R, t ∈ [0, 1], we have

Snu(t)

= λ

∫ 1

0

G(t, s)h(s)fn(s, u(s)) ds + λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, u(τ)) dτ ds

≤ λk1

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

+
M0λk1

1−M0

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

=
λk1

1−M0

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds.

This implies that ‖Snu‖ ≤ λk1
1−M0

∫ 1

0
(1− s)p−q−1h(s)fn(s, u(s)) ds.

On the other hand, for t ∈ [0, 1],

Snu(t) = λ

∫ 1

0

G(t, s)h(s)fn(s, u(s)) ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, u(τ)) dτ ds

≥ λk2

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

≥ λk2
1−M0

λk1
‖Snu‖

=
k2

k1
(1−M0)‖Snu‖.

Therefore Sn(Kr,R) ⊂ K. �

3. Main results and proof

Denote

f0 = lim sup
u→0+

max
t∈[0,1]

f(t, u)
u

, f∞ = lim inf
u→+∞

min
t∈[0,1]

f(t, u)
u

,

and

f∞ = lim sup
u→+∞

max
t∈[0,1]

f(t, u)
u

, f0 = lim inf
u→0+

min
t∈[0,1]

f(t, u)
u

.
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Theorem 3.1. Suppose 0 ≤ m0 ≤ M0 < 1 and (H) holds. If

0 < f0 <
1−M0

k1L
and 0 <

1
k2L

< f∞ < +∞, (3.1)

then (1.1) has at least one positive solution for λ ∈ ( 1
k2Lf∞

, 1−M0
k1Lf0 ).

Proof. For λ ∈ ( 1
k2Lf∞

, 1−M0
k1Lf0 ), there exists ε > 0 such that

f∞ − ε > 0,
1

(f∞ − ε)k2L
≤ λ ≤ 1−M0

k1L(f0 + ε)
.

By (3.1), there exist r > 0 and R0 > 0, such that

f(t, u) ≤ (f0 + ε)u, for t ∈ [0, 1], 0 < u ≤ r. (3.2)

f(t, u) > (f∞ − ε)u, for t ∈ [0, 1], u ≥ R0. (3.3)

For any u ∈ ∂Kr and n > [ k1
rk2(1−M0)

] + 1 =: n0, we have

r = ‖u‖ ≥ u(t) ≥ k2(1−M0)
k1

‖u‖ =
rk2(1−M0)

k1
>

1
n

.

It follows that

fn(t, u(t)) = f(t, max{1/n, u(t)}) = f(t, u(t)) ≤ (f0 + ε)u (3.4)

from (3.2). Hence,

‖Snu‖ = max
t∈[0,1]

|λ
∫ 1

0

G(t, s)h(s)fn(s, u(s)) ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, u(τ)) dτ ds|

≤ λk1

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

+
M0λk1

1−M0

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

=
λk1

1−M0

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

≤ λk1(f0 + ε)
1−M0

∫ 1

0

(1− s)p−q−1h(s)u(s) ds

≤ λk1L(f0 + ε)
1−M0

‖u‖ ≤ ‖u‖.

We can get ‖Snu‖ ≤ ‖u‖, for each u ∈ ∂Kr.
Let R = max{2r, k1R0

k2(1−M0)
} and e(t) ≡ 1 for t ∈ [0, 1]. Then R > r and

e(t) ∈ K1 = {u ∈ K : ‖u‖ < 1}. Subsequently, we can show u 6= Snu + me, for any
m > 0 and u ∈ ∂KR.

Otherwise, there exists u0 ∈ ∂KR and m1 > 0 such that u0 = Snu0 + m1e. We
notice that for any s ∈ [0, 1],

u0(s) ≥ min
s∈[0,1]

u0(s) ≥
k2

k1
(1−M0)R ≥ R0.
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From (3.3), it follows that

fn(t, u0(t)) = f(t, max{1/n, u0(t)}) = f(t, u0(t)) > (f∞ − ε)u0(t) .

Let ξ = mint∈[0,1] u0(t). Consequently, for any t ∈ [0, 1], we have

u0(t) = λ

∫ 1

0

G(t, s)h(s)fn(s, u0(s)) ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, u0(τ)) dτ ds + m1e(t)

≥ λ

∫ 1

0

G(t, s)h(s)fn(s, u0(s)) ds + m1e(t)

≥ λk2(f∞ − ε)
∫ 1

0

(1− s)p−q−1h(s)u0(s) ds + m1

≥ ξ

L

∫ 1

0

(1− s)p−q−1h(s) ds + m1

≥ ξ + m1 > ξ.

This implies that ξ > ξ, which is a contradiction.
It follows that for n ≥ n0 = [ k1

rk2(1−M0)
] + 1, the operator Sn has a fixed point

un in K with r < ‖un‖ < R, from Lemma 2.5. Hence,

un(t)

= λ

∫ 1

0

G(t, s)h(s)fn(s, un(s)) ds + λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, un(τ)) dτ ds,

for t ∈ [0, 1]. Since un ∈ K, we have

un(t) ≥ k2(1−M0)
k1

‖un‖ =
rk2(1−M0)

k1
>

1
n

> 0, t ∈ [0, 1],

and
fn(t, un(t)) = f(t, max{1/n, un(t)}) = f(t, un(t)), t ∈ [0, 1].

It is easy to see that

un(t)

= λ

∫ 1

0

G(t, s)h(s)f(s, un(s)) ds + λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)f(τ, un(τ)) dτ ds,

for t ∈ [0, 1]. By Lemma 2.8, we obtain that un is a positive solution of (1.1). �

By proof similar to the one for Theorem 3.1, we can show the following theorem.

Theorem 3.2. Suppose 0 ≤ m0 ≤ M0 < 1 and (H) holds. If

f0 = 0 and f∞ = +∞,

then (1.1) has at least one positive solution for λ ∈ (0,+∞).

Remark 3.3. In Theorem 3.1, if f0 = 0 or f∞ = +∞, we can obtain conclusions
similar to Theorems 3.1 and 3.2.
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Theorem 3.4. Suppose 0 ≤ m0 ≤ M0 < 1 and (H) holds. If

0 < f∞ <
1−M0

k1L
and 0 <

1
k2L

< f0 < +∞, (3.5)

then (1.1) has at least one positive solution for λ ∈
(

1
k2Lf0

, 1−M0
k1Lf∞

)
.

Proof. For λ ∈
(

1
k2Lf0

, 1−M0
k1Lf∞

)
, there exists ε > 0 such that

f0 − ε > 0,
1

(f0 − ε)k2L
≤ λ ≤ 1−M0

k1L(f∞ + ε)
.

By (3.5), there exist r > 0 and R0 > 1, such that

f(t, u) ≥ (f0 − ε)u, for t ∈ [0, 1], 0 < u ≤ r. (3.6)

f(t, u) ≤ (f∞ + ε)u, for t ∈ [0, 1], u ≥ R0. (3.7)

Take R ≥ max{r, R0,
k1R0

k2(1−M0)
} For u ∈ ∂KR and n > [ k1

Rk2(1−M0)
] + 1 =: n0, we

have

u(t) ≥ k2(1−M0)
k1

‖u‖ =
Rk2(1−M0)

k1
≥ R0.

From (3.7), we have

fn(t, u(t)) = f(t, max{1/n, u(t)}) = f(t, u(t)) ≤ (f∞ + ε)u.

Hence,

‖Snu‖ = max
t∈[0,1]

|λ
∫ 1

0

G(t, s)h(s)fn(s, u(s)) ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, u(τ)) dτ ds|

≤ λk1

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

+
M0λk1

1−M0

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

=
λk1

1−M0

∫ 1

0

(1− s)p−q−1h(s)fn(s, u(s)) ds

≤ λk1(f∞ + ε)
1−M0

∫ 1

0

(1− s)p−q−1h(s)u(s) ds

≤ λk1L(f∞ + ε)
1−M0

‖u‖ ≤ ‖u‖.

We can get ‖Snu‖ ≤ ‖u‖, for each u ∈ ∂KR.
Let e(t) ≡ 1, t ∈ [0, 1]. Then e(t) ∈ ∂K1, and we can prove u 6= Snu + me, for

any m > 0, and u ∈ Kr. Otherwise there exists u0 ∈ Kr and m1 > 0 such that
u0 = Snu0 + m1e. Let η = min{u0(t) : t ∈ [0, 1]}, for t ∈ [0, 1], by (3.6), we have

u0(t) = λ

∫ 1

0

G(t, s)h(s)fn(s, u0(s)) ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, u0(τ)) dτ ds + m1e(t)
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≥ λ

∫ 1

0

G(t, s)h(s)fn(s, u0(s)) ds + m1

≥ λ

∫ 1

0

k2(1− s)p−q−1h(s)(f0 − ε)u0(s) ds + m1

≥ η

L

∫ 1

0

(1− s)p−q−1h(s) ds + m1 = η + m1.

This is a contradiction. It follows from Lemma 2.5 that Sn has a fixed point un in
K with r < ‖un‖ < R. Hence,

un(t) = λ

∫ 1

0

G(t, s)h(s)fn(s, un(s)) ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)fn(τ, un(τ)) dτ ds,

for t ∈ [0, 1]. Since un ∈ K, for n > k1
rk2(1−M0)

, we have

un(t) ≥ k2(1−M0)
k1

‖un‖ =
rk2(1−M0)

k1
>

1
n

> 0, t ∈ [0, 1],

and
fn(t, un(t)) = f(t, max{1/n, un(t)}) = f(t, un(t)), t ∈ [0, 1].

It is easy to see that

un(t) = λ

∫ 1

0

G(t, s)h(s)f(s, un(s)) ds

+ λ

∫ 1

0

ρ(t, s)
∫ 1

0

G(s, τ)h(τ)f(τ, un(τ)) dτ ds,

for t ∈ [0, 1]. By Lemma 2.8, we can get un is a positive solution of (1.1). �

Similarly to the proof of Theorem 3.1, we can obtain the following theorem.

Theorem 3.5. Suppose 0 ≤ m0 ≤ M0 < 1 and (H) holds. If

f∞ = 0 and f0 = +∞,

then (1.1) has at least one positive solution for λ ∈ (0,+∞).

Remark 3.6. In Theorem 3.4, if f∞ = 0 or f0 = +∞, we can obtain similar
conclusions as those in Theorems 3.4 and 3.5.
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