Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 69, pp. 1-15. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

INFINITELY MANY SOLUTIONS FOR NONLOCAL ELLIPTIC SYSTEMS OF $\left(p_{1}, \ldots, p_{n}\right)$-KIRCHHOFF TYPE

SHAPOUR HEIDARKHANI, JOHNNY HENDERSON

Abstract

We establish the existence of infinitely many solutions for a class of nonlocal elliptic systems of $\left(p_{1}, \ldots, p_{n}\right)$-Kirchhoff type. Our approach is based on variational methods.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ be a non-empty bounded open set with a smooth boundary $\partial \Omega, K_{i}:[0,+\infty[\rightarrow \mathbb{R}$, for $1 \leq i \leq n$, be continuous functions such that there exist positive numbers m_{i} and M_{i}, with $m_{i} \leq K_{i}(t) \leq M_{i}$, for all $t \geq 0$ and for $1 \leq i \leq n$, $a_{i} \in L^{\infty}(\Omega)$ with $\operatorname{essinf}_{\Omega} a_{i}(x) \geq 0$, and $p_{i}>N$, for $1 \leq i \leq n$.

Consider the nonlocal elliptic Kirchhoff type system

$$
\begin{align*}
& -\left[K_{i}\left(\int_{\Omega}\left(\left|\nabla u_{i}(x)\right|^{p_{i}}+a_{i}(x)\left|u_{i}(x)\right|^{p_{i}}\right) d x\right)\right]^{p_{i}-1} \\
& \times\left(\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right)+a_{i}(x)\left|u_{i}\right|^{p_{i}-2} u\right) \tag{1.1}\\
& =\lambda F_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right) \quad \text { in } \Omega \\
& u_{i}=0 \quad \text { on } \partial \Omega
\end{align*}
$$

for $1 \leq i \leq n$, where λ is a positive parameter and $F: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function such that the mapping $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \rightarrow F\left(x, t_{1}, t_{2}, \ldots, t_{n}\right)$ is in C^{1} in \mathbb{R}^{n} for all $x \in \Omega, F_{t_{i}}$ is continuous in $\Omega \times \mathbb{R}^{n}$, for $i=1, \ldots, n$, and $F(x, 0, \ldots, 0)=0$ for all $x \in \Omega$. Here, $F_{t_{i}}$ denotes the partial derivative of F with respect to t_{i}.

We use Ricceri's Variational Principle [26], to ensure the existence of infinitely many weak solutions for (1.1) in $\prod_{i=1}^{n} W_{0}^{1, p_{i}}(\Omega)$. System (1.1) is related to a model given by the equation of elastic strings

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial^{2} x}=0 \tag{1.2}
\end{equation*}
$$

where ρ is the mass density, P_{0} is the initial tension, h is the area of the crosssection, E is the Young modulus of the material, and L is the length of the string, was proposed by Kirchhoff [21 as a extension of the classical D'Alembert's wave equation for free vibrations of elastic strings. Kirchhoffs model takes into account

[^0]the changes in length of the string produced by transverse vibrations. Similar nonlocal problems also model several physical and biological systems where u describes a process that depends on the average of itself, for example, the population density. Later, the equation 1.2 was extended to the equation
$$
\frac{\partial^{2} u}{\partial t^{2}}-K\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right) \Delta u=f(x, u) \quad \text { in } \Omega
$$
where $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ is a non-empty bounded open set with a given $\partial \Omega$ and $K:[0,+\infty[\rightarrow \mathbb{R}$ is a continuous function. Some early classical investigations of Kirchhoff equations can be seen in the papers [1, 12, 17, 18, 19, 20, 22, 24, 25, 27, 31 and the references therein. In particular, these papers discuss the historical development of the problem as well as describe situations that can be realistically modelled by (1.1) with a nonconstant K.

For a discussion about the existence of infinitely many solutions for boundary value problems, using Ricceri's Variational Principle [26], we refer the reader to [14, 15, 16, 21, 27. Applying a smooth version of [4, Theorem 2.1], which is a more precise version of Ricceri's Variational Principle [26], we refer the reader to [2, 3, 5, 6, 7, 8, 5, 11, and employing a non-smooth version of Ricceri's Variational Principle [26] due to Marano and Motreanu [23], we refer the reader to [10]. Here, our motivation comes from the recent article by Bonanno, et al. 6].

2. Preliminaries

First we recall the celebrated Ricceri's Variational Principle [26, Theorem 2.5] which is our primary tool in proving our main result.

Theorem 2.1. Let X be a reflexive real Banach space, let $\Phi, \Psi: X \rightarrow \mathbb{R}$ be two Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicontinuous, strongly continuous, and coercive, and Ψ is sequentially weakly upper semicontinuous. For every $r>\inf _{X} \Phi$, let us put

$$
\varphi(r):=\inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\sup _{\left.\left.v \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi(v)-\Psi(u)}{r-\Phi(u)}
$$

and

$$
\gamma:=\liminf _{r \rightarrow+\infty} \varphi(r), \quad \delta:=\liminf _{r \rightarrow\left(\inf _{X} \Phi\right)^{+}} \varphi(r) .
$$

Then, one has
(a) for every $r>\inf _{X} \Phi$ and every $\left.\lambda \in\right] 0, \frac{1}{\varphi(r)}$, the restriction of the functional $I_{\lambda}=\Phi-\lambda \Psi$ to $\Phi^{-1}(]-\infty, r[)$ admits a global minimum, which is a critical point (local minimum) of I_{λ} in X.
(b) If $\gamma<+\infty$, then, for each $\lambda \in] 0, \frac{1}{\gamma}[$, the following alternative holds: eithre
(b1) I_{λ} possesses a global minimum, or
(b2) there is a sequence $\left\{u_{n}\right\}$ of critical points (local minima) of I_{λ} such that $\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=+\infty$.
(c) If $\delta<+\infty$, then, for each $\lambda \in] 0,1 / \delta[$, the following alternative holds: either $\left[(c 1)\right.$ there is a global minimum of Φ which is a local minimum of I_{λ}, or
(c2) there is a sequence of pairwise distinct critical points (local minima) of I_{λ} which weakly converges to a global minimum of Φ.

Denote by $W_{0}^{1, p_{i}}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\left\|u_{i}\right\|_{p_{i}}=\left(\int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}} d x\right)^{1 / p_{i}} \quad \text { for } 1 \leq i \leq n
$$

Put

$$
c_{i}:=\max \left\{\sup _{u_{i} \in W_{0}^{1, p_{i}}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|}{\left\|u_{i}\right\|_{p_{i}}}, 1 \leq i \leq n\right\} .
$$

Since $p_{i}>N$ for $1 \leq i \leq n$, one has $c_{i}<+\infty$. Moreover, from [30, formula (6b)] one has
$\sup _{u \in W_{0}^{1, p_{i}}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|}{\left\|u_{i}\right\|_{p_{i}}} \leq \frac{N^{-1 / p_{i}}}{\sqrt{\pi}}\left[\Gamma\left(1+\frac{N}{2}\right)\right]^{1 / N}\left(\frac{p_{i}-1}{p_{i}-N}\right)^{1-1 / p_{i}}|\Omega|^{1 / N-1 / p_{i}}$
for $1 \leq i \leq n$, where $|\Omega|$ is the Lebesgue measure of the set Ω, and equality occurs when Ω is a ball.

Let X be the Cartesian product of the n Sobolev spaces $W_{0}^{1, p_{1}}(\Omega), \ldots, W_{0}^{1, p_{n}}(\Omega)$; i.e., $X=\prod_{i=1}^{n} W_{0}^{1, p_{i}}(\Omega)$ equipped with the norm

$$
\left\|\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right\|=\sum_{i=1}^{n}\left\|u_{i}\right\|_{*}
$$

where

$$
\left\|u_{i}\right\|_{*}=\left(\int_{\Omega}\left(\left|\nabla u_{i}(x)\right|^{p_{i}}+a_{i}(x)\left|u_{i}(x)\right|^{p_{i}}\right) d x\right)^{1 / p_{i}}
$$

is a norm in $W_{0}^{1, p_{i}}(\Omega)$ that is equivalent to the usual norm. Put

$$
\begin{equation*}
C:=\max \left\{\sup _{u_{i} \in W_{0}^{1, p_{i}}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|^{p_{i}}}{\left\|u_{i}\right\|_{p_{i}}^{p_{i}}}, 1 \leq i \leq n\right\} \tag{2.1}
\end{equation*}
$$

Let $\underline{p}:=\min \left\{p_{i} ; 1 \leq i \leq n\right\}, \bar{p}:=\max \left\{p_{i} ; 1 \leq i \leq n\right\}$ and $\underline{m}:=\min \left\{m_{i} ; 1 \leq i \leq\right.$ $n\}$. Following the construction given in [6], define

$$
\sigma\left(p_{i}, N\right):=\inf _{\mu \in] 0,1[} \frac{1-\mu^{N}}{\mu^{N}(1-\mu)^{p_{i}}}
$$

and consider $\left.\bar{\mu}_{i} \in\right] 0,1\left[\right.$ such that $\sigma\left(p_{i}, N\right):=\frac{1-\bar{\mu}_{i}^{N}}{\bar{\mu}_{i}^{N}\left(1-\bar{\mu}_{i}\right)^{p_{i}}}$. Put

$$
\bar{\mu}:=\max \bar{\mu}_{i}, \quad \underline{\mu}:=\min \bar{\mu}_{i}, \quad \tau:=\sup \operatorname{dist}(x, \partial \Omega)
$$

Simple calculations show that there is an $x_{0} \in \Omega$ such that $B\left(x_{0}, \tau\right) \subseteq \Omega$, where $B\left(x_{0}, s\right)$ denotes the ball with center at x_{0} and radius of s. Further, put

$$
g_{\overline{\mu_{i}}}\left(p_{i}, N\right):={\overline{\mu_{i}}}^{N}+\frac{1}{\left(1-\overline{\mu_{i}}\right)^{p_{i}}} N B_{\left(\overline{\mu_{i}}, 1\right)}\left(N, p_{i}+1\right)
$$

where $B_{\left(\overline{\mu_{i}}, 1\right)}\left(N, p_{i}+1\right)$ denotes the generalized incomplete beta function defined as follows:

$$
B_{\left(\overline{\mu_{i}}, 1\right)}\left(N, p_{i}+1\right):=\int_{\overline{\mu_{i}}}^{1} t^{N-1}(1-t)^{\left(p_{i}+1\right)-1} d t
$$

We also denote by $\omega_{\tau}:=\tau^{N} \frac{\pi^{N / 2}}{\Gamma\left(1+\frac{N}{2}\right)}$ the measure of the N-dimensional ball of radius τ. Set

$$
v:=\max _{1 \leq i \leq n}\left\{\frac{\sigma\left(p_{i}, N\right)}{\tau^{p_{i}}}+\left\|a_{i}\right\|_{\infty} \frac{g_{\mu_{i}}\left(p_{i}, N\right)}{{\overline{\mu_{i}}}^{N}}\right\} .
$$

Corresponding to K_{i} we introduce the functions $\tilde{K}_{i}:[0,+\infty[\rightarrow \mathbb{R}$ as follows

$$
\tilde{K}_{i}(t)=\int_{0}^{t} K_{i}(s) d s \quad \text { for all } t \geq 0
$$

for $1 \leq i \leq n$. For $\gamma>0$ we denote the set

$$
\begin{equation*}
Q(\gamma)=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left|t_{i}\right| \leq \gamma\right\} \tag{2.2}
\end{equation*}
$$

By a (weak) solution of system 1.1, we mean $u=\left(u_{1}, \ldots, u_{n}\right) \in X$ such that

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\left[K_{i}\left(\int_{\Omega}\left(\left|\nabla u_{i}(x)\right|^{p_{i}}+a_{i}(x)\left|u_{i}(x)\right|^{p_{i}}\right) d x\right)\right]^{p_{i}-1}\right. \\
& \left.\times \int_{\Omega}\left(\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla v_{i}(x)+\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) v_{i}(x)\right) d x\right) \\
& -\lambda \int_{\Omega} \sum_{i=1}^{n} F_{u_{i}}\left(x, u_{1}(x), \ldots, u_{n}(x)\right) v_{i}(x) d x=0
\end{aligned}
$$

for every $v=\left(v_{1}, \ldots, v_{n}\right) \in X$.

3. Main Results

We begin by formulating our main result under the assumptions:
(A1) $F\left(x, t_{1}, \ldots, t_{n}\right) \geq 0$, for each $\left(x, t_{1}, \ldots, t_{n}\right) \in \Omega \times \mathbb{R}_{+}^{n}$, where

$$
\begin{equation*}
\mathbb{R}_{+}^{n}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: t_{i} \geq 0, \text { for } i=1, \ldots, n\right\} \tag{A2}
\end{equation*}
$$

$$
\begin{aligned}
& \liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{\underline{p}}} \\
& <\frac{1}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}} \quad \limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)_{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}\right)}{p_{i}}} .
\end{aligned}
$$

Theorem 3.1. Assume (A1)-(A2), and let Λ the interval

$$
\begin{gathered}
] \frac{1}{\limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}\right)}{p_{i}}}} \\
\frac{1}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}} \\
\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi \underline{\underline{p}}}[
\end{gathered}
$$

If $\lambda \in \Lambda$, then (1.1) has an unbounded sequence of weak solutions in X.
Proof. To apply Theorem 2.1 to our problem, we introduce the functionals Φ, Ψ : $X \rightarrow \mathbb{R}$, for each $u=\left(u_{1}, \ldots, u_{n}\right) \in X$, defined as follows

$$
\Phi(u)=\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\left\|u_{i}\right\|_{*}^{p_{i}}\right)}{p_{i}}, \quad \Psi(u)=\int_{\Omega} F\left(x, u_{1}(x), \ldots, u_{n}(x)\right) d x
$$

Let us prove that the functionals Φ and Ψ satisfy the required conditions. It is well known that Ψ is a differentiable functional whose differential at the point $u \in X$ is

$$
\Psi^{\prime}(u)(v)=\int_{\Omega} \sum_{i=1}^{n} F_{u_{i}}\left(x, u_{1}(x), \ldots, u_{n}(x)\right) v_{i}(x) d x
$$

for every $v=\left(v_{1}, \ldots, v_{n}\right) \in X$, as well as is sequentially weakly upper semicontinuous. Furthermore, $\Psi^{\prime}: X \rightarrow X^{*}$ is a compact operator. Indeed, it is enough to show that Ψ^{\prime} is strongly continuous on X. For this, for fixed $\left(u_{1}, \ldots, u_{n}\right) \in$ X, let $\left(u_{1 k}, \ldots, u_{n k}\right) \rightarrow\left(u_{1}, \ldots, u_{n}\right)$ weakly in X as $k \rightarrow+\infty$. Then we have $\left(u_{1 k}, \ldots, u_{n k}\right)$ converges uniformly to $\left(u_{1}, \ldots, u_{n}\right)$ on Ω as $k \rightarrow+\infty$ (see 32). Since $F(x, \cdot, \ldots, \cdot)$ is C^{1} in \mathbb{R}^{n} for every $x \in \Omega$, the derivatives of F are continuous in \mathbb{R}^{n} for every $x \in \Omega$, so for $1 \leq i \leq n, F_{u_{i}}\left(x, u_{1 k}, \ldots, u_{n k}\right) \rightarrow F_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right)$ strongly as $k \rightarrow+\infty$, from which follows $\Psi^{\prime}\left(u_{1 k}, \ldots, u_{n k}\right) \rightarrow \Psi^{\prime}\left(u_{1}, \ldots, u_{n}\right)$ strongly as $k \rightarrow+\infty$. Thus we have that Ψ^{\prime} is strongly continuous on X, which implies that Ψ^{\prime} is a compact operator by Proposition 26.2 of [32]. Moreover, bearing in mind the conditions $0<m_{i} \leq K_{i}(t) \leq M_{i}$ for all $t \geq 0$ for $1 \leq i \leq n$, we see that Φ is continuously differentiable and whose differential at the point $u \in X$ is

$$
\begin{aligned}
\Phi^{\prime}(u)(v)= & \sum_{i=1}^{n}\left(\left[K_{i}\left(\int_{\Omega}\left(\left|\nabla u_{i}(x)\right|^{p_{i}}+a_{i}(x)\left|u_{i}(x)\right|^{p_{i}}\right) d x\right)\right]^{p_{i}-1}\right. \\
& \left.\times \int_{\Omega}\left(\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla v_{i}(x)+\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) v_{i}(x)\right) d x\right)
\end{aligned}
$$

for every $v \in X$, and Φ^{\prime} admits a continuous inverse on X^{*}. Furthermore, Φ is sequentially weakly lower semicontinuous. Indeed, for any $\left(u_{1 k}, \ldots, u_{n k}\right) \in X$ with $\left(u_{1 k}, \ldots, u_{n k}\right) \rightarrow\left(u_{1}, \ldots, u_{n}\right)$ weakly in X, then $u_{i k} \rightarrow u_{i}$ in $W_{0}^{1, p_{i}}(\Omega)$ for $1 \leq i \leq n$. Therefore, taking the norm of weakly lower semicontinuity, we have

$$
\liminf _{k \rightarrow \infty}\left\|u_{i k}\right\|_{*} \geq\left\|u_{i}\right\|_{*} \quad \text { for } i=1, \ldots, n
$$

Hence, since \tilde{K}_{i} is continuous and monotone for $1 \leq i \leq n$, we obtain

$$
\tilde{K}_{i}\left(\left\|u_{i}\right\|_{*}^{p_{i}}\right) \leq \tilde{K}_{i}\left(\liminf _{k \rightarrow \infty}\left\|u_{i k}\right\|_{*}^{p_{i}}\right) \leq \liminf _{k \rightarrow \infty} \tilde{K}_{i}\left(\left\|u_{i k}\right\|_{*}^{p_{i}}\right)
$$

for $1 \leq i \leq n$, from which it follows that Φ is sequentially weakly lower semicontinuous. Put $I_{\lambda}:=\Phi-\lambda \Psi$. Clearly, the weak solutions of the system 1.1) are exactly the solutions of the equation $I_{\lambda}^{\prime}\left(u_{1}, \ldots, u_{n}\right)=0$. Moreover, since for $1 \leq i \leq n$, $m_{i} \leq K_{i}(s)$ for all $s \in[0,+\infty[$, from the definition of Φ, we have

$$
\begin{equation*}
\Phi(u) \geq \sum_{i=1}^{n} \frac{m_{i}\left\|u_{i}\right\|_{*}^{p_{i}}}{p_{i}} \geq \underline{m} \sum_{i=1}^{n} \frac{\left\|u_{i}\right\|_{*}^{p_{i}}}{p_{i}} \quad \forall u=\left(u_{1}, \ldots, u_{n}\right) \in X \tag{3.1}
\end{equation*}
$$

Now, let us verify that $\gamma<+\infty$. Let $\left\{\xi_{k}\right\}$ be a real sequence such that $\xi_{k} \rightarrow+\infty$ as $k \rightarrow \infty$ and

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q\left(\xi_{k}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{\frac{p}{k}}} \tag{3.2}\\
& =\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{\underline{p}}}
\end{align*}
$$

$$
\sup _{x \in \bar{\Omega}}\left|u_{i}(x)\right|^{p_{i}} \leq C\left\|u_{i}\right\|_{p_{i}}^{p_{i}} \quad \text { for all } u_{i} \in W_{0}^{1, p_{i}}(\Omega)
$$

for $1 \leq i \leq n$, we have

$$
\begin{equation*}
\sup _{x \in \bar{\Omega}} \sum_{i=1}^{n} \frac{\left|u_{i}(x)\right|^{p_{i}}}{p_{i}} \leq C \sum_{i=1}^{n} \frac{\left\|u_{i}\right\|_{*}^{p_{i}}}{p_{i}} \tag{3.3}
\end{equation*}
$$

for each $u=\left(u_{1}, \ldots, u_{n}\right) \in X$. So, from (3.1) and (3.3) we have

$$
\begin{aligned}
\left.\left.\Phi^{-1}(]-\infty, r_{k}\right]\right) & =\left\{u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in X ; \Phi(u) \leq r_{k}\right\} \\
& \subseteq\left\{u \in X ; \underline{m} \sum_{i=1}^{n} \frac{\left\|u_{i}\right\|_{*}^{p_{i}}}{p_{i}} \leq r_{k}\right\} \\
& \subseteq\left\{u \in X ; \sum_{i=1}^{n} \frac{\left|u_{i}(x)\right|^{p_{i}}}{p_{i}} \leq \frac{C r_{k}}{\underline{m}} \text { for each } x \in \Omega\right\} \\
& \subseteq\left\{u \in X ; \sum_{i=1}^{n}\left|u_{i}(x)\right| \leq \xi_{k} \text { for each } x \in \Omega\right\}
\end{aligned}
$$

Hence, taking into account that $\Phi(0, \ldots, 0)=\Psi(0, \ldots, 0)=0$, we have for every k large enough,

$$
\begin{aligned}
\varphi\left(r_{k}\right) & =\inf _{u \in \Phi^{-1}(]-\infty, r_{k}[)} \frac{\left(\sup _{\left.\left.v \in \Phi^{-1}(]-\infty, r_{k}\right]\right)} \Psi(v)\right)-\Psi(u)}{r_{k}-\Phi(u)} \\
& \leq \frac{\sup _{\left.\left.v \in \Phi^{-1}(]-\infty, r_{k}\right]\right)} \Psi(v)}{r_{k}} \\
& \leq\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q\left(\xi_{k}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi_{\bar{k}}^{\underline{p}}}
\end{aligned}
$$

Moreover, from Assumption (A2), we also have

$$
\lim _{k \rightarrow \infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q\left(\xi_{k}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi_{k}^{\frac{p}{p}}}<+\infty
$$

Therefore,

$$
\begin{align*}
\gamma & \leq \liminf _{k \rightarrow+\infty} \varphi\left(r_{k}\right) \\
& \leq\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}} \lim _{k \rightarrow \infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q\left(\xi_{k}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi_{\bar{k}}^{\underline{p}}}<+\infty . \tag{3.4}
\end{align*}
$$

Assumption (A2) in conjunction with (3.4) implies $\Lambda \subseteq] 0,1 / \gamma[$. Fix $\lambda \in \Lambda$. The inequality (3.4) yields that the condition (b) of Theorem 2.1 can be applied, and either I_{λ} has a global minimum or there exists a sequence $\left\{u_{k}=\left(u_{1 k}, \ldots, u_{n k}\right)\right\}$ of weak solutions of the system (1.1) such that $\lim _{k \rightarrow \infty}\left\|\left(u_{1 k}, \ldots, u_{n k}\right)\right\|=+\infty$.

The other step is to show that the functional I_{λ} has no global minimum. For the fixed λ, let us verify that the functional I_{λ} is unbounded from below. Arguing
as in [6], consider n positive real sequences $\left\{d_{i, k}\right\}_{i=1}^{n}$ such that $\sqrt{\sum_{i=1}^{n} d_{i, k}^{2}} \rightarrow+\infty$ as $k \rightarrow \infty$ and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{\int_{\Omega} F\left(x, d_{1, k}, \ldots, d_{n, k}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K_{i}}\left(\bar{\mu}^{N} \omega_{\tau} v\left|d_{i, k}\right|^{p_{i}}\right)}{p_{i}}}=\limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}\right)}{p_{i}}} . \tag{3.5}
\end{equation*}
$$

Let $\left\{w_{k}=\left(w_{1 k}, \ldots, w_{n k}\right)\right\}$ be a sequence in X defined by

$$
w_{i k}(x)= \begin{cases}0 & \text { if } x \in \Omega \backslash B\left(x_{0}, \tau\right) \tag{3.6}\\ \frac{d_{i, k}}{\tau\left(1-\bar{\mu}_{i}\right)}\left(\tau-\left|x-x_{0}\right|\right) & \text { if } x \in B\left(x_{0}, \tau\right) \backslash B\left(x_{0}, \bar{\mu}_{i} \tau\right) \\ d_{i, k} & \text { if } x \in B\left(x_{0}, \bar{\mu}_{i} \tau\right)\end{cases}
$$

for $1 \leq i \leq n$. For any fixed $k \in \mathbb{N}$, it is easy to see that $w_{k} \in X$ and, in particular, one has

$$
\begin{aligned}
\left\|w_{i k}\right\|_{*}^{p_{i}} & =\int_{\Omega}\left(\left|\nabla w_{i k}(x)\right|^{p_{i}}+a_{i}(x)\left|w_{i k}(x)\right|^{p_{i}}\right) d x \\
& \leq\left|d_{i, k}\right|^{p_{i}} \omega_{\tau}\left[\frac{1-\bar{\mu}_{i}^{N}}{\tau^{p_{i}}\left(1-\bar{\mu}_{i}\right)^{p_{i}}}+\left\|a_{i}\right\|_{\infty} g_{\bar{\mu}_{i}}\left(p_{i}, N\right)\right] \\
& \leq \bar{\mu}^{N} \omega_{\tau} v\left|d_{i, k}\right|^{p_{i}}
\end{aligned}
$$

for $1 \leq i \leq n$. Taking into account $\inf _{t \geq 0} K(t)>0$, it follows that

$$
\begin{equation*}
\Phi\left(w_{k}\right)=\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\left\|w_{i k}\right\|_{*}^{p_{i}}\right)}{p_{i}} \leq \sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|d_{i, k}\right|^{p_{i}}\right)}{p_{i}} \tag{3.7}
\end{equation*}
$$

On the other hand, bearing in mind Assumption (A1) from the definition of Ψ, we infer

$$
\begin{equation*}
\Psi\left(w_{k}\right) \geq \int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, d_{1, k}, \ldots, d_{n, k}\right) d x \tag{3.8}
\end{equation*}
$$

So, according to (3.7) and (3.8) we obtain

$$
I_{\lambda}\left(w_{k}\right) \leq \sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|d_{i, k}\right|^{p_{i}}\right)}{p_{i}}-\lambda \int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, d_{1, k}, \ldots, d_{n, k}\right) d x
$$

for every $k \in \mathbb{N}$. Now, if

$$
\limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}\right)}{p_{i}}}<\infty
$$

we fix $\epsilon \in] 1 / \limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)} \frac{\int_{B\left(x_{0}, \mu \tau\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{K_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}\right.}{p_{i}}}, 1[$. From 3.5) there exists ϑ_{ϵ} such that

$$
\begin{aligned}
& \int_{B\left(x_{0}, \underline{\mu \tau}\right)} F\left(x, d_{1, k}, \ldots, d_{n, k}\right) d x \\
& >\epsilon\left(\limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)}^{\left.\operatorname{limsin}^{2}\right)} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}\right)}{p_{i}}}\right) \sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|d_{i, k}\right|^{p_{i}}\right)}{p_{i}}
\end{aligned}
$$

for all $k>\vartheta_{\epsilon}$; therefore, $I_{\lambda}\left(w_{k}\right)$

$$
\leq\left(1-\lambda \epsilon \limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v \mid t_{i} p^{p_{i}}\right)}{p_{i}}}\right) \sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|d_{i, k}\right|^{p_{i}}\right)}{p_{i}}
$$

for all $k>\vartheta_{\epsilon}$, and by the choice of ϵ, one then has

$$
\lim _{m \rightarrow+\infty}\left[\Phi\left(w_{k}\right)-\lambda \Psi\left(w_{k}\right)\right]=-\infty .
$$

If

$$
\limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v \mid t_{i} p^{p_{i}}\right)}{p_{i}}}=\infty
$$

let us consider $M>1 / \lambda$. From 3.5 there exists ϑ_{M} such that

$$
\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, d_{1, k}, \ldots, d_{n, k}\right) d x>M \sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|d_{i, k}\right|^{p_{i}}\right)}{p_{i}} \quad \forall k>\vartheta_{M}
$$

and therefore

$$
I_{\lambda}\left(w_{k}\right) \leq(1-\lambda M) \sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|d_{i, k}\right|^{p_{i}}\right)}{p_{i}} \quad \forall k>\vartheta_{M}
$$

and by the choice of M, one then has

$$
\lim _{k \rightarrow+\infty}\left[\Phi\left(w_{k}\right)-\lambda \Psi\left(w_{k}\right)\right]=-\infty
$$

Hence, our claim is proved. Since all assumptions of Theorem 2.1 are satisfied, the functional I_{λ} admits a sequence $\left\{u_{k}=\left(u_{1 k}, \ldots, u_{n k}\right)\right\} \subset X$ of critical points such that

$$
\lim _{k \rightarrow \infty}\left\|\left(u_{1 k}, \ldots, u_{n k}\right)\right\|=+\infty
$$

and we have the desired conclusion.
Remark 3.2. We point out that if $K_{i}(t)=1$ for each $t \geq 0$ for $1 \leq i \leq n$, Theorem 3.1 gives [6, Theorem 3.1].

Now we want to point out the following existence result, in which instead of Assumption (A2) in Theorem 3.1 a more general condition is assumed.
(A3) there exist a sequence $\left\{a_{k}\right\}$ and n positive real sequence $\left\{b_{i, k}\right\}$ with

$$
\frac{a_{k}^{\frac{p}{k}}}{\left(\sum_{i=1}^{n}\left(p_{i} \underline{C} \underline{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}}>\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|b_{i k}\right|^{p_{i}}\right)}{p_{i}}
$$

and $\lim _{k \rightarrow \infty} a_{k}=+\infty$ such that

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q\left(a_{k}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x-\int_{B\left(x_{0}, \underline{\mu \tau}\right)} F\left(x, b_{1 k}, \ldots, b_{n k}\right) d x}{\frac{a_{\frac{p}{k}}}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}}-\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|b_{i k}\right|^{p_{i}}\right)}{p_{i}}} \\
& <{\lim \sup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)_{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{B\left(x_{0}, \underline{\mu \tau}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}\right)}{p_{i}}} .}^{l} .
\end{aligned}
$$

Theorem 3.3. Assume (A1), (A3) and let Λ^{\prime} be the interval

$$
\begin{aligned}
&] \frac{1}{\limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)} \frac{\int_{B\left(x_{0}, \underline{\underline{\mu})}\right.} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}\right)}{p_{i}}}}, \\
& \frac{\frac{a_{k}^{\frac{p}{k}}}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}}}{\lim _{k \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q\left(a_{k}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x-\int_{B\left(x_{0}, \underline{\mu \tau}\right)} F\left(x, b_{1 k}, \ldots, b_{n k}\right) d x}{\frac{a \frac{p}{k}}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}}-\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|b_{i k}\right|^{\left.p_{i}\right)}\right.}{p_{i}}}}[.
\end{aligned}
$$

If $\lambda \in \Lambda^{\prime}$, then 1.1 has an unbounded sequence of weak solutions in X.
Proof. Clearly, from (A3) we obtain (A2), by choosing $b_{i, k}=0$ for all $k \in \mathbb{N}$ and for $1 \leq i \leq n$. Moreover, if we assume (A3) instead of (A2) and set

$$
r_{k}=\frac{a_{\underline{k}}^{\underline{p}}}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}}
$$

for all $k \in \mathbb{N}$, by the same argument as in Theorem 3.1. we obtain

$$
\begin{aligned}
\varphi\left(r_{k}\right) & =\inf _{u \in \Phi^{-1}(]-\infty, r_{k}[)} \frac{\left(\sup _{\left.\left.v \in \Phi^{-1}(]-\infty, r_{k}\right]\right)} \Psi(v)\right)-\Psi(u)}{r_{k}-\Phi(u)} \\
& \leq \frac{\sup _{\left.\left.v \in \Phi^{-1}(]-\infty, r_{k}\right]\right)} \Psi(v)-\int_{a}^{b} F\left(x, w_{1 k}(x), \ldots, w_{n k}(x)\right) d x}{r_{k}-\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\left\|w_{i k}\right\|_{*}^{p_{i}}\right)}{p_{i}}} \\
& \leq \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q\left(a_{k}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x-\int_{B\left(x_{0}, \underline{\mu \tau}\right)} F\left(x, b_{1 k}, \ldots, b_{n k}\right) d x}{\frac{a_{\bar{k}}^{p}}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}}-\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v\left|b_{i k}\right|^{p_{i}}\right)}{p_{i}}}
\end{aligned}
$$

where $w_{k}=\left(w_{1 k}, \ldots, w_{n k}\right)$, with $w_{i k}$ for $1 \leq i \leq n$, as given in with $b_{i, k}$ instead of $d_{i, k}$. So, we have the desired conclusion.

Now we point out a consequence of Theorem 3.1. under the assumptions

$$
\begin{equation*}
\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{\underline{p}}}<\frac{1}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{m}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}} \tag{B1}
\end{equation*}
$$

(B2)

$$
\limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)_{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{B\left(x_{0}, \underline{\mu \tau}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\tilde{K}_{i}\left(\bar{\mu}^{N} \omega_{\tau} v \mid t_{i} p^{p_{i}}\right)}{p_{i}}}>1 .
$$

Corllary 3.4. Assume (A1), (B1), (B2). Then the system

$$
\begin{aligned}
& -\left[K_{i}\left(\int_{\Omega}\left(\left|\nabla u_{i}(x)\right|^{p_{i}}+a_{i}(x)\left|u_{i}(x)\right|^{p_{i}}\right) d x\right)\right]^{p_{i}-1} \\
& \times\left(\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right)+a_{i}(x)\left|u_{i}\right|^{p_{i}-2} u\right) \\
& =F_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right) \quad \text { in } \Omega,
\end{aligned}
$$

$$
u_{i}=0 \quad \text { on } \partial \Omega
$$

for $1 \leq i \leq n$, has an unbounded sequence of weak solutions in X.
As an example, we state a special case of our main result.
Theorem 3.5. Let $\Omega \subset \mathbb{R}^{2}$ be a non-empty bounded open set with a smooth boundary $\partial \Omega$. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two positive $C^{0}\left(\mathbb{R}^{2}\right)$-functions such that the differential 1 -form $w:=f(\xi, \eta) d \xi+g(\xi, \eta) d \eta$ is integrable and let F be a primitive of w such that $F(0,0)=0$. Fix $p, q>2$, with $p \leq q$, and assume that

$$
\liminf _{\xi \rightarrow+\infty} \frac{F(\xi, \xi)}{\xi^{p}}=0, \quad \limsup _{\xi \rightarrow+\infty} \frac{F(\xi, \xi)}{\frac{\tilde{K_{1}}\left(\bar{\mu}^{2} \tau^{2} \pi v\left|t_{1}\right|^{p}\right)}{p}+\frac{\tilde{K}_{2}\left(\bar{\mu}^{2} \tau^{2} \pi v\left|t_{2}\right|^{q}\right)}{q}}=+\infty
$$

where

$$
v:=\max \left\{\frac{\sigma(p, 2)}{\tau^{p}}+\left\|a_{1}\right\|_{\infty} \frac{g_{\mu_{1}}(p, 2)}{{\overline{\mu_{1}}}^{2}}, \frac{\sigma(q, 2)}{\tau^{q}}+\left\|a_{2}\right\|_{\infty} \frac{g_{\mu_{2}}(q, 2)}{{\overline{\mu_{2}}}^{2}}\right\}
$$

Then, the system

$$
\begin{aligned}
& -\left[K_{1}\left(\int_{\Omega}\left(|\nabla u(x)|^{p}+a_{1}(x)|u(x)|^{p}\right) d x\right)\right]^{p-1}\left(\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+a_{1}(x)|u|^{p-2} u\right) \\
& =f(u, v) \text { in } \Omega, \\
& -\left[K_{2}\left(\int_{\Omega}\left(|\nabla v(x)|^{q}+a_{2}(x)|v(x)|^{q}\right) d x\right)\right]^{q-1}\left(\operatorname{div}\left(|\nabla v|^{q-2} \nabla v\right)+a_{2}(x)|v|^{q-2} v\right) \\
& =g(u, v) \quad \text { in } \Omega, \quad u=v=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

admits a sequence of pairwise distinct positive weak solutions in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$.
Proof. Take $n=2$ and set $F\left(x, t_{1}, t_{2}\right)=F\left(t_{1}, t_{2}\right)$ for all $x \in \Omega$ and $t_{1}, t_{2} \in \mathbb{R}$. From the conditions

$$
\liminf _{\xi \rightarrow+\infty} \frac{F(\xi, \xi)}{\xi^{p}}=0, \quad \limsup _{\xi \rightarrow+\infty} \frac{F(\xi, \xi)}{\frac{\tilde{K}_{1}\left(\bar{\mu}^{2} \tau^{2} \pi v\left|t_{1}\right|^{p}\right)}{p}+\frac{\tilde{K_{2}}\left(\bar{\mu}^{2} \tau^{2} \pi v\left|t_{2}\right|^{q}\right)}{q}}=+\infty
$$

we see that the assumptions (B1) and (B2), respectively, are satisfied. So, taking into account that $F_{t_{1}}\left(t_{1}, t_{2}\right)=f\left(t_{1}, t_{2}\right), F_{t_{2}}\left(t_{1}, t_{2}\right)=g\left(t_{1}, t_{2}\right)$ for all $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$, and $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are positive, the conclusion follows from Corollary 3.4

Remark 3.6. We observe in Theorem 3.1 we can replace $\xi \rightarrow+\infty$ with $\xi \rightarrow 0^{+}$, that by the same way as in the proof of Theorem 3.1 but using conclusion (c) of Theorem 2.1 instead of (b), the system 1.1 has a sequence of weak solutions, which strongly converges to 0 in X.

Now, we want to point out a remarkable particular situation of Theorem 3.1. using the assumption
(C1)

$$
\begin{aligned}
& \liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{\underline{p}}} \\
& <\frac{1}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{\alpha}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}}
\end{aligned}
$$

$$
\times \limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)_{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{B\left(x_{0}, \underline{\mu \tau}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\alpha_{i} \bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}+\frac{\beta_{i}}{2}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{\left.p_{i}\right)^{2}}\right.}}{p_{i}}} .
$$

Corllary 3.7. Fix $\alpha_{i}, \beta_{i}>0$ for $1 \leq i \leq n$, and denote $\underline{\alpha}=\min \left\{\alpha_{i} ; 1 \leq i \leq n\right\}$. Suppose that Assumptions (A1), (C1) hold, and let λ belong to the interval

$$
\begin{aligned}
&] \frac{1}{\limsup _{\left(t_{1}, \ldots, t_{n}\right) \rightarrow(+\infty, \ldots,+\infty)} \frac{\int_{B\left(x_{0}, \underline{\mu \tau}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\alpha_{i} \bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}+\frac{\beta_{i}}{2}\left(\bar{\mu}^{N} \omega_{\tau} v\left|t_{i}\right|^{p_{i}}\right)^{2}}{p_{i}}}}, \\
& \frac{\frac{1}{\left(\sum_{i=1}^{n}\left(p_{i} \frac{C}{\underline{\alpha}}\right)^{\frac{1}{p_{i}}}\right)^{\underline{p}}}}{\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in Q(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi \underline{p}}}[.
\end{aligned}
$$

Then the system

$$
\begin{aligned}
& -\left[\alpha_{i}+\beta_{i} \int_{\Omega}\left(\left|\nabla u_{i}(x)\right|^{p_{i}}+a_{i}(x)\left|u_{i}(x)\right|^{p_{i}}\right) d x\right]^{p_{i}-1} \\
& \times\left(\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right)+a_{i}(x)\left|u_{i}\right|^{p_{i}-2} u\right) \\
& =\lambda F_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right) \quad \text { in } \Omega \\
& \quad u_{i}=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

has an unbounded sequence of weak solutions in X.
Proof. For fixed $\alpha_{i}, \beta_{i}>0$ and $1 \leq i \leq n$, set $K_{i}(t)=\alpha_{i}+\beta_{i} t$ for all $t \geq 0$. Bearing in mind that $m_{i}=\alpha_{i}$ for $1 \leq i \leq n$, the conclusion follows immediately from Theorem 3.1.

We illustrate our results by giving the following example whose construction is motivated by [6, Example 3.1].
Example 3.8. Let $\Omega \subset \mathbb{R}^{2}$ be a non-empty open set with a smooth boundary $\partial \Omega$ and consider the increasing sequence of positive real numbers given by

$$
a_{1}=2, \quad a_{n+1}=n!\left(a_{n}\right)^{7 / 3}+2 \quad \text { for } n \geq 1
$$

Define the function $F: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
F\left(x, y, t_{1}, t_{2}\right)=\left\{\begin{array}{l}
\left(a_{n+1}\right)^{7} e^{x^{2}+y^{2}-\frac{\left(t_{1}-a_{n+1}\right)^{2}-\left(t_{2}-a_{n+1}\right)^{2}}{1-1}} \\
\quad \text { if }\left(x, y, t_{1}, t_{2}\right) \in \Omega \times \cup_{n \geq 1} S\left(\left(a_{n+1}, a_{n+1}\right), 1\right) \\
0
\end{array}\right.
$$ otherwise,

where $S\left(\left(a_{n+1}, a_{n+1}\right), 1\right)$ denotes the open unit ball with center at $\left(a_{n+1}, a_{n+1}\right)$. It is clear that $F: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a non-negative function such that the mapping $\left(t_{1}, t_{2}\right) \rightarrow F\left(x, t_{1}, t_{2}\right)$ is in C^{1} in \mathbb{R}^{2} for all $x \in \Omega, F_{t_{i}}$ is continuous in $\Omega \times \mathbb{R}^{2}$, for $i=1,2$, and $F(x, y, 0,0)=0$ for all $(x, y) \in \Omega$. Now, for every $n \in \mathbb{N}$, one has

$$
\begin{aligned}
& \int_{B\left(x_{0}, \underline{\mu \tau}\right)} \sup _{\left(t_{1}, t_{2}\right) \in S\left(\left(a_{n+1}, a_{n+1}\right), 1\right)} F\left(x, y, t_{1}, t_{2}\right) d x d y \\
& =\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, y, a_{n+1}, a_{n+1}\right) d x d y
\end{aligned}
$$

$$
=\left(a_{n+1}\right)^{7} \int_{B\left(x_{0}, \underline{\mu} \tau\right)} e^{x^{2}+y^{2}} d x d y
$$

We will denote by f and g the partial derivative of F respect to t_{1} and t_{2}, respectively. Since

$$
\lim _{n \rightarrow+\infty} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, y, a_{n+1}, a_{n+1}\right) d x d y}{\sum_{i=1}^{2} \frac{\bar{\mu}^{2} \tau^{2} \pi v a_{n+1}^{3}+\frac{1}{2}\left(\bar{\mu}^{2} \tau^{2} \pi v a_{n+1}^{3}\right)^{2}}{3}}=+\infty
$$

where

$$
v:=\max \left\{\frac{\sigma(3,2)}{\tau^{3}}+\left\|a_{1}\right\|_{\infty} \frac{g_{\mu_{1}}(3,2)}{{\overline{\mu_{1}}}^{2}}, \frac{\sigma(3,2)}{\tau^{3}}+\left\|a_{2}\right\|_{\infty} \frac{g_{\mu_{2}}(3,2)}{{\overline{\mu_{2}}}^{2}}\right\}
$$

we see that

$$
\limsup _{\left(t_{1}, t_{2}\right) \rightarrow(+\infty,+\infty)_{\left(t_{1}, t_{2}\right) \in \mathbb{R}_{+}^{2}}} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F\left(x, y, t_{1}, t_{2}\right) d x}{\sum_{i=1}^{2} \frac{\bar{\mu}^{2} \tau^{2} \pi v\left|t_{i}\right|^{3}+\frac{1}{2}\left(\bar{\mu}^{2} \tau^{2} \pi v\left|t_{i}\right|^{3}\right)^{2}}{3}}=+\infty
$$

Moreover, by choosing $\xi_{n}=a_{n+1}-1$, for every $n \in \mathbb{N}$, one has

$$
\int_{B\left(x_{0}, \underline{\mu} \tau\right)} \sup _{\left(t_{1}, t_{2}\right) \in K(\xi)} F\left(x, y, t_{1}, t_{2}\right) d x d y=\left(a_{n}\right)^{7} \int_{B\left(x_{0}, \underline{\mu} \tau\right)} e^{x^{2}+y^{2}} d x d y
$$

Then

$$
\lim _{n \rightarrow+\infty} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} \sup _{\left(t_{1}, t_{2}\right) \in K(\xi)} F\left(x, y, t_{1}, t_{2}\right) d x d y}{\left(a_{n+1}-1\right)^{3}}=0
$$

and so

$$
\liminf _{\xi \rightarrow+\infty} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} \sup _{\left(t_{1}, t_{2}\right) \in K(\xi)} F\left(x, y, t_{1}, t_{2}\right) d x d y}{\xi^{3}}=0 .
$$

Therefore,

$$
\begin{aligned}
0 & =\liminf _{\xi \rightarrow+\infty} \frac{\int_{B\left(x_{0}, \underline{\mu \tau}\right)} \sup _{\left(t_{1}, t_{2}\right) \in K(\xi)} F\left(x, y, t_{1}, t_{2}\right) d x d y}{\xi^{3}} \\
& <\frac{1}{24 C} \limsup _{\left(t_{1}, t_{2}\right) \rightarrow(+\infty,+\infty)}{ }_{\left(t_{1}, t_{2}\right) \in \mathbb{R}_{+}^{2}} \frac{\int_{B\left(x_{0}, \underline{\mu \tau}\right)} F\left(x, y, t_{1}, t_{2}\right) d x}{\sum_{i=1}^{2} \frac{\bar{\mu}^{2} \tau^{2} \pi v\left|t_{i}\right|^{3}+\frac{1}{2}\left(\bar{\mu}^{2} \tau^{2} \pi v\left|t_{i}\right|^{3}\right)^{2}}{3}}=+\infty
\end{aligned}
$$

Hence, all the assumptions of Corollary 3.7 are satisfied, and it is applicable to the system

$$
\begin{aligned}
& -\left[1+\int_{\Omega}\left(|\nabla u(x)|^{3}+a_{1}(x)|u(x)|^{3}\right) d x\right]^{2}\left(\operatorname{div}(|\nabla u| \nabla u)+a_{1}(x)|u| u\right) \\
& =\lambda f(x, y, u, v) \quad \text { in } \Omega, \\
& -\left[1+\int_{\Omega}\left(|\nabla v(x)|^{3}+a_{2}(x)|v(x)|^{3}\right) d x\right]^{2}\left(\operatorname{div}(|\nabla v| \nabla v)+a_{2}(x)|v| v\right) \\
& =\lambda g(x, y, u, v) \quad \text { in } \Omega, \quad u=v=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

for every $\lambda \in] 0,+\infty[$.

As an application of our results, we consider the problem

$$
\begin{aligned}
& -\left[\alpha+\beta \int_{\Omega}\left(|\nabla u(x)|^{p}+a(x)|u(x)|^{p}\right) d x\right]^{p-1}\left(\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+a(x)|u|^{p-2} u\right) \\
& =\lambda f(x, u) \text { in } \Omega
\end{aligned}
$$

$$
\begin{equation*}
u=0 \quad \text { on } \partial \Omega \tag{3.9}
\end{equation*}
$$

where $p>N, \lambda>0, \alpha, \beta>0, f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{1}-Caratéodory function and $a \in L^{\infty}(\Omega)$ with $\operatorname{ess}^{\inf }{ }_{\Omega} a(x) \geq 0$. Put

$$
F(x, t)=\int_{0}^{t} f(x, \xi) d \xi \quad \text { for all }(x, t) \in \Omega \times \mathbb{R}
$$

The following existence result is an immediate consequence of Theorem 3.1.
Theorem 3.9. Assume that
(D1) $F(x, t) \geq 0$ for each $(x, t) \in \Omega \times \mathbb{R}_{+}$;
(D2)

$$
\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{|t| \leq \xi} F(x, t) d x}{\xi^{p}}<\frac{\alpha}{C^{p}} \limsup _{t \rightarrow+\infty_{t \in \mathbb{R}_{+}}} \frac{\int_{B\left(x_{0}, \underline{\mu} \tau\right)} F(x, t) d x}{\alpha \bar{\mu}^{N} \omega_{\tau} v|t|^{p}+\frac{\beta}{2}\left(\bar{\mu}^{N} \omega_{\tau} v|t|^{p}\right)^{2}}
$$

where

$$
C:=\sup _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}|u(x)|}{\left(\int_{\Omega}|\nabla u(x)|^{p} d x\right)^{1 / p}} .
$$

Then, for each λ in the interval

the problem (3.9) has an unbounded sequence of weak solutions in $W_{0}^{1, p}(\Omega)$.
Acknowledgments. The authors express their sincere gratitude to the anonymous referee for the valuable suggestions concerning improvement of the manuscript. Shapour Heidarkhani was supported by grant 90470020 from IPM.

References

[1] C. O. Alves, F. S. J. A. Corrêa, T. F. Ma; Positive solutions for a quasilinear elliptic equations of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85-93.
[2] G. Bonanno, G. D'Aguì; On the Neumann problem for elliptic equations involving the pLaplacian, J. Math. Anal. Appl. 358 (2009) 223-228.
[3] G. Bonanno, B. Di Bella; Infinitely many solutions for a fourth-order elastic beam equation, Nonlinear Differential Equations and Applications NoDEA, 18(3) (2011) 357-368.
[4] G. Bonanno, G. Molica Bisci; Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009) 1-20.
[5] G. Bonanno, G. Molica Bisci; Infinitely many solutions for a Dirichlet problem involving the p-Laplacian, Proceedings of the Royal Society of Edinburgh 140A (2010) 737-752.
[6] G. Bonanno, G. Molica Bisci, D. O'Regan; Infinitely many weak solutions for a class of quasilinear elliptic systems, Math. Comput. Modelling 52 (2010) 152-160.
[7] G. Bonanno, G. Molica Bisci, V. Rădulescu; Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatsh Math. 165 (2012) 305-318.
[8] G. Bonanno, G. Molica Bisci, V. Rădulescu; Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket, ESAIM: Control, Optimisation and Calculus of Variations, DOI: 10.1051/cocv/2011199.
[9] G. Bonanno, G. Molica Bisci, V. Rădulescu; Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces, Nonlinear Anal. (2012); doi: 10.1016 /j.na.2011.12.016.
[10] P. Candito; Infinitely many solutions to the Neumann problem for elliptic equations involving the p-Laplacian and with discontinuous nonlinearities, Proc. Edin. Math. Soc. 45 (2002) 397409.
[11] P. Candito, R. Livrea; Infinitely many solutions for a nonlinear Navier boundary value problem involving the p-biharmonic, Studia Univ. "Babeş-Bolyai", Mathematica, Volume LV, Number 4, December 2010.
[12] B. Cheng, X. Wu, J. Liu; Multiplicity of solutions for nonlocal elliptic system of (p, q)Kirchhoff type, Abstract and Applied Analysis 2011 (2011), doi:10.1155/2011/526026.
[13] M. Chipot, B. Lovat; Some remarks on non local elliptic and parabolic problems, Nonlinear Anal. 30 (1997) 4619-4627.
[14] G. Dai; Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian, Nonlinear Anal. 70 (2009) 2297-2305.
[15] X. Fan, C. Ji; Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian, J. Math. Anal. Appl. 334 (2007) 248-260.
[16] J. R. Graef, S. Heidarkhani, L. Kong; Infinitely many solutions for systems of multi-point boundary value equations, Topological Methods in Nonlinear Analysis, to appear.
[17] J. R. Graef, S. Heidarkhani, L. Kong; A variational approach to a Kirchhoff-type problem involving two parameters, Results. Math., (2012) DOI:10.1007/s00025-012-0238-x.
[18] X. He, W. Zou; Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009) 1407-1414.
[19] S. Heidarkhani, G. A. Afrouzi, D. O'Regan; Existence of three solutions for a Kirchhoff-type boundary value problem, Electronic Journal of Differential Equations Vol. 2011 (2011) No. 91, pp. 1-11.
[20] S. Heidarkhani, Y. Tian; Three solutions for a class of gradient Kirchhoff-type systems depending on two parameters, Dynamic Systems and Applications 20 (2011) 551-562.
[21] A. Kristály; Infinitely many solutions for a differential inclusion problem in \mathbb{R}^{N}, J. Differential Equations 220 (2006) 511-530.
[22] T. F. Ma; Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. 63 (2005) e1957-e1977.
[23] S. A. Marano, D. Motreanu; Infinitely many critical points of non-differentiable functions and applications to a Neumann type problem involving the p-Laplacian, J. Differential Equations 182 (2002) 108-120.
[24] A. Mao, Z. Zhang; Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009) 1275-1287.
[25] K. Perera, Z. T. Zhang; Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006) 246-255.
[26] B. Ricceri; A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000) 401-410.
[27] B. Ricceri; Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc. 33 (3) (2001) 331-340.
[28] B. Ricceri; On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optimization 46 (2010) 543-549.
[29] J. Simon; Regularitè de la solution d'une equation non lineaire dans R^{N}, in: Journées d'Analyse Non Linéaire (Proc. Conf., Besanon, 1977), (P. Bénilan, J. Robert, eds.), Lecture Notes in Math., 665, pp. 205-227, Springer, Berlin-Heidelberg-New York, 1978.
[30] G. Talenti; Some inequalities of Sobolev type on two-dimensional spheres, in: W. Walter (Ed.), General Inequalities, Vol. 5, Internat. Ser Numer. Math. 8 (1987) 401-408. J. Math. Anal. Appl. 282 (2003) 531-552.
[31] Z. T. Zhang, K. Perera; Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317
[32] E. Zeidler; Nonlinear Functional Analysis and Its Applications, Vol. II. Berlin-HeidelbergNew York 1985.

Shapour Heidarkhani
Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.
Box 19395-5746, Tehran, Iran
E-mail address: s.heidarkhani@razi.ac.ir
Johnny Henderson
Department of Mathematics, Baylor University, Waco, TX 76798-7328, USA
E-mail address: Johnny_Henderson@baylor.edu

[^0]: 2000 Mathematics Subject Classification. 35A05, 35A15.
 Key words and phrases. Infinitely many solutions; Kirchhoff type system;
 critical point theory; variational methods.
 © 2012 Texas State University - San Marcos.
 Submitted April 17, 2012. Published May 2, 2012.

